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The global deployment of wireless communication systems poses significant

challenges for system designers which have to accommodate an ever-increasing num-

ber of users while simultaneously meet demands for increased levels of security and

privacy. Many of these problems involve aspects of lossy source coding that are yet

to be well understood. For instance, the nature and combined effectiveness of sparse

graphs and message-passing algorithms in source coding continues to be the subject

of debate and active research. This is in stark contrast to the channel coding case

where specific capacity-approaching codes (i.e. Turbo Codes, Low-Density Parity

Check Codes, etc.) and classical message-passing schemes (i.e. Belief Propagation)

are clearly understood, widely accepted, and increasingly in use. Furthermore, the

emergence of cavity methods drawn from statistical physics (i.e. Survey Propagation)

gave rise to the widespread assumption that the source coding problem could not be

solved by simple Belief Propagation-based iterations over Markov Random Fields.

This notion is challenged heretofore by the introduction of two novel message-

passing algorithms. These two simple schemes, namely Truthiness Propagation and

Modified Truthiness Propagation, are developed based upon modified Bethe free en-

ergy approximations (equivalent to log-partition function approximations) and shown

to be closely related to Belief Propagation, thus situating them on firm theoretical



ground. The new algorithms exhibit rate-distortion performance near the Shannon

limit even for modest codeword lengths when combined with both regular and irreg-

ular Low-Density Generator Matrix Codes. This feature offers a distinct advantage

not seen with other message-passing schemes. Furthermore, their complexity is man-

ageable since the decimation steps prevalent in other recently proposed techniques

are not required.

Finally, these modified instantiations of Belief Propagation are applied to a

number of applications relevant to the codeword quantization problem (i.e. general

decoding problem) via simple examples in dirty paper coding, data hiding, secrecy

coding, and wireless sensor networks.
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1

Introduction to Markov Random Fields

and Factor Graphs

The recent emergence of advanced codes and algorithms based on graph constructions

underscores the increasingly important role that graphical models play in addressing

many challenges in modern communication systems [1, 2]. The formalism afforded by

graphical models allows for both easy and insightful representation of highly complex

multivariate statistical functions as well as the development of methods to extract

useful information from them. These extraction methods, commonly referred to as

statistical inference, form the basis of the applicability of graphical models to source

and channel coding problems. The objective of statistical inference in these applica-

tions is often to compute the marginal distributions from the joint probability density

function being represented by the graph model. In the context of source coding, the ef-

1
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ficient (albeit approximate) computation of marginal distributions is key in providing

minimum weight (or minimum energy) representation of data (i.e. data compression)

for efficient storage and/or transmission [3]. The insight and computational tractabil-

ity of these approximation methods stems from a certain class of graph model called a

Markov random field (MRF) [4]. In turn, the benefits of Markov random fields trans-

late nicely into an even more useful graphical representation for coding applications

called a factor graph. These factor graph representations not only serve to elucidate

classical statistical inference algorithms but open the door to the development of new

alternatives designed to address challenging problems in multi-user communications

and many other areas [5].

1.1 Graphical Models

Graphical models are probabilistic models represented by graphs which denote sta-

tistical relationships among random variables [6]. They combine multiple elements of

graph theory and probability theory in a framework amenable for visualization and

analysis of multi-dimensional probability distributions. A graph G(V,E) consists of

a group of vertices (or nodes) V and a group of edges E. Each vertex s ∈ V repre-

sents a random variable xs with a given domain Xs. The edges interconnect random

variables and represent statistical dependencies among them. Probabilistic graphical

models can be classified in two broad categories, namely Bayesian belief networks

(BBN) and Markov random fields [6]. These two classes are also known as directed

and un-directed graphs, respectively. In the case of directed graphs, every single edge



3

is routed from parent vertices to child vertices. The overall (or joint) probability

distribution in a directed graph can be written as follows:

p(X) =
�

s∈V

p(xs|parent(xs))

where X denotes the ensemble of random variables xs and parent(xs) is the state of

the group of vertices connected to vertex xs. Figure 1.1 shows a relatively simple

example of a directed graph (BBN) composed of three vertices and three edges. The

Figure 1.1: Simple Bayesian Belief Network

joint probability distribution for the Bayesian belief network shown in Figure 1.1 is

given by:

P (R, T,Q) = P (Q|R, T )P (T |R)P (R)

Note how the joint probability function can be written as the product of the indi-

vidual vertex distribution functions conditional on the state of their parent vertices.

This also implies that any particular random variable in the graph is conditionally

independent of all others given its neighboring random variables [7]. This is known

as the local Markov property. Bayesian belief networks satisfy the local Markov
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property. Bayesian belief networks are very useful mechanisms when attempting to

capture causal relationships among random variables. Important instances of such

models are evident in hidden Markov models and neural networks [8].

The other major class of graphical models is the un-directed graph, or Markov

random field. A Markov random field is the multi-dimensional generalization of the

better-known Markov chain [8]. Markov random fields are typically used to represent

spatial dependencies among random variables in a probabilistic model. The concept

of Markov random fields has been widely used in statistics as well as computer vision

and other image processing applications [4]. A number of preliminary concepts need

proper definition in order to understand Markov random fields. Each and every

random variable in a Markov random field is part of a neighborhood system N defined

simply as:

N = Nj | ∀j ∈ V

where Nj is the local neighborhood surrounding variable j, which is part of the set V

of random variables called a random field. A random variable cannot be a neighbor

to itself and the relationship between neighboring variables has to be mutual [4]. A

variable k within the random field V is considered a neighbor of variable j if:

Nj = j ∈ V | d(j, k) ≤ h, j �= k

where d(j, k) is the distance between the random variables and its specific definition

depends on the context. The random field V and the set of neighborhoods N form

an undirected graph where the vertices are the random variables in V and the set
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N defines the connections among the vertices. The cliques in this type of graph are

defined by subsets of connected vertices in V . They can be single-variable cliques,

dual-variable cliques, and so forth. The union of all cliques constitutes the undirected

graph defined earlier. If the variables in the random field V = (V1, V2, . . . , Vk) are

given the values v = (v1, v2, . . . , vk) in a certain domain, then the probability that

Vj is equal to vj can be expressed by P (Vj = vj) = P (vj). For joint events, similar

definitions are valid (i.e. P (V = v) = P (v)). Therefore, V is a Markov random field

if it has the following two properties [5, 8]:

Positive Property: P (v) > 0, ∀v ∈ all possible configurations of v

Markov Property: P (vj|vV−j) = P (vj|vN−j)

where the subscript V − j implies all the variables in the set V except for j and Nj

is the neighborhood of vertices around j.

Markov random fields could be specified either in terms of conditional prob-

ability distributions or joint probability distributions. Both of these probability de-

scriptors are typically very difficult to obtain directly, and even when the conditional

distributions are available the transition to a joint distribution is virtually intractable

[7, 8]. Nevertheless, if the undirected graph satisfies the two properties stated earlier

then it is possible to characterize the Markov random field as a factorization over the

sets of interconnected vertices (cliques) of the graph. Following the same notation

used earlier to describe the joint distribution of a Bayesian belief network, the joint
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probability distribution of a Markov random field is:

p(X) =
1

A

�

C ∈ cliques(G)

ΨC(xC)

where the product of clique potentials ΨC is taken over all cliques in the graph and

A is a normalization constant. The joint distribution function description in terms of

products of clique potentials originates from the equivalence between Markov random

fields and Gibbs random fields established by the Hammersley-Clifford theorem [9].

Unlike Markov random fields, Gibbs distributions are described by a global function

of the form [4]:

P (v) =
1

A
exp

�
− 1

T
U(v)

�

where A is called the partition function, T is a temperature constant (assumed to be

1 without loss of generality) and U(v) is the energy function. The partition function

is given by:

A =
�

v ∈ all configurations in V

exp

�
− 1

T
U(v)

�

where U(v) is expressed as follows:

U(v) =
�

c ∈ C

Ψc(v)

where the term Ψc represents the potential of clique c. Clearly, the importance of the

Hammersley-Clifford theorem cannot be overstated since it provides a path to specify
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a Markov random field in terms of its factorized clique potentials [9]:

P (vj|vV−j) =
exp

�
−
�

c ∈ Cj
Ψc(v)

�

�
v ∈ all configurations in V exp

�
−
�

c ∈ Cj
Φc(v)

�

where the potentials Ψc(v) are calculated only over the cliques that contain variable

j.

A Markov random field example commonly used in image processing is the

pairwise Markov random field. Consider the case (without loss of generality) in

which every vertex has an observation node attached. Figure 1.2 shows the resulting

lattice Markov random field. The filled circles represent the observation nodes Y =

Figure 1.2: Square Lattice Pair-wise Markov Random Field [7]

[y1, . . . , yn]T while the other circles are the underlying nodes X = [x1, . . . , xn]T . The

edges represent spatial compatibility functions (potentials) Ψij(∗, ∗) between nodes at

positions i and j on the lattice. The Hammersly-Clifford theorem yields the following
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joint probability density function [9]:

p(X, Y ) =
1

A

�

i,j

Ψi,j(xi, yj)
�

i

Ψi,i(xi, yi)

In computer vision, the pairwise Markov random field is used to describe the spatial

constraints among pixels in an image [4]. The set of nodes Y sense information from

the image and the nodes X are used to infer information from the underlying scene.

Another interesting aspect of Markov random fields is that they could be

converted into equivalent Bayesian belief networks (via factor graphs) and vice versa.

The details about this procedure are discussed in [5, 8].

1.2 Factor Graph Representation

A particular class of undirected graphs, called factor graphs, has proven to be more

suitable for coding applications [5]. The factorized description of a joint distribution

represented by a Markov random field has a structure fit for a factor graph descrip-

tion. In fact, the same probabilistic model can be described interchangeably without

any loss in generality by either a factor graph or a Markov random field. In a general

sense, a factor graph is a convenient visual representation of any mathematical func-

tion or expression. In a formal sense, it is an undirected bipartite graph of variables

on one side that serve as arguments of local functions on the other side [5]. These

local functions are factors in the product that yields an overall global function. The

bipartite nature of factor graphs means that the vertices are divided into two dis-
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joint sets, namely that the set V in G(V,E) is split between the subset of variables

nodes and the subset of factors nodes. Figure 1.3 shows a pictorial view of a factor

graph. Variables are represented by circles on the left hand side and the factors are

represented by squares on the right side. The global function is the product of all the

factors. In turn, these factors are a function of the subset of variables connected to

each.

An important aspect of the factor graph shown in Figure 1.3 is that it does

not contain any cycles. A factor graph is cycle-free if all traces which begin at one

variable node end at a different variable node. Conversely, the factor graph shown in

Figure 1.4 contains multiple cycles. Note that traces in this factor graph do not have

a distinct beginning or end and continue to loop around indefinitely. The primary

reason to identify cycles in a factor graph is that the algorithms that typically operate

over these graphs are dramatically impacted due to their presence [5].

Figure 1.3: Factor Graph without Cycles
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The joint density function given by the factor graph in Figure 1.3 is:

p(X) = Fa(x4, x6)Fb(x1, x2)Fc(x2x5)Fd(x3, x6)

where X = [x1, x2, . . . , x6] is the set of variable nodes and the Fj for j = [a, b, c, d] is

the set of factor nodes.

Figure 1.4: Factor Graph with Cycles

Factor graphs are a generalization of Tanner graphs which were introduced to

describe certain error-correcting codes [10, 11]. In essence, the Tanner graphs use

the variable nodes to represent individual bits in a codeword and the function nodes

represent parity check nodes. The two graphs are very similar but in factor graphs a

function node is allowed to represent any arbitrary mathematical relationship among

the variables connected to it.

These types of graphs afford a simple way of understanding a large family

of inter-related algorithms that process complex global functions based upon simple

local computations [8]. These algorithms exploit the factor graph structure in order
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to perform certain inference tasks. Even though factor graphs originated from coding

theory and are commonly used in that context, they are also being used to describe

more general probabilistic and behavioral models to support a wide array of appli-

cations [5]. As stated before, it is relatively straightforward to obtain factor graph

representations from both Bayesian belief networks and Markov random fields.

1.3 Statistical Inference over Markov Random Fields

Beyond the use of Markov random fields (and other graph types) to model certain

problems, the ultimate goal is to enable, and develop, algorithms to efficiently extract

information of interest out of highly complex probability distributions by exploiting

their internal graphical structure [7]. Ideally, if this structure is deemed to be sparse

enough, there are relatively simple algorithms that extract the desired information

efficiently. Nevertheless, many probabilistic models of interest have non-sparse graph-

ical structures so different methods need to be considered. A common alternative is

to use Markov chain monte-carlo methods and there is abundant literature about the

subject and its applications [12]. One area where Markov chain monte-carlo methods

fall short in their implementation is in regards to error-control coding [7]. Thus, an

alternate path needs to be pursued given the relevance of channel and source coding

to the present work. Fortunately, a different framework based on variational princi-

ples has sparked recent interest and provided the foundation for the development of

an extensive set of algorithms designed to reduce the computational burden involved

in statistical inference problems [7, 13]. Furthermore, the novel iterative inference
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methods to be developed and discussed subsequently are heavily anchored to these

variational methods. The roots of all these methods can be traced to statistical

physics.

In a broad sense, these methods perform some sort of statistical inference

operation across a graphical model. The types of inference tasks can be boiled down

into two main categories [7]:

1. Computation of marginal distributions for a single variable node or over a subset

of the variable nodes.

2. Computation of modes of the joint density distribution.

The first task above is of utmost importance in many applications including source

coding. As such, the focus going forward will be centered on this particular statistical

inference task. The graphical model structure (i.e. cycle-free or not) is an important

factor in considering whether certain algorithms can be brought to bear to perform

exact statistical inference on the underlying probability distribution. Given the nature

of the problems at hand, the present focus could be further narrowed to inference

approximation algorithms instead. Thus, returning to the probability distribution

described by a Markov random field:

p(X) =
1

A

�

c ∈ C

Ψc(xc)

where Ψc are potential functions restricted to single or two-node cliques in C and A

is the normalization or partition function. The joint probability density described by
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the Markov random field above can be re-written in terms of exponential family dis-

tributions [7]. The rationale for introducing exponential distributions is due to their

convexity properties which are very useful in optimization problems. The tailored

expression then becomes:

p(x, θ) = exp




�

s ∈ V

θsxs +
�

(s,t) ∈ E

θstxsxt − A(θ)





The third term in the exponent above is the well-known log partition function defined

by the expression [7]:

A(θ) = log

�

χn

exp [θ,φ(x)]v(dx)

where φ(x) represents a collection of potential functions defining the mapping χn → R

on the base measure v defined via dv = h(x)dx, with h(x) being arbitrary and

dx =
�

dxs being the counting measure with respect to the mapping above. Note

that the probability distribution p(x; θ) strictly applies to pair-wise Markov random

fields. A closed-form description of p(x; θ) is usually required but unattainable due

to the inherent complexity of some of the terms in the expression defined earlier.

Even if the overall probability distribution was available, the problem of computing

marginals becomes intractable due to the large number of summations that must be

made [7]. These difficulties inevitably lead to approximation methods.

As stated earlier, a relevant class of such approximate inference methods is

based on the variational principle [13]. The term variational refers to mathematical

techniques of formulating inference problems as optimization problems and their re-

spective solution. The general idea is to pose the marginal distributions of interest as
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the prospective solution to an optimization problem [14]. This optimization problem

can be solved notionally by relaxing some of the conditions by which the optimiza-

tion takes place yielding the desired marginals. Consequently, given the distribution

p(x; θ) defined above, it has been established that the log partition function A is the

solution to the following optimization problem [14]:

A = max
q ∈Q

�
�

x

q(x)

�
�

c

log Ψc(x)

�
−

�

x ∈ χn

q(x) log q(x)

�

where Ψc(x) represent the clique functions (or potentials) along the graph. This

expression is uniquely maximized when q = p(x; θ). The probability distribution

q belongs to the set of all distributions on the χn discrete space called Q. Hence,

the rationale of the variational approach is to obtain a q ≈ p by approximating the

entropy term in the maximization expression above and choosing a suitable set Q to

maximize over.

Returning to the log partition function A(θ), a well-known result of this func-

tion is that it is a conjugate dual of itself [7]. This property is represented by the

optimization expression below:

A(µ) = sup
θ ∈ Rd

{�µ, θ� − A∗(θ)}

where µ = Ep[φ(x)] maintains the expression above bounded as long as it belongs

to the relative interior of MARG(G). The set MARG(G) refers to the marginal

polytope and is defined by the collection of potentials φ(x) belonging to the graph

G(V,E). The polytope contains the set of realizable µ vectors that validate the
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conjugate duality of A(θ). In other words, µ vectors lying outside of this polytope

force the supremum expression above to be unbounded [14].

Contrasting the conjugate duality expression for A(θ) above with the classical

variational principle presented earlier, in the former the optimization takes places over

a different space ( µ vectors in MARG(G) ) rather than the space of all distributions

as in the latter. One challenging aspect about the optimization expression is that the

size of the marginal polytope grows very quickly with increasing graph size making it

intractable to compute the set exactly. Another problem is that the dual log partition

function is available in closed form only for cycle-free graphs. Some of these difficulties

can be circumvented rather nicely by imposing certain constraints on the marginal

polytope as described subsequently in chapters 2 and 3 [7, 14].
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Basics of Message-Passing Algorithms and

Source Coding

Given the importance of statistical inference in many science and engineering fields, it

is not surprising that developing efficient inference algorithms became the focal point

of multiple research fronts over the last four decades [13]. These algorithms, collec-

tively known as message-passing algorithms, are used to extract relevant features of

probability functions by allowing the nodes in a graphical model to share or pass

messages about their state to surrounding nodes. Their development has followed a

rather curious path with flurries of breakthroughs and gaps along the way. This is

evident by the fact that similar (if not the same) schemes have been independently

discovered multiple times in many different disciplines [5]. In the context of cod-

ing theory, message-passing algorithms could be traced back to the pioneering work

16
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of R.G. Gallagher, where an a posteriori probability scheme to decode his newly-

developed low-density parity check (LDPC) codes was introduced [15]. Nonetheless,

as shown later, their theoretical underpinnings are deeply rooted in developments

in the field of statistical physics in the early parts of the 20th century [16, 17]. In

essence, message-passing algorithms are nothing more than dynamic programming

schemes designed to share intermediate terms among nodes in the computation of

a quantity of interest along a graph. The most important one of all is called belief

propagation (BP) and is the central theme in what follows.

2.1 Belief Propagation

It could be argued that the majority of message-passing algorithms are nothing more

than instantiations of the belief propagation algorithm. The term belief propagation

was coined by J. Pearl in his ground-breaking work [18]. Belief propagation is a recur-

sive algorithm devised to perform statistical inference based upon passing messages

along a graph. It is also known in the information theory literature as the sum-

product algorithm [5]. In general terms, belief propagation computes the marginals

of functions described on certain graphs. The graphs on which belief propagation

typically operates are factor graphs and Markov random fields, although its update

equations are not dependent on the particular structure of the graph. The messages

that are passed around over these graphs have a relatively simple interpretation when

the underlying model in the graph is stochastic in nature [8]. The algorithm initializes

the variable nodes in the graph with a-priori probabilities. Each node sends a mes-
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sage to a connecting node if it has received messages from all of its other neighboring

nodes. This type of message could be interpreted as a conditional probability. The

messages continue to propagate in this manner until all messages have been sent ex-

actly once in every direction. Upon termination, the marginal of a variable is simply

the product of the incoming messages from all its adjacent nodes.

In the context of factor graphs, there are two types of messages since there

are two types of nodes: variable and function nodes. Messages are defined in a very

similar manner for other types of graphs. The message from a variable node Xn to a

function node fm is defined as follows [5]:

Xn → fm(xn) =
�

fi ∈N(Xn)\{fm}

fi → Xn(xn)

The message from a function fm to a variable node Xn is defined by the

following expression:

fm → Xn(xn) =
�

xm:Xn=xn

fm(xm)
�

Xi ∈N(fm)\{Xn}

Xi → fm(xi)

where N(·) implies the neighboring nodes of the argument and xm is the equivalent

of N(fm). The index N(·)\{·} means all the neighbors of the node in the argument

except for the node inside the keys. The marginal, or belief z(xi), of a variable Xi

can be computed upon completion of the algorithm as follows [5]:

z(xi) =
�

fj ∈N(Xi)

fj → Xi(xi)
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Or,

z(xi) = fj(xj)
�

Xi ∈N(fj)

Xi → fj(xi)

Figure 2.1 shows the bi-directional flow of messages along a simple cycle-

free factor graph. It is important to mention that the algorithmic procedure above

only applies to graphs without cycles. Messages are passed only twice over each

edge and the exact posterior probabilities is computed afterwards. For the case of

graphs with cycles, the initialization phase is not well defined. The variable nodes

in the graph are not singly connected so there is ambiguity as to where to start

the iteration. Furthermore, once the recursions begin the algorithm will continue to

iterate passing messages back and forth along the graph endlessly unless a stoppage is

forced. Fortunately, some of these difficulties have been somewhat circumvented and

it has been found that standard belief propagation often produces performance results

that are very close to the Shannon capacity when used to decode sparse graphical

codes [19]. Nonetheless, the marginals computed by the belief propagation algorithm

are only approximate for the case of graphs with cycles and its convergence is no

longer guaranteed [5].

A crucial theoretical link has been found between belief propagation and the

concept of free energy in statistical physics which helps to explain the success of BP

as well its shortcomings for certain graphs [20]. If we are given a physical system of

N dimensions, where each dimension can adopt a particular state xn, then (under
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Figure 2.1: Belief Propagation Messages passed along a cycle-free Factor Graph

thermal equilibrium) the joint probability of a state x is defined by Boltzmanns law:

p(x) =
1

A(T )
exp

�
−E(x)

T

�

where T is the system temperature and A(T ) is known as the partition function

defined as follows:

A(T ) =
�

x ∈ S

exp

�
−E(x)

T

�

where S is the set of all possible state configurations of x and E(x) is the energy

of the system corresponding to the state configuration x. Hence, the Helmholtz free

energy F of a system is [8, 20]:

F = − lnA

If we are given the joint probability function p(x) we could use Boltzmanns

relationship to represent the system energy. For instance, if p(x) is given by the
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factorization:

p(x) =
1

A

N�

a=1

fa(xa)

Substituting the equation above in Boltzmanns equation (and setting T = 1) and

solving for the energy E(x) the following is obtained:

E(x) = −
N�

a=1

ln fa(xa)

Oftentimes the joint probability function p(x) has a cumbersome structure

that makes the free energy difficult to compute. Thus, in order to compute the

free energy F the joint probability distribution needs to be estimated. One way of

estimating the free energy is via the variational approach [7, 8, 20]. This concept was

introduced in chapter 1 and will be further developed here. The variational approach

introduces the term b(x) (equivalent to the term z(x) presented earlier) dubbed the

belief which attempts to approximate p(x) and the variational (Gibbs) free energy.

The variational free energy equation is given by:

F (b(x)) =
�

x ∈ S

b(x)E(x) +
�

x ∈ S

b(x) ln b(x)

= F +D(b(x)�p(x))

where the term D(b(x)�p(x)) is the Kullback-Liebler distance between b(x) and p(x)

[8, 20]. Therefore, at least in theory, minimizing the Gibbs free energy provides an

exact method to compute the Helmholtz free energy and the joint probability density

p(x). Nonetheless, the variational free energy expression above is often mathemati-
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cally intractable so a number of free energy approximations have been proposed to

address this problem.

2.1.1 Mean-Field Free Energy Approximation

The simplest approach which yields an analytically tractable approximation to the

Gibbs free energy is called the mean field approximation. In this case, the joint

probability distribution is approximated by the product of the single node beliefs

[7, 8, 20]:

p(x) ∼= b(x) =
�

i

bi(xi)

where the beliefs bi(xi) are subject to the following constraint:

�

i

bi(xi) = 1

Additionally, the condition that the pair-wise node beliefs decompose as the

product of the corresponding single node beliefs is also imposed: bij(xi, xj) = bi(xi)bj(xj).

These assertions can be substituted in the Gibbs free energy equation shown earlier

to obtain the following:

UMF{b(x)} = −
M�

a=1

�

xa

ln fa(xa)
�

i ∈N(a)

bi(xi)

HMF{b(x)} = −
N�

i=1

�

xi

bi(xi) ln bi(xi)
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Thus, the mean filed approximation to the Gibbs free energy is given by:

FMF = UMF −HMF

Where the term UMF is the mean field approximation to the variational average

energy and HMF is the mean field approximation to the variational entropy. Likewise,

additional approximations could be obtained depending on the assumptions made

about the structure of the joint density function. A slightly different approach will be

taken in section 2.1.2 based on selecting regions across the graph [20]. This approach

is more insightful and produces better approximations than the mean field technique.

Furthermore, that approach leads directly to the BP algorithm.

2.1.2 Bethe Free Energy Approximation

A well-known approximation called the Bethe free energy attempts to estimate both

the variational average energy as well as the variational entropy term by employing

both single node and pair-wise node beliefs. The remarkable theoretical connection

alluded to earlier is that the fixed points derived from belief propagation are equivalent

to the stationary points (beliefs) in the Bethe free energy approximation. For cycle-

free graphs, the Bethe approximation becomes equal to the Gibbs free energy [20].

Since the variational entropy term is only an approximation, it partially ex-

plains the performance (or lack thereof) of belief propagation. It also provides much

needed insight into multiple improvements that can be made to the standard version
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of the BP algorithm. Standard BP is also a special case of a group of techniques

sometimes referred to as generalized belief propagation [8, 20]. Generalized belief

propagation algorithms are essentially based on lumping together regions of nodes

and passing messages among these regions in lieu of passing messages just among

single nodes. Therefore, they are referred to as constrained region-based approxima-

tions. In the context of pair-wise MRFs, if the regions are constrained to single nodes,

then the mean-field energy approximation is obtained. If the regions are chosen as

node pairs instead, then the Bethe energy approximation is obtained. If a factor

graph describes the joint density function, then two particular regions are chosen:

1. The regions encompassing each factor node and its surrounding variable nodes.

2. The regions formed by single variable nodes.

Since these regions will invariably overlap, the concept of counting numbers

was introduced to ensure that every node is accounted for only once when approxi-

mating the Gibbs free energy [20]. The particular choice of regions above along with

the enforcement of normalization, consistency, and inequality constraints among the

beliefs constitutes the Bethe approximation. Examples with other choices of regions

are illustrated by Kikuchis cluster variation method [17, 20].

The derivation of the Bethe free energy approximation stationary points (BP

fixed points) simply becomes a constrained optimization exercise. Given the two
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selected regions and constraints specified above a Lagrangian expression is obtained:

L(b,λ) = FBethe +
�

i

λi

�
�

xi

bi(xi)− 1

�
+
�

a

λa

�
�

xa

ba(xa)− 1

�

+
�

i

�

a∈N(i)

�

xi

λai



bi(xi)−
�

xa\xi

ba(xa)





where FBethe is the Bethe free energy approximation given by:

UBethe =−
M�

a=1

�

xa

ba(xa) ln fa(xa)

HBethe =−
M�

a=1

�

xa

ba(xa) ln ba(xa) +
N�

i=1

(di − 1)
�

xi

bi(xi) ln bi(xi)

defined on a factor graph with M factor nodes and N variable nodes. The quantity

di represents the degree of each variable node (number of nodes connected to node

i). Taking the derivative with respect to both ba(xa) and bi(xi) and solving for the

respective beliefs gives the following:

bi(xi) ∝
�

c ∈N(a)

mca(xa)

ba(xa) ∝fa(xa)
�

i∈N(a)

�

c∈N(i)

mci(xi)

which, together with the normalization and marginalization equations:

�

xa

ba(xa) = 1;
�

xi

bi(xi) = 1

�

xa\xi

ba(xa) = bi(xi)
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are the fixed points of the standard belief propagation algorithm [8, 20].

2.1.2.1 Log-Partition Function Interpretation of Bethe Approximations

An alternative viewpoint of the Bethe approximation that is relevant to subsequent

developments will be described next. This formulation is based on approximating the

variational Bethe entropy with approximations to the log-partition function [7, 14, 21].

Before doing this, however, certain concepts from convex analysis and exponential

families, already introduced in chapter 1, need to be treated formally.

2.1.2.1.1 Exponential Family Representations and Conjugate Duality

The description presented here follows the exposition and notation in [7]. Let a

random vector x = {xs|s = 1, . . . , n} be defined in the Cartesian space χn. The

random vector x collects the random variables xs represented as nodes in a MRF.

An exponential family is a particular class of densities taken with respect to the base

measure v (counting measure for discrete or Lebesgue measure for continuous) defined

by dv = h(x)dx for some arbitrary function h : χn → R+ and dx =
�

dxs. This

collection of densities can be represented by:

p(x; θ) = exp [�θ,φ(x)� − A(θ)]

where φ(x) is a group of vector-valued functions known as potentials (or sufficient

statistic) which maps the space χn → R+. The vector θ is an exponential set of
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parameters, and A(θ) is the log-partition function. The log-partition function is

given by the integral:

A(θ) = log

�

χn

exp�θ,φ(x)�v(dx)

The parameter vector θ indexes a particular distribution within the family of

p(x; θ). The exponential parameter vector is part of the set:

Θ := {θ ∈ Rd | A(θ) < ∞}

Depending on how the Θ set is defined, the exponential distributions so defined

belong to one of three groups:

1. Regular - Θ is an open set.

2. Minimal - unique parameter vector Θ associated with each distribution.

3. Overcomplete - affine subset of parameter vector Θ for each distribution.

A different (convex) set M is defined as:

M := {µ ∈ Rd | ∃ p(·) such that

�
φ(x)p(x; θ)v(dx) = µ}

where µ is a vector composed of the expectations of the potentials φ(x). These
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expectations correspond to the mapping Θ → M defined below:

E[φ(x)] =

�

χn

φ(x)p(x; θ)v(dx)

This mapping is one-to-one as long as the exponential representation is min-

imal and the expectations µ belong to the relative interior of the set M . Hence, the

entropy of the density p(x; θ) is given by:

H(p(x; θ)) = −
�

χn

p(x; θ) log p(x; θ)v(dx) = −Eθ[log p(x; θ)]

A remarkable result is that as long as µ belongs to the relative interior of M ,

then the dual conjugate of A(θ) is equal to the negative entropy of p(x; θ) shown

above [7]. The dual conjugate (Fenchel-Legendre) of A(θ) comes out to be:

A∗(µ) := supθ ∈Θ{�µ, θ� − A(θ)}

which means the conjugate of A is the supremum of the expression inside the brackets

that includes A itself (thus a dual conjugate). This also implies that the log-partition

function A(θ) is a convex function of θ and in particular its representation belongs

to the minimal exponential family. As such, for all θ ∈ Θ the supremum is uniquely

achieved when:

µ = Eθ[φ(x)]

Simply put, the approximation of the variational entropy could be achieved (at
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least in theory) as long as the set of mean parameters µ falls in the relative interior

of the set M [7]. For discrete random vectors, the set M is a convex hull containing

a finite set of φ(x) vectors associated with a graph G and is commonly referred to as

the marginal polytope MARG(G) [14].

The main challenges in dealing with the optimization expressions presented

above are related to the nature of both the MARG(G) and the dual conjugate A∗.

First, the size ofMARG(G) grows quickly with the number of nodes in the underlying

graph, thus making the problem intractable. Also, the dual conjugate A∗ is itself a

variational expression and typically lacks a closed-form solution. Hence, the problem

of computing a closed-form solution could potentially be just as complicated as the

original problem at hand (that of approximating the variational entropy). Once again,

these problems are usually circumvented by making certain simplifying assertions

about the structure of both MARG(G) and A∗.

For acyclic graphs, the dual conjugate A∗ has an explicit form composed of

the sum of the following two terms:

Hs(xs) := −
�

xs

µs(xs) log µs(xs)

Ist(µst) :=
�

xs,xt

µst(xs, xt) log
µst(xs, xt)

µs(xs)µt(xt)

Returning now to the log-partition function equation introduced in chapter 1,

A(µ) = HBethe =
�

s ∈ V

Hs(µs)−
�

(s,t) ∈ E

Ist(µst)
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it assumes an acyclic graph (tree) where the Hs(µs) terms represent the singleton

entropies and Ist(µst) are the edgewise mutual information terms [7].

The Bethe approximation assumes that the log-partition function above ap-

plies to graphs with cycles and that it is well defined for any µ ∈ MARG(G).

As noted earlier, defining the marginal polytope structure is quite a challenge. The

Bethe approximation circumvents this difficulty by defining a set of necessary con-

straints for the marginals µ [14]. These constraints are exact for acyclic graphs and

are summarized in the expression below:

MARG(G) = LOCAL(G) =

�
τ ≥ 0

�����
�

xs

τs(xs) = 1

�����
�

xst

τst(xst) = τt(xt)

�

where τs and τst are known as pseudo-marginals. For cyclic graphs, the Bethe approx-

imation asserts that the true marginal polytope is approximated by a convex outer

bound defined by the local consistency equations above. In other words, a candidate

marginal τ may belong to LOCAL(G), but not necessarily to MARG(G). Hence,

the expression for the Bethe variational problem is:

max
τ ∈ LOCAL(G)




�θ, τ�+
�

s ∈ V

Hs(τs)−
�

(s,t) ∈ E

Ist(τst)






It is well-known that the sum-product algorithm (BP) updates yield the sta-

tionary points of the optimization expression above [7]. Nonetheless, it is also known

that (except for trees) the sum-product algorithm can lead to globally inconsistent

marginals. This phenomenon manifests as the belief propagation fixed points falling
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into local minima instead of converging to the unique global minimum.

Based upon the formulation of the Bethe variational problem above the La-

grangian equation then becomes:

L(τ,λ) = �θ, τ�+
�

s ∈ V \ε

Hs(τs)−
�

(s,t) ∈ E

Ist(τst)

+
�

(s,t) ∈ E

�
�

xs

λts(xs)Cts(xs) +
�

xt

λst(xt)Cst(xt)

�

where the inner product term is specifically defined as:

�θ, τ� = θs(xs)τs(xs) + θt(xt)τt(xt) + θst(xs, xt)τst(xs, xt)

and the consistency constraints are defined below:

Cts(xs) = τs(xs)−
�

xt

τst(xs, xt) = 0

Cst(xt) = τt(xt)−
�

xs

τts(xs, xt) = 0

The Lagrangian multiplier λ has the following definition:

λts(xs) =
�

t ∈N(s)

Mts(xs)

where Mts(xs) is the collection of messages impinging on node s. After taking the

derivatives of the Lagrangian equation with respect to both τ and λ, and substituting
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the given multiplier definition the two expressions below are obtained:

τs(xs) = κ1 exp(θs(xs))
�

t ∈N(s)

Mts(xs)

τst(xs, xt) =κ2 exp(θst(xs, xt) + θs(xs) + θt(xt))
�

u∈N(s)\t

Mus(xs)
�

u∈N(t)\s

Mut(xt)

where the κ1 and κ2 are proportionality constants to ensure that the normalization

constraint is met. Once the consistency constraints are enforced by substitution in

the expressions above the sum-product (BP) update equation appears as:

Mts(xs) = κ
�

xt

exp(θst(xs, xt) + θt(xt))
�

u ∈N(t)\s

Mut(xt)

A considerable amount of effort has gone into finding tighter bounds onMARG(G)

and/or better approximations to A(θ) [14, 21, 22, 23]. Most of these methods trade

finer approximations at the expense of increased complexity.

2.1.2.2 Information-Geometric Interpretation of Bethe Approximations

There is yet a different interpretation of the Bethe free energy approximation based

upon the concept of information geometry. Interestingly, it ultimately arrives at

the same BP update equations previously derived in sections 2.1.2 and 2.1.2.1. The

necessary information geometry tools are presented next prior to delving into the

derivation details of the BP fixed points. This exposition is largely based on [24, 25,

26].
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2.1.2.2.1 Log-Coordinates, Product Distributions, and Projections

Let da denote the degree (i.e. the number of connected variable nodes xa) of factor

node fa in a regular factor graph. Also let bi represent a vector showing a single

outcome (i − th) out of the 2da possible outcomes of fa assuming that the variables

are defined in the GF (2) domain. The 2da × da matrix is obtained after stacking the

vectors containing all possible outcomes.

Ba =





b0
...

b2da−1





Each one of these outcomes has a corresponding probability of occurrence

P (xa = bj) = p which is a probability mass function. This set of probabilities are

collected into a vector p = [p0 · · · p2da−1]
T . Hence, the set of marginal probabilities

m can be obtained from:

m = BT
a p

The negative entropy is defined as:

h(p) =
2da−1�

i=0

pi log pi

Given that p is a probability mass function compliant with probability axioms, the
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entropy expression above can be re-written as:

h(p) =



1−
2da−1�

i=1

pi



 log



1−
2da−1�

i=1

pi



+
2da−1�

i=1

pi log pi

The expression above yields the following set of derivatives [24]:

∂h(p)

∂pi
= log

pi
p0

for i = 0, . . . , 2da − 1

which in turn allows for the introduction of a logarithmic coordinate system:

θi = log
pi
p0

for i = 0, . . . , 2da − 1

Note that θ0 is always 0. An important observation is that the probability mass

function p can be obtained by [26]:

pi = exp(θi − A(θ)) for i = 1, . . . , 2da − 1

So p belongs to the family of exponential function representations (as shown in section

2.1.2.1.1) and A(θ) is the log-partition function:

A(θ)
�
= log




2da−1�

i=0

exp(θi)





Another interesting fact is that the set of derivatives of h(p) map the distribution p

onto the set of θ, whereas the set of derivatives of A(θ) maps θ back to p. The direct

implication is that A(θ) and h(p) form a convex conjugate pair (Legendre pair) such
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that [25, 26]:

A(θ) + h(p) = �θ,p�

For an arbitrary probability mass distribution t, the conjugate pair expression

above becomes then:

A(θ) + h(τ) = �θ, τ�+D(p � t)

If the probability mass distribution t is defined as the product of its marginals,

then it is called a product distribution [24]:

t(xa) =
�

i ∈N(a)

ti(xi)

whereas the log-coordinates τ of the expression above are given by:

τ(xa) =
da�

i=1

log
ti(xi)

ti(0)
=

�

i:xi=1

log
ti(1)

ti(0)
= BTλ

where λ contains the log-marginal ratios.

A well-known result is that the probability mass fuction t obtained from the

product of the marginals of p is the closest product distribution of p by the Kullback-

Leibler divergence (or distance) [26]:

t = argmin
t ∈ Pa

D(p�s)

for some arbitrary product distribution s belonging to the set a of all product distribu-
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tions defined for xa (variables connected to node fa). Since t minimizes this distance

then it gives the best approximation to the true set of marginals m of distribution p.

This is stated by the following equation in log-coordinates:

λ = logBTp− log(1− BTp) = π(·)

where the operator π(·) can be seen asan information projection.

Returning to the Bethe approximation, the free energy expression is now given

by:

FBethe =
M�

a=1




2da−1�

j=0

pa,j log pa,j − �pa,φa�





−
N�

i=1

(di − 1)[ti log ti + (1− ti) log(1− ti)]

where the inner product summation is the average Bethe energy and the rest of the

terms combined give the variational Bethe entropy [24]. Note that the inner product

argument φa is the factor node fa in log-coordinates and pa is the probability mass

function across all outcomes out of fa as defined previously. Also, the ti is the marginal

at variable node i. The consistency constraint is given by:

BT
a pa = ta for a = 1, . . . ,M
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where Ba is also defined as before. The Lagrangian equation appears now as:

LBethe =
M�

a=1




2da−1�

j−0

pa,j log pa,j − �pa,φa�





−
N�

i=1

(di − 1)[ti log ti + (1− ti) log(1− ti)] +
M�

a=1

�ta − BT
a pa,λa�

=
M�

a=1




2da−1�

j=0

pa,j log pa,j − �pa, BT
a λa + φa�





−
N�

i=1

(di − 1)[ti log ti + (1− ti) log(1− ti)] +
M�

a=1

�ta,λa�

where λa is the vector of Lagrange multipliers. The following log-coordinate expres-

sions are obtained after taking the partial derivatives with respect to both pa and ti

and setting them to zero:

τ ∗i =
1

di − 1

�

a ∈N(i)

λi→a θ∗a = Baλa + φa

where τi is the log-coordinate of the (belief) marginal at variable node i and θa is

the log-coordinate vector representation of the marginal distributions of pa. Note

that in the expressions above the asterisks distinguish the actual critical points that

effectively null out the partial derivatives based on the pseudo-dual function of the

Lagrangian instead of the Lagrangian itself [24]. The λi→a can be seen as the messages

collected from all nodes surrounding node i. Thus, the formulation on the left above

represents one of the BP updates at variable node i in log-coordinates. On the

other hand, the equation on the right represents the projection or mapping of the

distribution pa onto the set of product distributions θa and constitutes the other
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BP update equation from factor node fa back to its surrounding variable nodes.

The actual stationary points are the marginal consistency constraints obtained from

substituting the critical points back into the pseudo-dual Lagrangian expression.

2.2 Survey Propagation

Survey propagation (SP) is a message-passing technique similar to belief propagation

proposed to address satisfiability problems. It was originally developed in the context

of the statistical physics of disordered systems [27, 28]. These physical systems have

very close ties to constraint satisfaction problems. Constraint satisfaction is a classic

problem in combinatorial optimization.

These problems generally consist of N Boolean variables and M constraints.

Each constraint (or clause) is connected to a subset of the N Boolean variables.

The objective is to find an assignment of variables that simultaneously satisfy all

the constraints. Satisfiability problems can also be represented by factor graphs as

shown in Figure 2.2. Most of the attention in combinatorial optimization has focused

on the random K-SAT problem. For K > 2, this problem has been found to be

NP complete [27]. The K-SAT problem is described in much the same way as the

general constraint satisfaction problem except that the clauses are OR functions of K

randomly chosen variables. The statistical physics literature suggests the existence

of a phase diagram describing the entire space of variable assignments [28]. The ratio

α = M/N determines the various phases of the diagram. The critical parameter αc



39

represents the threshold that splits the region into a SAT phase and an UNSAT phase.

The SAT phase contains all the satisfying variable assignments while the UNSAT

phase has no satisfying assignments. It has also been conjectured that the SAT phase

can be further segregated into an easy SAT portion and a hard SAT portion by a

parameter αd [28]. The threshold αc has only been found for K = 2. It has been

conjectured via non-rigorous methods that αc ≈ 4.267 and αd ≈ 3.921 for K = 3.

Virtually any heuristic search algorithm is able to converge on a satisfying

assignment in the easy SAT phase. Most of the interest in the K-SAT problem

arises from the fact that very difficult instances are generated around the threshold

αc (SAT/UNSAT boundary) and conventional heuristic algorithms often fail to find

those instances.

There have been attempts to explain the reasons behind the apparent difficulty

in finding a solution in the hard SAT part. Statistical physicists have proposed

the concept of clusters [27]. In the easy SAT part, the satisfying assignments form

a single cluster in the phase diagram. This means that solutions only differ from

one another by a finite number of positions. On the other hand, in the hard SAT

part, the single cluster of solutions breaks up into multiple clusters that are often

widely separated. This phenomenon is known in the physics literature as 1-step

replica symmetry breakup (1-RSB) [28]. Therefore, a local heuristic such as belief

propagation that falls in a cluster not containing the global valid assignment would

struggle to converge or yield a reasonable solution. Figure 2.3 shows this phenomenon.
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Figure 2.2: Factor Graph Representation of the K-SAT Problem

The K-SAT problem in the difficult hard SAT region manifests as a factor

graph with cycles. The survey propagation algorithm has shown better empirical

performance in these types of problems than the standard belief propagation algo-

rithm [27, 28]. However, survey propagation is also a heuristic whose convergence is

not guaranteed either. The messages being passed along the graph are surveys of the

clusters in the SAT region.

In a factor graph, the messages called surveys are real numbers defined between

zero and one. If the survey from clause a to node i is named ηa→i then [27]:

ηa→i =
�

j ∈ V (a)\i

γu
j→a

γu
j→a + γs

j→a + γ0
j→a
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Figure 2.3: Factor Graph Representation of the K-SAT Problem

where the three real quantities in the denominator are given by:

γu
j→a =



1−
�

b∈V u(a)\j

(1− ηb→j)




�

b∈V s(a)\j

(1− ηb→j)

γs
j→a =



1−
�

b∈V s(a)\j

(1− ηb→j)




�

b∈V u(a)\j

(1− ηb→j)

γ0
j→a =

�

b∈V (a)\j

(1− ηb→j)

where V (a)\j means all the nodes connected to clause a except for j and the super-

scripts s and u represent the subset of V (·) that either satisfies or does not satisfy

the constraint. The fixed points η∗a→i can be used in a decimation process in order

to find the satisfying assignment. This decimation procedure is the second step in

the survey propagation algorithm and consists of eliminating the clauses that were
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satisfied during the last iteration of SP [28]. The first step propagates the messages

along the graph much like belief propagation would. After decimation is performed

the messages are propagated again along the remaining clauses in the graph. After

convergence, the third step is to use any local heuristic search in order to find the full

valid assignment.

The ability of survey propagation to find valid assignments more efficiently

than belief propagation for hard K-SAT formulas has inspired applications beyond the

realms of statistical physics and computer science [1]. Nevertheless, the vast majority

of the evidence produced to demonstrate the performance of survey propagation is

empirical and the theoretical arguments that explain its effectiveness remain largely

elusive.

2.2.1 Connections to Belief Propagation

A remarkable link between SP and BP has been found recently [29]. This relationship

establishes that SP is nothing more than an instantiation of BP over an extended

MRF. The extended MRF is an expansion of the definition of the MRF underlying a

graph representing the random K-SAT instance. Furthermore, this modified definition

of the MRF gives rise to a new family of generalized SP(ρ) algorithms where ρ = 1

yields the original SP algorithm. Thus, the SP(ρ) updates are defined by the equations
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below [29]:

Message from clause a to variable t :

ηa→i =
�

j ∈ V (a)\i

γu
j→a

γu
j→a + γs

j→a + γ0
j→a

Message from clause j to variable a :

γu
j→a =



1− ρ
�

b∈V u(a)\j

(1− ηb→j)




�

b∈V s(a)\j

(1− ηb→j)

γs
j→a =



1−
�

b∈V s(a)\j

(1− ηb→j)




�

b∈V u(a)\j

(1− ηb→j)

γ0
j→a =

�

b∈V (a)\j

(1− ηb→j)

where ρ ∈ [0, 1]. The marginals at each variable are computed as follows:

µj(1) ∝



1− ρ
�

b∈C+(j)

(1− ηb→j)




�

b∈C−(j)

(1− ηb→j)

µj(0) ∝



1− ρ
�

b∈C−(j)

(1− ηb→j)




�

b∈C+(j)

(1− ηb→j)

µj(∗) ∝
�

b∈C+(j)

(1− ηb→j)
�

b∈C−(j)

(1− ηb→j)

The basis for this new parameter ρ was originated by extending the MRF

to deal with partial satisfiability assignments typically associated with any K-SAT

formula. Thus, the two key insights are that SP behaves just like BP over a modified

MRF and that a whole family of message passing algorithms could be developed to
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tackle hard K-SAT problems.

2.2.1.1 Extended Markov Random Field

The SP(ρ) family of algorithms are attached to special-purpose MRFs with partially

defined sets of variables (assignments) in their domain space [29]. A partial assign-

ment basically means allowing the variables X = {X1, . . . , XN} to take on values in

the set {0, 1, ∗} where the symbol ∗ represents free variables allowed to take on either

0 or 1. As such, the validity of a partial assignment X to a clause labeled a is dictated

by the following two rules:

1. The assignment is invalid if all variables X are unsatisfied.

2. The assignment is invalid if all variables are unsatisfying except for one.

The validity of a partial assignment in clause a is denoted by V ALa(Xv(a))

following the notation in [29]. A variable node Xi is constrained by clause a if

it is the uniquely satisfying variable in this clause. This condition is indicated by

CONi,a(Xv(a)). This constraint condition defines three distinct sets:

1. S∗(X) = {i ∈ V : Xi = ∗}

2. Sc(X) = {i ∈ V : Xi constrained}

3. So(X) = {i ∈ V : Xi unconstrained}
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The size of the sets above is given by the variables n∗(X), nc(X), and no(X)

respectively. Several probability distributions could be defined by providing weights

to the various variables belonging to each of these sets. These weights are restricted

to the interval [0, 1] and are denoted by ω∗(X),ωc(X), and ωo(X) respectively. Lastly,

the parent set of variable Xi, labeled Pi , constitutes the set of clauses for which Xi

is the uniquely satisfying variable. Consequently, the following conditions apply to

this set:

1. IfXi = 0, then Pi ⊆ C−(i)

2. IfXi = 1, then Pi ⊆ C+(i)

3. WhenXi = ∗, then Pi = ∅

Hence, the extended MRF can be formulated as [29]:

pEMRF (X,P ) =
�

i ∈ V

(Ψi(Xi, Pi)
�

a ∈ C

Ψa(XVa , PV (a))

defined on the Cartesian space χ1 × χ2 × · · · ×χn where χi = {0, 1, ∗} × Pi . The

joint probability distribution above is composed of the product of both variable and
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clause compatibility functions (Ψiand Ψa) defined below:

Ψi(xi, Pi) :=






ωo : Pi = ∅, xi �= ∗

ω∗ : Pi = ∅, xi = ∗

1 : for any other valid (xi, Pi)

Ψa(xV (a), PV (a)) :=V ALa(xV (a))
�

i ∈ V (a)

δ(Ind[a ∈ Pi], CONa,i(xV (a)))

where the variable compatibility function Ψi assigns the proper weighting to the partial

assignments according to the number of unconstrained and free variables. The clause

compatibility function Ψa is used to ensure that the partial assignments are valid and

that the parent sets are consistent with the assignments in the neighborhood of clause

a.

2.2.1.2 Belief Propagation Recursions over the Extended Markov Random Field

The BP recursions over the expanded MRF involve passing messages among two sets

of triplets: (M s
a→i,M

u
a→i,M

∗
a→i)and (Rs

i→a, R
u
i→a, R

∗
i→a) [29]. The first set of triplets

are messages from clause a to variable i. The second set constitutes the messages

from the variable node i to clause a. The actual recursion equations are displayed
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below:

M s
a→i =

�

j ∈ V (a)\i

Rs
j→a

Mu
a→i =

�

j∈V (a)\i

(Ru
j→a +R∗

j→a) +
�

k∈V (a)\i

(Rs
k→a −R∗

k→a)
�

j∈V (a)\i,k

Ru
j→a

−
�

j∈V (a)\i

Ru
j→a

M∗
a→i =

�

j∈V (a)\i

(Ru
j→a +R∗

j→a)−
�

j∈V (a)\i

Ru
j→a

Rs
i→a =

�

b∈Cu
a (i)

Mu
b→i




�

b∈Cs
a(i)

(Rs
b→i +R∗

b→i)





Ru
i→a =

�

b∈Cs
a(i)

Mu
b→i




�

b∈Cu
a (i)

(M s
b→i +M∗

b→i)− (1− ωo)
�

b∈Cu
a (i)

M∗
b→i





R∗
i→a =

�

b∈Cu
a (i)

Mu
b→i




�

b∈Cs
a(i)

(M s
b→i +M∗

b→i)− (1− ωo)
�

b∈Cs
a(i)

M∗
b→i





+ ω∗
�

b∈Cs
a(i)∪Cu

a (i)

M∗
b→i

where the marginals at any point during the iteration are given by:

pi(0) ∝
�

b∈C+(i)

Mu
b→i




�

b∈C−(i)

(M s
b→i +M∗

b→i)− (1− ωo)
�

b∈C−(i)

M∗
b→i





pi(1) ∝
�

b∈C−(i)

Mu
b→i




�

b∈C+(i)

(M s
b→i +M∗

b→i)− (1− ωo)
�

b∈C+(i)

M∗
b→i





pi(∗) ∝ ω∗
�

b∈C(i)

M∗
b→i
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Thus, the BP updates on the extended MRF are equivalent to the generalized

SP(ω∗) algorithms if ωo + ω∗ = 1 given ω∗ ∈ [0, 1] and that Mu
a→i is initialized to

M∗
a→i [29]. This last assertion opens the door for SP to be applied to more general

statistical inference problems such as source coding since it can be treated like any

other type of message passing algorithms, yet it appears to be more suitable than

other schemes in dealing with factor graphs with cycles.

2.2.2 Alternate Survey Propagation Interpretation

The importance of the MRF formalism introduced in section 2.2.1 along with its

connection to BP cannot be overstated. The unifying framework has provided key

insight into the SP algorithm and the structure of the underlying satisfiability prob-

lem. Nevertheless, a more flexible interpretation of SP has surfaced recently and will

be described next.

A different formulation of the K-SAT problem has been presented based on

the concept of normal realizations (Forney graphs) via generalized state variables [30].

First, under this MRF construction the variable sets are extended to what is known

as power sets. Secondly, the generalized state variables are denoted as left states and

right states on the graph depending on the direction of the messages. Thirdly, a state

de-coupling condition is applied. The resulting MRF yields a family of SP algorithms

whose update rules are akin to BP. Therefore, the SP algorithm is a special case of

BP only under the set of conditions stated above. Additional details are found in

[30].
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On the other hand, it is important to note that the MRF formalism presented

in section 2.2.1 is limited to random K-SAT problems. The idea of generalizing this

particular MRF concept to other types of constraint satisfaction problems (i.e. graph

coloring, etc.) might lead to contradictory conclusions. More specifically, that it is not

possible to reduce the BP algorithm to SP. Nonetheless, the MRF structure based on

normal realizations is more amenable to general constraint problems (i.e. satisfiability

problems with arbitrary finite variable alphabets and clauses of arbitrary form) but

inevitably leads to the notion that for general constraint satisfaction problems SP is

not an instantiation of BP [31]. Fortunately, many relevant source coding problems

are equivalent to random instantiations of the K-SAT problem represented in a factor

graph.

2.3 Other Approximate Inference Algorithms

A fairly large number of algorithms have been proposed to address the challenge

imposed by approximate statistical inference methods. The vast majority of the

proposed algorithms in the literature share a common thread which is that they could

be considered special cases of the two main families of message-passing algorithms

already discussed, namely BP and SP. Aside from the fact that they are important

in their own right, some of the most relevant schemes in the context of source and

channel coding to be highlighted next are also important in the sense that they provide

additional insight and context to the new developments to be unveiled subsequently.
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2.3.1 Thoules-Anderson-Palmer Algorithm

The Thoules-Anderson-Palmer (TAP) algorithm is a lossy compression scheme devel-

oped using a particular statistical physics approach to build a dynamic model based

on the Markov process assumption on prior beliefs [32]. More specifically, mean field

behavior is assumed for statistical dependencies between codeword and source se-

quences and a first-order time dependence between current and previous spin glass

states. The encoding step entails translating the Boolean alphabets from the bi-

nary source into Ising alphabets (more natural in statistical physics) and running the

two update equations (with suitably chosen α, β, and γ parameters) presented below

recursively until convergence is attained.

m̂ui�(t+ 1) = tanh(βJu)
�

i�∈L(u)\i

mui�(t)

mui(t+ 1) = tanh




�

u�∈M(i)\u

tanh−1[m̂u�i(t)] + α + tanh−1[γmi(t)]





Then the pseudo-posterior marginals are given by:

mi(t) = tanh




�

u∈M(i)

tanh−1[m̂ui(t)] + α + tanh−1[γmi(t)]





and the optimal (in the Bayes sense) encoding is finally obtained from m̂i(t) =

sgn(mi(t)) in the Ising representation [32]. The algorithm applies the inverse to

the decoding problem described by Sourlas in [33]. The published results indicate
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the effectiveness of TAP in approaching the rate-distortion theoretical bounds for

relatively long block lengths.

2.3.2 Bias Propagation

This algorithm is essentially a straightforward BP procedure with the added step of

decimation [34]. It performs bit-wise maximum a-posteriori estimation in order to find

a binary vector that represents a source sequence according to a distortion measure.

The bias messages Bi→a (difference in marginals) and the source bit messages Bsa→a

are sent to the check nodes. The check nodes return satisfaction messages Sa→i.

These iterative terms are defined by the following update equations [34]:

Bi→a =
1−Ri→a

1 +Ri→a

Sa→i =
�

j∈V̄ (a)\{i}

Bj→a

where Ri→a = Mi→a(1)/Mi→a(0) =
�

b∈C(i)\{a} Rb→i and Mi→a is the message from

node i to check node a. The source bit messages are given by:

Bsa→a = (−1)sa tanh(γa)

where the variable γa is part of a fixed vector γ which represents the strength of

the check nodes. After the maximum number of iterations is reached, the final bias
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equation is shown below:

Bi =
1−

�
b∈C(i) Rb→i

1 +
�

b∈C(i) Rb→i

The most likely bits (i.e. those with the largest bias) are fixed and removed

from the graph. The process continues until all the information bits (binary vector)

are fixed or until the maximum number of iterations is reached. The Bias Propa-

gation (BiP) technique is very appealing for many source coding applications but

the decimation step adds undesirable complexity. It is also worth mentioning that a

connection between the BiP algorithm and the TAP algorithm has been found [34].

2.3.3 Fractional Belief Propagation

Fractional BP is a generalization of the standard BP that avoids resorting to large

clusters (i.e. Kikuchi methods) by introducing a scale parameter cα that attempts to

capture the effects of cycles in factor graphs [22]. The fixed points are given by the

expressions below:

Qα(Xα) ∝ ψα(Xα)
1/cα

�

i∈Nα

�

β∈Ni\α

mβi(Xi)mαi(Xi)
1−1/cα

Qi(Xi) ∝
�

α

mαi(Xi)

mαi =
Qα(Xα)

Qi(Xi)
mαi(Xi)

where Qa and Qi are the marginal distributions on factor and variable nodes respec-

tively and the mαi constitute the updates. The scale parameter cα is usually bounded
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according to 0 ≤ cα ≤ 1. The standard BP could be recovered by setting cα = 1.

No methods are known to exist for optimally tuning this parameter for any given

situation. Also, these update equations have only been shown to converge in simple

channel decoding problems. The algorithms to be exposed in chapter 3 are geared

specifically towards codeword quantization problems, which are known to be more

difficult than traditional channel decoding problems.

2.3.4 Multilevel Belief Propagation

The multi-level or multi-grid BP algorithm has been developed to deal with large-scale

graphs frequently encountered in data mining and computer vision applications in

which standard BP appears to be notoriously slow. The graph of interest is coarsened

to reduce its scale. Then the standard BP is run and a coarse result is obtained. The

coarse results are refined back, level by level until the solution to the original problem

is obtained.

The approach is closely related to the algebraic multi-grid technique and re-

duces run time without seemingly compromising the accuracy of the solutions [35].

The coarsening procedure iteratively selects nodes that strongly influences others and

splits them into fine and coarse sets. Typically about half the nodes make it into the

next iteration of the graph. The scale of the graph is reduced exponentially and can

be accomplished in linear time with respect to the total size of the original graph [35].
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2.3.5 Normalized and Offset Belief Propagation

Normalized and offset BP are two simple modifications to the standard BP algorithm

which are believed to help in factor graphs with cycles. These modifications com-

pensate for the over-estimation of the reliability of the messages in standard BP due

to the presence of cycles in the factor graph. In normalized BP the message from a

variable node v to factor node c is modified by a multiplicative correction factor [36]:

m�
v→c = αmv→c

whereas in offset BP the message going from variable node v to factor node c is

modified instead by an additive correction factor [36]:

|m�
v→c| =






|mv→c|− β, mv→c > β

|mv→c|, mv→c ≤ β

Both correction factors are also constrained to values in the interval [0, 1]. Both

algorithms appear to perform similarly in channel decoding cases and their complexity

is very comparable to the original BP algorithm. Their performance in codeword

quantization problems remains questionable.
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2.3.6 Sequential Auxiliary Belief Propagation

This algorithmic variant combines BP with importance sampling (particle filter)

techniques in a framework that extends the applicability of BP to non-linear, non-

Gaussian graph models such that the computational complexity only increases linearly

with the number of samples (particles) [37]. The structure of the optimal importance

function for both messages and belief updates is given by:

qopti,j (xj|yj)
pj(yj|xj)

�
k∈N(j)\i m̂

n−1
k,j (xj)�

pj(yj|xj)
�

k∈N(j)\i m̂
n−1
k,j (xj)dxj

The structure above is computationally intractable for dense graphs and large number

of particles. Hence, an auxiliary variable is needed to circumvent this difficulty. This

auxiliary variable represents a simpler importance function which is just a product of

mixture distributions:

q(θ1:K) =
K�

i=1

qi(θi)

which yields a computationally feasible approach to approximate the posterior distri-

bution. An unscented approximation is used to sample the auxiliary variable and the

state as detailed in [37]. Then the BP weights are updated and the steps are repeated.

This method enables the study of temporally evolving graphs. It was developed and

applied in the context of distributed fusion problems.
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2.3.7 Residual Belief Propagation

Residual BP is essentially a serial dynamic scheduling method (as opposed to a flood-

ing scheme) whereby residuals are calculated from the differences in messages before

and after an update [38]. These residuals are then used to determine which messages

to propagate first. The rationale is that the residuals decrease to zero as the BP

algorithm converges. Therefore, the messages yielding the largest residuals should

be prioritized. This has the net effect of yielding faster convergence times than the

standard BP algorithm. The messages used to compute residuals could be either

variable-to-check or check-to-variable. For any check node ci connected to a variable

node vj the update equations are given by:

mvj→ci =
�

ca∈N(vj\ci)

mca→vj + Cvj

mci→vj =2 arctanh




�

vb∈N(ci\vj)

tanh
�mvb→ci

2

�




where Cvj = log((p(yjvj) = 1)/(p(yj|vj) = 0)) and yj is the received signal. There

are differences in terms of both performance and complexity depending on which

set of messages is used to compute the residuals [39, 40]. Additional serial dynamic

scheduling schemes for fast decoding of LDPC codes at high data rates have been

developed and can be found in [41, 42, 43, 44, 45, 46].
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2.3.8 Oscillation-based Belief Propagation

In the context of LDPC decoding, oscillations refer to the change in reliability of the

bits from iteration to iteration. More specifically, an oscillation has occurred if the

sign of the Log-Likelihood Ratio (LLR) changes from the previous iteration [47].

sign(ztmn) �= sign(zt−1
mn )

sign(ztmn) =






1, ztmn > 0

−1, ztmn ≤ 0

where t is the iteration number and zmn is the extrinsic LLR propagated from the

n−th variable node to the m−th check node. The oscillations are mainly induced

by the presence of cycles in the underlying graph. The oscillation-based BP seeks to

overcome this obstacle by adding together the previous extrinsic LLR value from the

bit node to the check node with the current one [47]:

ztmn =Fn +
�

m�∈M(n)\m

Lm�n

z
�t
mn =






ztmn + z
�t−1
mn , sign(ztmn) �= sign(z

�t−1
mn )

ztmn, otherwise

where Fn = 2yn/σ2 and Lmn is given by:

Lmn = 2 tanh−1




�

n�∈M(m)\n

tanh

�
zt−1
mn�

2

�


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The variable yn is just the n−th received bit and σ2 is the noise variance. This

appears to reduce the impact of oscillations and improve decoding performance over

the conventional BP algorithm [47].

2.3.9 Expectation Propagation

This method uses the expectation propagation (EP) algorithm to approximate a given

joint probability distribution of arbitrary structure with a tree of known structure

[48]. The tree is essentially an approximation to the actual joint density based on the

product of pair-wise factors along a tree T :

q(x) =

�
(j,k)∈T q(xj, xk)�

s∈S q(xs)

Each one of these factors is approximated by EP individually (one by one). The final

approximation is the product of the approximate factors (including a division by the

appropriate single-node factors to avoid over-counting terms). Presently, no method

is available to select the optimal tree structure that would give the best approximation

to the actual joint density function [48].

2.3.10 Survey Propagation with random gates

Even though SP has met with great success when applied to the channel decoding

problem, a similar statement cannot be made when it comes to lossy source coding
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applications. The SP method using random gates changes the nature of the regular

parity check nodes from a linear to a non-linear operation on their inputs. The

details about how the random checks are chosen for each constraint as well as their

behavioral properties when the number of constraints increase are contained in [49].

These random gates approach the theoretical capacity of the parity check nodes and

appear to produce better source coding results when combined with a generalized

SP scheme. Nonetheless, the computational complexity due to non-linearity in the

new random checks as well as the decimation steps can be problematic for practical

implementations.

2.3.11 Re-weighted Sum-Product Algorithm

The family of re-weighted sum-product algorithms is a class of message-passing scheme

where messages are modified with edge-based weights depending on the structure of

the underlying graph [21, 22, 50]. Note that BP is a special case where all the weights

are equal to one. These algorithms have been shown to have a unique fixed point

regardless of the structural properties of the graph and better stability than BP. More

recently, a set of sufficient conditions for convergence was established for this set of

approximation schemes [51]. For reference purposes, both the update and marginal
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equations, respectively, are presented below:

Mts(xs) ←
�

x�
t

exp

�
θst(xs, x�

t)

ρst
+ θt(x

�
t)

� �
u∈N(t)\s Mut(x�

t)
ρut

Mst(x�
t)ρst

τs(xs) ∝ exp{θs(xs)}
�

t∈N(s)

Mts(xs)
ρst

for edge weight values ρ = [0, 1]. One of the main drawbacks of this technique is the

determination of the optimal set of weights for a given graph.

2.3.12 Consensus Propagation

Consensus propagation is an asynchronous distributed averaging protocol shown to

have better convergence properties than BP [52]. It is considered a special case of

BP under certain conditions. This method assumes that the underlying probability

(MRF) is Gaussian and appears to be useful in the context of wireless sensor network

nodes attempting to compute aggregate statistics [52]. Suppose that a number of

singly connected nodes belong to the set Sij. In order for this network to estimate

an average ȳ, the nodes need an estimate of the average µ∗
ij and the cardinality K∗

ij.

These quantities are computed recursively as [52]:

µt
ij =

yi +
�

u∈M(i)\j K
t−1
ui µt−1

ui

1 +
�

u∈N(i)\j K
t−1
ui

, ∀{i, j}

Kt
ij =1 +

�

u∈N(i)\j

Kt−1
ui , ∀{i, j}
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where t is the iteration number. For a large number of iterations, the estimated

average µt
mn converges to ȳ. It is important to note that this algorithm has been

proven to converge for the Gaussian case and its convergence rate scales with the

total number of nodes. It is related to BP in the sense that it attempts to estimate

in a distributed fashion the conditional distributions in a Gaussian MRF.

2.4 Channel and Source Coding

Let a binary linear block code C be defined by the set of vectors x = {0, 1}N that

give the null space in H:

C := {x = {0, 1}N Hx = 0}

where H is the {0, 1}(N−K)×N parity check matrix operating in the GF (2) domain.

This setup is shown in Figure 2.4 and yields a code rate of R = K/N

Figure 2.4: Channel Coding

In the channel coding case, the encoder selects a codeword X ∈ C and sends

it across a noisy channel. The decoder gets a corrupted version of X, named Y . The
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channel is characterized by the conditional probability P (Y X) which is the probability

of observing a particular received sequence given the sequence transmitted originally.

Hence, the objective in the channel coding problem is to estimate the most likely

transmitted codeword:

X̂ = argmax
X∈C

P (Y |Y )

The Shannon capacity C of a channel specifies an upper (theoretical) limit on

the rate R achieved by any code X ∈ C which guarantees error-free transmission [53].

This upper limit is stated formally by the following expression:

C = max
p(X)

I(X;Y )

where I(X;Y ) is the mutual information between the sent and received codewords

(X and Y respectively) and is defined mathematically for two discrete sources as:

I(X;Y ) =
�

Y

�

X

p(X, Y ) log
p(X, Y )

p(X)p(Y )

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

where H(X) and H(Y ) are marginal entropies, H(X|Y ) and H(Y |X) are conditional

entropies, and H(X, Y ) is the joint entropy [54]. The entropy H(X) is defined for a

single discrete source as:

H(X) = −
N�

i=1

p(xi) log p(xi)
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As remarkable as the channel capacity result is, Shannon did not allude to spe-

cific and realizable code constructions that could achieve this capacity limit. More

recent developments have shown that promising codes with underlying sparse struc-

ture are able to attain rates very close to the Shannon limit when combined with

message-passing decoding schemes [55, 56].

On the other hand, in the lossy source coding problem the encoder takes a

sequence realization S of length N generated by a random source with distribution S

and attempts to compress it by representing each sequence with a codeword X ∈ C

of length M , where M < N . In principle, this compression procedure achieves a

rate R = M/N when each source sequence is mapped to a binary code of 2M = 2NR

elements. The codeword X is taken by the decoder to reconstruct an estimate Ŝ(X)

of the source sequence S. This situation is depicted in Figure 2.5.

Figure 2.5: Source Coding

The quality of this reconstruction is typically measured by a distortion crite-

rion d. Thus, the objective in source coding is to find a codeword that yields the

minimum distortion according to:

X̂ = argmin
X∈C

d
�
Ŝ(X), S

�
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where the tradeoff between achievable compression rates R and their corresponding

average distortion D = E[d(Ŝ(X), S)] is described by rate-distortion theory [54].

Given the setup above, the rate-distortion function is:

R(D) = min
p(Ŝ(X)|S)

(I(S; Ŝ(X)) such that E[d(Ŝ(X), S)] ≤ D

for any D ≥ 0. In other words, the rate R(D) above characterizes the theoretical

lower bound that can be achieved in compressing a source so that its subsequent

reconstruction does not exceed a given amount of distortion. Nonetheless, as with

the channel coding case, no coding strategy has been specified to achieve this objective

either.

It is important to note that both channel and source coding are not only duals

of each other but also belong to the class of NP-complete problems [54, 57, 58].

2.5 Lossy Source Coding with Side Information

A related problem that is more relevant to the applications that will be examined

subsequently is that of lossy source coding with side information. In this case, the

objective is still to recover S within a certain distortion bound but the decoder now

has side information about S readily available as shown in Figure 2.6: where S and Y

are correlated random sequences with joint distribution p(S,Y). The optimum rate
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Figure 2.6: Source Coding with Side Information at the Decoder

in this particular setup is given by the following expression [59]:

R(D) = min
p(U |S),p(Ŝ|U,Y )

[I(U ;S)− I(U ;Y )] such that E[d(S, Ŝ, Y )] ≤ D

where U is an auxiliary random sequence with finite alphabet U. The rate-distortion

function could also be expressed as:

R(D) = min
p(U |S),p(Ŝ|U,Y )

[I(S;U |Y )] such that E[d(S, Ŝ, Y )] ≤ D

where the identity I(U ;S)−I(U ;Y ) = I(S;U |Y ) is derived from the following Markov

chains: Y → S → U and S → (U, Y ) → Ŝ. The first Markov chain represents the fact

that only the decoder has access to the side information. The second Markov chain

implies that the decoder does not have access to the source. Another important result

is that a duality has been established between source coding with side information

at the decoder and channel coding with side information at the encoder [60]. Similar

results have extended this duality to quantization problems such as information hiding

[61].
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2.6 Codeword Quantization

Given the dualities exposed in the section 2.5, the codeword quantization (i.e. lossy

source coding with side information) problem simply boils down to finding a minimum-

weight error pattern consistent with a given error syndrome [62]. Recall that the set

of vectors c ∈ C defines a code which produces a null space in the parity check matrix

H. Let the coset of this linear block code be the set of vectors y of length N in GF (2)

defined as:

C(s) = y ∈ GF (2)N such that s = Hy

where s is the error syndrome produced by this coset. The challenge is to obtain a

y that minimizes the Hamming distance (e.g. distortion measure) d(w, y) subject to

the constraints specified by the parity check matrix H.

This can be stated formally as:

min
y

d(w, y) subject to s = Hy

which in turn is equivalent to finding the minimum-weight vector e (error pattern)

according to the following [62]:

min
e

d(e, 0) subject to s = He

where y = w + e and w ∈ GF (2)N is an arbitrary vector. Note that the error

syndrome s is treated as the side information in this framework while w is considered
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the vector received at the decoder and y could be seen as the recovered information

of interest. In many applications, the error syndrome could be interpreted as a set

of given constraints and be incorporated on a factor graph as shown in Figure 2.7.

where the set qN ∈ GF (2)N represents the constraints imposed on the factor nodes

Figure 2.7: Factor Graph for a Low-Density Generator Matrix [62]

fN .

It is also important to note that the factor graph above does not capture the

typical linear block code structure embedded in H in the traditional sense. Instead, it

constitutes a factor graph adaptated to codeword quantization based on the concept

of a Low-Density Generator Matrix (LDGM) [63]. LDGM codes used for source
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coding are the duals of LDPC codes used for channel coding [1, 2]. Hence, the factor

graph structure in Figure ?? represents the following relationship:

x = Gz

where the generator matrix G ∈ 0, 1N×K defines the linear code c ∈ C and is the dual

of the parity check matrix H, such that HG = 0. If x satisfies the parity constraints

given by q(i.e. s = Hx) then the codeword quantization problem can be re-formulated

by the expression below:

min
z

d(x,Gz)

The effective use of LDGM codes also requires the implementation of new

message passing algorithms since the standard BP has proven to be inadequate in

codeword quantization applications [1, 2]. Two novel message-passing algorithms will

thus be introduced next to address this challenge.
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New Iterative Source Coding Algorithms

Belief Propagation has become a very attractive approach to multiple statistical in-

ference problems, including channel decoding, since its approximations often yield as-

tonishing results with relatively low computational complexity even for factor graphs

with cycles [19]. Despite the fact that Belief Propagation has met with great success

when used iteratively for channel decoding, many theoretical and practical challenges

still remain in other important areas of communications and signal processing which

are trying to benefit from advances in sparse graphical codes and message-passing

algorithms. For instance, lossy source coding is a prime example of a problem where

standard Belief Propagation and other local heuristic schemes do not yield good re-

sults [2]. Hence, there is a dire need for new efficient and practical algorithms that

can be brought to bear to tackle this enormous challenge.

Nonetheless, the BP algorithm continues to provide fertile ground for the de-

69
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velopment of new instantiations applicable to problems where the standard version

of the algorithm typically fails. Moreover, a fairly large number of message-passing

algorithms based on modifications to the BP algorithm have already been proposed

over the years, including many that were reviewed in chapter 2. Thus, BP is the

starting point for the developments detailed herein. Specifically, two novel message-

passing procedures are formally introduced and their rate-distortion performance is

subsequently assessed.

3.1 Truthiness Propagation

A new practical approach inspired by the lossy source coding (with side information)

problem has been recently proposed [64]. This method, dubbed Truthiness Propaga-

tion (TP), is closely related to the standard Belief Propagation algorithm and involves

negligible overhead compared to other recent techniques such as Survey Propagation.

The Truthiness Propagation algorithm is based on a relatively simple mod-

ification to the belief propagation update equations. It is well-known that Belief

Propagation has deficiencies when used to perform codeword quantization [1, 2]. A

factor graph captures the source coding problem by adding constraints to each factor

node as shown in Figure 2.7. These factor graphs will invariably have multiple cycles.

Since the standard Belief Propagation is still effective in many instances for decoding

of error-control codes, it is a natural choice for the purposes of lossy source coding.

However, the structure of the posterior channel distribution function in source coding
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is quite different from that of channel coding. In channel coding, the distribution is

uni-modal and a noisy measurement of the codeword sent by the transmitter would

lie in the vicinity of the center of this distribution. On the contrary, in source coding

the posterior distribution is multi-modal and a source sequence may lie equidistant to

more than one likely codeword with equal amount of distortion [1]. Figure 3.1 shows

a zoomed-in version of the typical message flow between variable nodes, a factor node

and their respective constraint. A message generated by fj could be interpreted as

the probability that bits zk connected to fj produce an odd parity. If the constraint qj

is equal to the variable xj, conventional BP does not converge. If the constraint qj is

equal to a probability based on xj, conventional Belief Propagation yields meaningless

probabilities.

If, on the other hand, the constraint qj is replaced by a combination of the hard

constraint and the message from fj the Truthiness Propagation algorithm emerges

[64]:

xj → fj = αxj + (1− α)qj → xj, for 0 < α < 1

where xj → fj and qj → xj are the messages from variable node xj to function node

fj and from the constraint qj to the variable node xj, respectively.

These messages are blended via the factor α dubbed the truthiness factor.

The term truthiness is used to draw a parallel to the situation where the information

propagated is the one desired to be true rather than the actual truth. The factor

α is bounded on the [0, 1] interval. The general idea is to maintain (and feedback)

the parity of the check fj if it coincides with the parity of qj or to allow further
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Figure 3.1: Message Flow in the ”Truthiness” Propagation Algorithm [62]

updates if it does not. Even though the algorithm appears to converge to a quantizing

solution (even for short block lengths), the reasons behind its apparent superiority to

conventional Belief Propagation (at least for codeword quantization) remain unknown.

3.1.1 Information-Geometric Interpretation

The information-geometric description of both the BP algorithm and the Bethe free

energy stationary points was treated in chapter 2. A possible extension to TP was

considered in [65] and is explored here. Let the function nodes fa(za) in Figure

2.7 be replaced with fa(za, xa) which takes into account the constraint xa in the

parity computation. Applying the notation from chapter 2, the average Bethe energy

expression can be modified as follows:

U �
Bethe = −

M�

a=1

(�pa,φa�+ txpx)
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where the terms in the summation above are interpreted as:

φa(za, xa) = log[fa(za, xa)/fa(0, 0)]

px = log[p(xa = 1)/p(xa = 0)] = log[tx/1− tx]

The point mass functions pa and px are defined over all potential outcomes

of the combined variables (za, xa) and the constraint xa, respectively. Likewise, the

terms in the Bethe entropy can be re-arranged as shown below using a mutual in-

formation term I(za, xa) between the variables connected to factor node a, including

the constraint variable xa. This term is defined as the Kullback-Leibler distance be-

tween the factor node belief pa and the product distribution of the single node beliefs

connected to factor node a (i.e.
�

i∈a ti ) [65].

The modified Bethe entropy is expressed as:

H �
Bethe = −

N�

i=1

[ti log ti + (1− ti) log(1− ti)]

− α
M�

a=1

[tx log tx + (1− tx) log(1− tx)]− (1− α)
M�

a=1

I(za, xa)

= −(1− α)
M�

a=1




2da−1�

j=0

pa,j log pa,j





+
N�

i=1

(di(1− α)− 1)[ti log ti + (1− ti) log(1− ti)]

+ (1− 2α)
M�

a=1

[tx log tx + (1− tx) log(1− tx)]
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where the entropy introduced by the constraint node xa is accounted for in a separate

term and scaled by α consistent with the definition of TP in section 3.1. In turn,

since the constraints x are present in every factor node fa along the graph, the mutual

information terms I(za, xa) above are scaled by 1−α, which is also consistent with the

original definition of TP. Thus, the newly-defined Bethe free energy approximation is

given by:

F �
Bethe = U �

Bethe +H �
Bethe

= −
M�

a=1



α
2da−1�

j=0

pa,j log pa,j + �pa,φa�+ txpx

+ (2α− 1)[tx log tx + (1− tx) log(1− tx)]





+
N�

i=1

(di − 1)[ti log ti + (1− ti) log(1− ti)]

The consistency constraints also need to be slightly modified to accommodate

the augmented set of variables at the factor nodes (za, xa ):

BT
a pa =




ta

tx



 for a = 1, · · · ,M

where Ba is a matrix collecting all possible binary outcomes of (za, xa ), ta are the

candidate marginals of the variables connected to factor node a, and tx the candidate

marginal of the constraint xa as defined above. The Lagrangian equation can now be



75

constructed by incorporating the modified consistency constraints as shown below:

L�
Bethe = −

M�

a=1



(1− α)
2da−1�

j=0

pa,j log pa,j + �pa,φa�+ txpx

+ (2α− 1)[tx log tx + (1− tx) log(1− tx)]





+
N�

i=1

(di(1− α)− 1)[ti log ti + (1− ti) log(1− ti)]

+
M�

a=1

�




ta

tx



− BT
a pa,λa�+

M�

a=1

λx

�
log

tx
1− tx

− px

�

The critical points of the objective function are found from the following set

of partial derivatives:

∂L
∂ti

= −(di(1− α)− 1) log
ti

1− ti
+

�

a∈N(i)

λi→a

∂L
∂tx

= (1− 2α) log
tx

1− tx
+ λxa→a

∂L
∂pa

= (1− α)θa − Baλa − φa

Setting these partial derivatives to zero and solving for the appropriate vari-
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ables gives the following update equations:

τi
∆
= log

ti
1− ti

=
1

di(1− α)− 1

�

a∈N(i)

λi→a

px
∆
= log

tx
1− tx

=
1

2α− 1
λxa→a

θa =
Baλa + φa

1− α

where the log belief ratios given in the first two equations above are the messages

relayed back to the factor node from the variables and constraint nodes respectively,

and the third expression is the outgoing message from the factor node. These ex-

pressions would correspond to the proposed fixed points of the TP algorithm, or

equivalently its Bethe free energy stationary points. The Bethe free energy station-

ary points are again characterized by the marginal consistency equation shown earlier

with the augmented variable space (za, xa ).

The TP algorithm computes marginals and returns a projection of these marginals

onto the set of product distributions, but unlike BP the projection is scaled by 1−α.

It is also noteworthy that in this framework the BP fixed points can no longer be

recovered by just setting the truthiness factor α equal to 1. The TP fixed points de-

rived above are only valid in the context of lossy source coding with side information.

This particular formulation is precluded in generalized coding instances due to the

presence and intervention of the constraints on every factor node. Furthermore, as

with other recursive algorithms covered previously, only limited empirical guidance

exist for setting the value of the truthiness factor α for optimal results [64]. The TP

algorithm is summarized in table 3.1 above.
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Initialization m(0)
zi→fj

(1) = 0.5± dither

Natural Parities
m(n)

fj→xj
(1) = 1

2

�
1−

�
k∈V (j)

�
1− 2m(n)

zk→fj
(1)

��

mxj→fj(1) = αxj + (1− α)m(n)
fj→xj

(1)

Check Nodes
m(n)

fj→zi
(zi) =

1
2

�
1 + (−1)zi

�
1− 2m(n)

xj→fj
(1)

��
k∈V (j)\i

�
1− 2m(n)

zk→fj
(1)

��

Variable Nodes m(n+1)
zi→fj

(zi) = ζij
�

k∈F (i)\j m
(n)
fk→zi

(zi)

Beliefs b(n+1)
i (zi) = ζi

�
k∈F (i) m

(n)
fk→zi

(zi)

Table 3.1: Summary of Truthiness Propagation Recursive Equations [62]

3.2 Modified Truthiness Propagation

The equivalence between Bethe free energy stationary points and BP fixed points

is fundamental in understanding the effectiveness of BP. Moreover, it also provides

powerful insight to develop new algorithms that could be applied to solve difficult

problems such as codeword quantization. The second algorithm presented in this

chapter is called Modified Truthiness Propagation (MTP). The Modified Truthiness

Propagation algorithm is based on modifications to the Bethe free energy approxima-

tion inspired by the original Truthiness Propagation formulation. Detailed derivations

are illustrated in sections 3.2.1 and 3.2.2.
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3.2.1 Bethe Free Energy-Based Derivation

Let the return message from factor node a be defined as follows:

ma→j = βj

�

xa\xj

1�

ε=0

fa(xa, εa)mε→a(εa)
�

i∈N(a)\j

mi→a(xi)

where βj is a constant to ensure normality and the factor node a is given by:

fa(xa, �a) =






1, if (xa, εa) has even parity

0, if (xa, εa) has odd parity

The message mε→a(εa) is generated from the following convex combination:

mε→a(εa) = αεa + (1− α)ma→ε(εa)

where the first term represents the hard constraint and the remaining term constitutes

the natural parity from the incoming messages into factor node a. This convex sum

of the messages (probabilities) is the principle behind TP as exposed in section 3.1.1.

The basic strategy to develop the fixed points of the MTP algorithm is to

incorporate the hard constraint beliefs ε impinging on the factor nodes into the Bethe

approximation via a convex combination using the truthiness factor α. The set of

variables impinging on factor node a is expanded to include the value of the desired

parity bit εa and will be denoted by za = (xa, xε). The MTP Bethe free energy
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approximation then becomes:

F̄Bethe =−
M�

a=1

�

za

ba(za) ln fa(xa) +
M�

a=1

�

za

ba(za) ln ba(za)

−
N�

i=1

(di − 1)
�

xi

bi(xi) ln bi(xi) + α
M�

ε=1

�

xε

bε(xε) ln bε(xε)

+ (1− α)
M�

a=1

�

za

bε(xε) ln fa(za)

The last two terms of the equation above constitute the main modification

to the Bethe approximation. The first is the negative entropy of the constraining

node εa modulated by α. The second is the contribution of the hard constraints

to the average energy modulated by 1 − α. An additional modification is necessary

to the marginalization conditions imposed on the hard constraint beliefs. The new

Lagrangian equation is defined as:

L̄(b,λ) = F̄Bethe +
�

i

λi

�
�

xi

bi(xi)− 1

�
+
�

a

λa

�
�

a

ba(xa)− 1

�

+
�

i

�

a∈N(i)

�

xi

λai



bi(xi)−
�

xa\xi

ba(xa)



+
�

ε

λε

�
�

xε

bε(xε)− 1

�

+
�

ε

�

a∈N(ε)

�

xε

λaε



(1− α)bε(xε)−
�

za\xε

ba(za)





The previous two mathematical expressions imply that MTP may be seen as

a generalization of Truthiness Propagation in the sense that the truthiness factor is

used to scale the interactions between constraint nodes and factor nodes. It is also
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a generalization of BP since the fixed points of the standard algorithm are recovered

if α is set to 1. Another observation is that the definition of the marginalization

property for the constraint nodes could potentially yield a finer approximation to the

marginal polytope MARG(G) than the local consistency rules typically enforced for

the BP fixed points would.

The next step is to perform constrained optimization on the modified La-

grangian equation. The partial derivative is taken with respect to the single node

belief bi(xi) and set to zero to get:

∇biL̄(b,λ) = −(di − 1) ln bi(xi)− (di − 1) + λi +
�

a∈N(i)

λai = 0

Solving for ln bi(xi) we have:

ln bi(xi) = −1 +
1

di − 1
λi +

1

di − 1

�

a∈N(i)

λai

The Lagrangian multiplier λai is replaced by the following expression:

λai = ln
�

c∈N(a)\i

mca(za)

where mca is the collection of messages impinging on node a, except the message from

node i, to obtain:

ln bi(xi) = −1 +
1

di − 1

�

a∈N(i)

ln
�

c∈N(a)\i

mca(za)
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Applying the natural exponent to the whole expression results in:

bi(xi) ∝
1

di − 1

�

a∈N(i)

�

c∈N(a)\i

mca(za)

which is one of the fixed points of the Modified Truthiness Propagation algorithm.

Note that the Modified Truthiness Propagation single node update equation above is

the same as both BP and TP (up to a scale factor).

The partial derivative with respect to ba(za) is now taken to get:

∇baL̄(b,λ) = − ln fa(za) + ln ba(za) + 1 + λa −
�

i∈N(a)\ε

λia −
�

ε∈N(a)\i

λεa = 0

After solving for ln ba(za) the following is obtained:

ln ba(za) = ln fa(za)− 1− λa +
�

i∈N(a)\ε

λia +
�

ε∈N(a)\i

λεa

Replacing the Lagrange multipliers λia and λεa with the following,

λia = ln
�

c∈N(i)

mci(xi)

λεa =mεa(xε) = ln
�

a∈N(ε)

maε(za)

gives:

ln ba(za) = ln fa(za)− 1 +
�

i∈N(a)\ε

ln
�

c∈N(i)

mci(xi) +
�

ε∈N(a)\i

mεa(xε)
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After applying the natural exponent the following is obtained:

ba(za) ∝ fa(za)
�

i∈N(a)\ε

�

c∈N(i)

mci(xi)
�

ε∈N(a)\i

mεa(xε)

This expression is very similar to the Belief Propagation factor node fixed

point equation shown earlier, except for the additional term mεa representing the

message coming from the hard constraint εa. This term will be formally defined once

the last partial derivative is taken. To this end, the partial derivative with respect to

the hard constraint belief is:

∇bεL̄(b,λ) = (1− α) ln fa(za) + α ln bε(xε) + α + λε − (1− α)
�

ε∈N(a)\i

λεa = 0

In this case, the interest is to solve for the message coming from the hard

constraint ε represented by the Lagrangian multiplier λε:

λε = −(1− α) ln fa(za)− α ln bε(xε)− α + (1− α)
�

ε∈N(a)\i

λεa

Replacing λεa with:

λεa = ln
�

a∈N(ε)

maε(za)

and applying the natural exponent the following is obtained:

λε ∝ bε(xε)
α
�

za



fa(za)
�

ε∈N(a)\i

�

a∈N(ε)

maε(za)




1−α
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where bε(xε) is either a known probability (soft constraint) or a binary hard constraint.

This last expression constitutes the core of the MTP algorithm. At first glance

it appears similar to the original TP factor node update equation but it differs in that

the convex combination of the hard constraint value, the incoming messages to the

factor node, and the factor node parity is taken in the log-probability space. In

contrast, the TP algorithm applies this convex combination in the probability space

directly. Equivalently, the MTP update could be seen as a product of probabilities

scaled exponentially by α and 1 − α. This constitutes the only difference between

TP and MTP. Both iterative algorithms share the same update equations shown in

table 3.1, except that MTP has a different update rule for the message going from the

constraint xj to the factor node fj. Also, the peculiar marginalization definition for

the constraint nodes in MTP appears to suggest that only a partial set of constraints

(i.e. side information) is active during the message iterations. This feature could

be used to replace pruning in future extensions of the algorithm since it would be

easier to slightly change the value of α every few iterations depending on the staleness

of the messages rather than the multiple pauses and re-runs involved with pruning.

Furthermore, it alludes to more profound connections to SP (and possibly BiP) and

could also pave the way for possible use in certain constraint-satisfaction problems

[27, 34].



84

3.2.2 Log-Partition Function-Based Derivation

The derivation presented in section 3.2.1 followed the notation used by Yedidia, et

al. [20]. The objective in this section is to re-formulate the MTP fixed points us-

ing the representation of exponential families and partition functions introduced by

Wainwright, et al. [7] and presented in chapter 2.

As such, the probability distribution that describes a pair-wise Markov random

field is:

p(x) =
1

A

�

c∈C

Ψc(xc)

where Ψc are potential functions restricted to single or two-node cliques in C present

throughout the undirected graph, and A is the normalization or partition function.

Since all graphical models on discrete variables can be represented as exponential

family distributions, let an undirected graph G(V,E) be described by the following

probability distribution:

p(x; θ) = exp




�

s∈V

θsxs +
�

(s,t)∈E

θstxsxt − A(θ)





The third term in the exponent above is the well-known log partition function

defined by the expression:

A(θ) = log

�

χn

exp�θ,φ(x)�v(dx)
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where φ(x) represents a collection of potential functions delineating the mapping

χn → R+ on the base measure v defined via dv = h(x)dx, with arbitrary h(x) and

dx =
�

dxs being the counting measure with respect to the mapping above [7, 14].

A closed-form description of p(x; θ) is desirable but unattainable due to the

inherent complexity of the terms in the expressions defined above. The variational

principle appears to be a suitable alternative. This principle was exposed in chapter

2 and is repeated next for convenience and clarity in the exposition.

The log partition function A is the solution to the optimization problem below:

A = max
q∈Q

�
�

x

q(x)

�
�

c

Ψc(x)

�
−

�

x∈χn

q(x) log q(x)

�

where Ψc(x) again represents the clique functions (or potentials) along the graph. This

expression is uniquely maximized when q = p(x; θ). The probability q belongs to the

set of all distributions on the chin discrete space denoted by Q. Hence, the rationale

of the variational approach is to obtain a q ∼= p by approximating the entropy term

in the optimization expression above and choosing a suitable set Q to maximize over.

Returning to the log partition function A(θ), a well-known result of this function is

that it is a conjugate dual of itself [7, 14]:

A(µ) = sup
θ∈Rd

{�µ, θ� − A∗(θ)}

where µ = Eθ[φ(x)] maintains the expression above bounded as long as it belongs

to the relative interior of MARG(G). The set MARG(G) is the marginal polytope
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defined by the collection of potentials φ(x) belonging to the graph G(V,E). The

polytope contains the set of realizable µ vectors that validates the conjugate duality

of A(θ). In other words, µ vectors lying outside of this polytope force the supremum

expression above to be unbounded [14].

Contrasting the conjugate duality expression for A() above with the classical

variational principle presented earlier, in the former the optimization takes places over

a different space (µ vectors in MARG(G)) rather than the space of all distributions

as in the latter. One challenging aspect about the optimization expression is that the

size of the marginal polytope grows very quickly with increasing graph size making it

intractable to compute this set exactly. Another problem is that the dual log partition

function is available in closed form for cycle-free graphs only. For an acyclic graph

(tree) A is given by the following:

A(µ) = HBethe =
�

s∈V

Hs(µs)−
�

(s,t)∈E

Ist(µst)

where the Hs terms represent the singleton entropies and Ist(µst) is the edgewise

mutual information [7].

The Bethe approximation assumes that the log-partition function above ap-

plies to graphs with cycles and that it is well defined for any µ ∈ MARG(G). Nonethe-

less, defining the marginal polytope is very challenging. The Bethe approximation

circumvents this difficulty by defining a set of necessary constraints on the marginals.

These constraints are exact for acyclic graphs and are summarized in the expression
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below:

MARG(G) = LOCAL(G) =

�
τ ≥ 0

�����
�

xs

τs(xs) = 1

�����
�

xst

τst(xst) = τt(xt)

�

where τs and τst are known as pseudo-marginals. For cyclic graphs, the Bethe approx-

imation asserts that the true marginal polytope is approximated by a convex outer

bound defined by the local consistency equations above. In other words, a candidate

marginal τ may belong to LOCAL(G), but not necessarily to MARG(G). Hence,

the expression for the Bethe variational problem (BVP) is:

max
τ ∈ LOCAL(G)




�θ, τ�+
�

s ∈ V

Hs(τs)−
�

(s,t) ∈ E

Ist(τst)






The sum-product updates yield the stationary points of the optimization ex-

pression above. However, (except for trees) the BP algorithm can lead to globally

inconsistent marginals. This phenomenon manifests itself as the belief propagation

fixed points falling into local minima instead of the unique global minimum.

Both Truthiness Propagation and MTP attempt a tighter approximation to

the marginal polytope and the partition function. It is possible to obtain an equiv-

alent expression of the modified Bethe approximation derived in section 3.2.1 using

exponential families and the partition function approximation. The partition func-

tion, or negative entropy A∗, typically does not have a closed form. However, for
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acyclic graphs the negative entropy decomposes into the following terms:

Hs(xs) = −
�

xs

µs(xs) lnµs(xs)

Ist(µst) =
�

xs,xt

µst(xs, xt) ln
µst(xs, xt)

µs(xs)µt(xt)
= Hs(µs) +Ht(µt)−Hst(µst)

The sum of these two terms constitutes the Bethe entropy approximation to

a graph with cycles:

A(µ) ≈ HBethe =
�

s∈V

Hs(µs)−
�

(s,t)∈E

Ist(µst)

This approximation is exact for acyclic graphs. This is an alternate form of

the Bethe approximation presented in section 3.2.1. It is a well-known fact that

optimizing the BVP yields the Belief Propagation fixed points. Thus, we proceed to

construct the corresponding Lagrangian equation as follows:

L(τ,λ) = �θ, τ�+
�

s∈V \ε

Hs(τs)−
�

(s,t)∈E\(s,ε)

Ist(τst) +
�

ε∈V

Hε(τε)−
�

(s,ε)∈E

Isε(τsε)

+
�

(s,t)∈E\(s,ε)

�
�

xs

λts(xs)Cts(xs) +
�

xt

λst(xt)Cst(xt)

�

+
�

(s,ε)∈E

�
�

xs

λεs(xs)Cεs(xs) +
�

xε

λsε(xε)Csε(xε)

�

A clear distinction is drawn between the ε nodes (hard constraints) and their

relationship with the other nodes (i.e. edges involving the ε nodes). It is of crucial
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importance to distinguish and expand some of the terms in this Lagrangian expression.

The inner product term is specifically defined as:

�θ, τ� = θs(xs)τs(xs) + θt(xt)τt(xt) + αθε(xε)τε(xε)

+ θst(xs, xt)τst(xs, xt) + (1− α)θsε(xs, xε)τsε(xs, xε)

The constraints are defined below. Note that the ones involving the ε nodes,

namely Cεs(xs) and Csε(xε), are defined differently than the other constraints:

Cts(xs) = τs(xs)−
�

xt

τst(xs, xt) = 0

Cst(xt) = τt(xt)−
�

xs

τts(xs, xt) = 0

Cεs(xs) = τs(xs)− α
�

xε

τsε(xs, xε) = 0

Csε(xε) = ατε(xε)−
�

xs

τεs(xs, xε) = 0

Taking the partial derivative with respect to τs and setting it to zero gives:

∇τsL(τ,λ) = θs + 1 + ln τs(xs) + λεs(xε) +
�

t∈N(s)\ε

λts(xs) = 0

ln τs(xs) = −θs − 1− λεs(xs)−
�

t∈N(s)\ε

λts(xs)
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The partial derivative with respect to τε and setting it to zero gives:

∇τεL(τ,λ) = αθε(xε) + 1 + ln τε(xε) + α
�

s∈N(ε)

λsε(xε) = 0

ln τε(xε) = −αθε(xε)− 1− α
�

s∈N(ε)

λsε(xε)

The expressions above define the single node beliefs. The two-node belief

equation is obtained by taking the partial derivative and substituting the single node

belief equations as follows:

∇τstL(τ,λ) = θst(xs, xt)− 1− ln
τst(xs, xt)

τs(xs)τt(xt)
− λts(xs)− λst(xt) = 0

ln τst(xs, xt) = θst(xs, xt)− 1− ln τs(xs)− ln τt(xt)− λts(xs)− λst(xt)

ln τst(xs, xt) = θst(xs, xt) + θs(xs) + θt(xt) + 1 +
�

t∈N(s)\ε

λts(xs)

+
�

s∈N(t)\ε

λst(xt)− λts(xs)− λst(xt) + λεs(xs) + λεt(xt)

ln τst(xs, xt) = θst(xs, xt) + θs(xs) + θt(xt) + 1 +
�

u∈N(s)\ε,t

λus(xs)

+
�

u∈N(t)\ε,s

λut(xt) + λεs(xs) + λεt(xt)

The next step is to introduce an auxiliary two-node belief equation for edges
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involving the hard constraint node ε:

∇τsε(L(τ,λ) = α + (1− α)θsε(xs, xε) + ln
τsε(xs, xt)

τs(xs)τε(xε)
− α

�

ε∈N(s)

λεs(xs)

− α
�

s∈N(ε)

λsε(xε) = 0

ln τsε(xs, xε) = −α− (1− α)θsε(xs, xε) + ln τs(xs) + ln τε(xε)

+ α
�

ε∈N(s)

λεs(xs) + α
�

s∈N(ε)

λsε(xε)

ln τsε(xs, xε) = −α− (1− α)θsε(xs, xε)− θs(xs) + ln τε(xε)− λεs(xs)

+
�

s∈N(ε)

λsε(xε) + α
�

ε∈N(s)

λεs(xs)− α
�

s∈N(ε)

λsε(xε)

ln τsε(xs, xε) = −α− (1− α)θsε(xs, xε)− θs(xs)− αθε(xε)

−
�

t∈N(s)\ε

λts(xs) + α
�

ε∈N(s)

λεs(xs) + (1− α)
�

s∈N(ε)

λsε(xε)

The equation above unveils the essence of the Modified Truthiness Propagation

algorithm since it showcases the peculiar relationship between the hard constraint

nodes and their surrounding nodes. More specifically, it shows that the message

coming from the hard constraint node is a convex combination (in the log-probability

space) of the hard constraint value and the messages arriving at the hard constraint.

As in section 3.2.1, this convex combination is modulated by the truthiness parameter

α.
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The Lagrangian multiplier λus(xs) is replaced by the following expression:

λus(xs) = ln
�

t∈N(u)\s

Mtu(xu)

where Mtu(xu) is the collection of messages impinging on node u, except the message

from node s. After this substitution the following expressions for the single and

pairwise node beliefs are obtained:

τs(xs) ∝ exp θs(xs)Mεs(xs)
�

t∈N(s)\ε

Mts(xs)

τε(xε) ∝ expαθε(xε)




�

s∈N(ε)

Msε(xε)




α

τst(xs, xt) ∝ exp(θst(xs, xt) + θs(xs)

+ θt(xt))Mεs(xs)Mεt(xt)
�

u∈N(s)\ε,t

Mus(xs)
�

u∈N(t)\ε,s

Mut(xt)

τsε(xs, xε) ∝ exp((1− α)θsε(xs, xε)− θs(xs)

− αθε(xε))
�

t∈N(s)\ε

Mts(xs)




�

s∈N(ε)

Msε(xε)




1−α 


�

ε∈N(s)

Mεs(xs)




α

The Modified Truthiness Propagation fixed points appear after some algebraic

manipulation:

Mts(xs) ∝
�

xt

exp(θst(xs, xt)− θt(xt))Mεt(xt)
�

u∈N(t)\s,ε

Mut(xt)
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The message coming from the hard constraint ε denoted by Mεt(xt) is defined

by:

Mεt(xt) ∝
�

xε

exp((1− α)θtε(xt, xε)− αθε(xε))(Mε(xε))
α




�

u∈N(ε)

Muε(xε)




1−α

where the message Mε(xε) is either a fixed value or a known a priori probability.

The preceding derivation shows that both Belief Propagation and Modified

Truthiness Propagation follow a similar strategy for estimating the partition function

A(θ). This strategy is heavily based on the Bethe Variational Problem. Where they

differ is in the manner which the marginal consistency constraints are defined. The

immediate implication is that the convex approximation to the marginal polytope will

be different in both instances. The quality of the convex hull approximation proposed

by the Modified Truthiness Propagation algorithm will vary depending on the specific

graph structure and the chosen value of α. For codeword quantization applications

where cyclic graphs and short block lengths are often encountered, both Truthiness

Propagation and MTP appear to converge and perform better than Belief Propaga-

tion. In other applications, however, performance might be roughly equivalent across

these schemes. Some of these considerations are examined in section 3.3.
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3.3 Rate-Distortion Performance

Some of the basics of rate distortion theory were introduced in sections 2.4, 2.5, and

2.6. These concepts will be expanded upon next in order to add context and enhance

the understanding of the results presented herein. Nonetheless, the focus of this

section shall be to demonstrate the rate-distortion performance of MTP.

3.3.1 Binary Symmetric Channel

In most modern coding applications the data of interest is in binary form. A number

of standard communications channels are often used to analyze performance in the

presence of noise [66]. The Binary Symmetric Channel (BSC) is arguably the most

commonly used due to its simplicity and the fact that many complex channels can

be reduced to this framework. The BSC is a simple communications channel with

binary inputs and outputs and a probability of error (or crossover) p associated with

the receiver getting the wrong bit value. The BSC provides a convenient way to

benchmark performance since it is rather easy to compute its Shannon capacity (or

its rate-distortion function) and compare it to what could actually be achieved. A

BSC is shown in Figure 3.2 below

The rate-distortion function R(D) for this channel is equivalent to that ob-

tained for a Bernoulli(p) source with a maximum amount of errors below or equal to
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Figure 3.2: Binary Symmetric Channel with Crossover Probability p

D [54]. This is given by the following expression:

R(D) =






H(p)−H(D), 0 ≤ D ≤ min(p, 1− p)

0, D > min(p, 1− p)

where the amount of errors is defined by the Hamming distortion measure,

d(x, x̂) =






0, if x = x̂

1, if x �= x̂

which is associated with the probability of error P (X �= X̂) = E[d(x, x̂)]. For binary

sequences, the distortion measure is the average Hamming distortion given by:

d(xn, x̂n) =
1

n

n�

i=1

d(xi, x̂i)

where the distortion is computed on a per-bit basis and averaged over the length of

the sequence. Note that the BSC rate-distortion function shown earlier is maximized

when the crossover probability p = 0.5 [54]. This constitutes the theoretical lower

bound in rate-distortion performance used to benchmark source coding algorithms.
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3.3.2 Low-Density Generator Matrix Codes

The message-passing algorithms discussed thus far are only efficient when operating

over sparse graph structures. This fact underscores the importance of practical code

constructions such as LDGM codes for lossy source coding. LDGM codes have been

shown to be the other basic ingredient needed in order to attain the elusive rate-

distortion bound [1, 2]. LDGM codes are the duals of LDPC codes. Their factor

graph encapsulates the following relationship as shown in Figure 2.7:

x = Gz

where the generator matrix G ∈ {0, 1}N×K defines a linear code c ∈ C and is the

dual of the parity check matrix H, such that HG = 0. Just like LDPC codes, LDGM

codes are low-density because both the variable degree and the check degree remain

bounded as the block length increases. The degree in this context means the number

of edges coming out of either a variable or check node. There are two types of LDGMs.

The first is the regular LDGM whose factor graph has uniform (fixed) degree across all

variable and/or parity check nodes. Irregular LDGM are those with varying degrees

across either or both variable and check nodes. Performance differences among the

two could be significant, consistent with what has been demonstrated for LDPC codes

[56, 63].
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3.3.3 Results

The results shown in this section were generated using a MATLAB model of the

TP and the MTP algorithm. The tests were set up in the following manner:

1. Fixed code block length of 300 bits.

2. 10 randomly-generated LDGMs per code rate using the method outlined in [67].

3. 1000 runs (100 repetitions over 10 LDGMs) per code rate.

4. Hamming distortion D = E[d(x,Gz)]/N computed as ensemble average (N =

1000) for each code rate.

5. 300 TP and MTP iterations allowed for each repetition.

6. An optimized α determined for each code rate.

The plot shown in Figure 3.3 corresponds to the rate-distortion function ob-

tained by applying the MTP algorithm in conjunction with a pseudo-random set of

10 regular LDGMs over a BSC per code rate.

The MTP rate-distortion function shown in Figure 3.3 is in the order of 1

dB above the Shannon limit. This rate-distortion performance is pretty remarkable

considering that, in general, coding performance tends to get worse with shorter block

length sequences as demonstrated with channel coding [19, 56, 67, 68, 69].
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Figure 3.3: MTP Rate-Distortion Function with Regular LDGM

This feature could be very advantageous in high data rate applications where

the required throughput makes it nearly impossible to use long block codes. As

expected, the performance shown improves (i.e. get closer to the lower bound) as

the sequence length increases in accordance with [53]. Another impressive fact is that

regular LDGMs were used to generate these results. Some of the techniques presented

in chapter 2 tend to perform poorly or even fail to converge altogether when used

with regular LDGM codes.

The performance of TP (not shown in Figure 3.3) appears to be slightly better

than MTP as seen on [62]. Nonetheless, the MTP behavior seems to be consistently

better than the TAP algorithm results reported in [32, 62]. No direct comparisons
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were made against the SP algorithm over LDGM codes since their source coding

results appeared to be very similar to those obtained with the TAP algorithm as

documented in [2, 32, 62].

Figure 3.4: MTP Rate-Distortion Function with Irregular LDGM

The results using irregular LDGMs are shown in Figure 3.4. The rate-distortion

performance between TP and MTP is comparable under the same set of conditions,

again with TP having a slight edge. It is interesting to note that in this case the

TAP algorithm is inadequate (i.e. non-convergence) for irregular LDGMs with de-

gree greater than two. This could possibly be due to its close ties to the Ising spin

model framework which only accounts for pairwise node relationships [32].



4

Applications of New Source Coding

Algorithms

The growing demand for faster wireless devices and services is faced with the reality

of finite bandwidth resources. From the viewpoint of the designer, the need to ac-

commodate multiple users in a spectrally-efficient manner is further exacerbated by

decreased levels of security/privacy due to the nature of these open high-occupancy

channels. These two prevalent aspects in modern communication systems are ex-

plored here in the context of the modified BP source coding concepts developed in

chapter 3.

The first aspect alludes to challenges associated with multi-user communica-

tions. In this setting, the main interest is on enabling technologies and algorithms

aimed at attaining the promised levels of capacity while maximizing the number of

100
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users, in particular multi-user Multiple-Input Multiple-Output (MIMO) networks.

Dirty Paper Coding (DPC) has recently emerged as a possible solution to this prob-

lem [70]. Nevertheless, DPC only lays out a generic strategy to achieve capacity

without specifying any algorithms to help attain it.

The second aspect is related to steganography (data hiding). The focus of

modern steganography is to conceal information in digital media (i.e. images, audio,

etc.) so that only the sender and recipient of the information are aware of its existence

[71]. By contrast, cryptography only seeks to protect the contents of the message but

not its existence nor that of the communicating parties. Effective message conceal-

ment requires sophisticated quantization in order to reduce the amount of perceptual

distortion in the carrier media.

4.1 Dirty Paper Coding

One of the most relevant applications of codeword quantization methods is in Dirty

Paper Coding. DPC is a theoretical data transmission scheme for channels subjected

to interference. This remarkable technique only requires a priori knowledge of the

interference at the encoder and not the decoder. The intended message is pre-coded

(known interference cancellation) in a way which avoids exceeding power limitations.

The name DPC is derived from the title of the seminal paper where the analogy is

made between judicious coding of data with a priori knowledge of the interference and

writing on a dirty piece of paper with prior knowledge of where the dirt is located [72].
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This pioneering work by Costa demonstrated that the capacity of such a channel is

the same as if the interference did not exist. More concisely, given an Additive White

Gaussian Noise (AWGN) channel with known interference also characterized by a

zero-mean Gaussian distribution as shown in Figure 4.1, the capacity C is given by

the following expression:

C =
1

2
log

�
1 +

P

N

�
, independent of Q

where P is the signal input power, N is the channel noise power, and Q is the

interference power [72]. Note in Figure 4.1 that the AWGN channel is operating

under the power constraint 1
n

�n
i=1 X

2
i ≤ P , therefore rendering the naive approach

of canceling out the interference by over-powering it practically useless.

Figure 4.1: AWGN Channel with Interference known to the Encoder [72]
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4.1.1 MIMO Channels

DPC has become the focal point in recent efforts to find the potential capacity of

multi-user MIMO channels [70]. Traditional communication systems consisted of a

single transmit and a single receive antenna. These are referred to as Single-Input

Single-Output (SISO) systems. A MIMO system refers to one in which there are

multiple transmit and multiple receive antennas. These systems can be used between

single users and/or multiple users on both transmit and receive ends. There is an

extensive body of literature about these systems and their predicted capacity [73,

74, 75]. The interest in MIMO communications aroused due to the following two

factors. First, the potential capacity gains that could be attained compared to Single-

Input Single Output (SISO) systems. Second, the increasingly stringent constraints of

power, bandwidth, and complexity virtually leave this technology as the only viable

option to accommodate the demand for higher data rates. The capacity of single

user MIMO systems has been characterized to scale linearly according to min(M,N)

from that of SISO systems, where M and N are the number of antennas at the

transmitter and receiver respectively, under certain assumptions about the channel

statistical behavior, the spatial correlation of antenna elements, and the availability

of Channel State Information (CSI) at the encoder, the decoder, or both [76]. It is

conjectured that the relatively large capacity gains are due to the dense scattering

environment that provides multiple independent paths between the transmitter and

receiver antennas.

The case of multi-user MIMO channels presents a different story. There are two
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types of multi-user MIMO channels, namely the Multiple Access Channel (MAC) and

the Broadcast Channel (BC). Although several capacity results exist for the MIMO

MAC, very little is known about the capacity of the MIMO BC. The capacity of this

type of channel will be the focus of section 4.1.2.

4.1.2 MIMO Gaussian Broadcast Channel Capacity

The MIMO BC (or downlink) is described following the notation in [76]. Consider

a wireless network where a base station (or access point) has M antennas and K

users have N antennas each as shown in Figure 4.2. Then user k receives the signal

Figure 4.2: MIMO BC System Description [76]

according to the following expression:

yk = Hkx+ nk
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where x is an M × 1 vector of the transmitted signal, yk is an N × 1 vector of the

signal received by user k, and nk is an N × 1 noise vector assumed to be circularly

symmetric complex Gaussian with identity covariance such that N(0, I). The Hk

denotes the channel matrix from the base station to user k. The transmit covariance

is
�

x = E[xxT ] and the base station is subject to an average power constraint

P ≥ Trace(
�

x).

When the transmitter has only one antenna (M = 1) the users can be un-

ambiguously ordered by their respective channel strengths, which are assumed to be

constant (non-fading) for the present purpose. This is called a degraded Gaussian

Broadcast Channel and its capacity is known [54]. When the transmitter has more

than one antenna (M > 1) the BC is in general non-degraded and a closed-form

solution for the capacity is still an open problem. Nonetheless, much progress has

been made towards this goal. Inner and outer bounds of this capacity have been

found [77, 78]. An achievable capacity region was recently found for the N = 1 case,

and later extended to the general case N > 1 using the DPC concept [70, 79]. The

sum-rate capacity using DPC was also proven to be optimal [80, 81, 82]. This DPC

achievable capacity region CDPC(P,H) is given by the convex hull of the union of

rate vectors R(u,
�

i) over all permutations of users u1, · · · , uk and all semi-definite

covariance matrices
�

1, · · · ,
�

k such that Trace(
�

1 + · · ·+
�

k) = Trace(
�

x) ≤ P :

CDPC(P,H) = Co




�

u,
�

i

R(u,
�

i

)







106

and the rate vectors R(u,
�

i) are given as follows:

Rui =
1

2
log

������

I+Hui

��
j≥i

�
uj

�
H

T
ui

I+Hui

��
j>i

�
uj

�
HT

ui

������
i = 1, . . . , k

An important duality has been established between the MAC and the BC [83].

More specifically, the dirty paper region of the MIMO BC is equal to the union of

MIMO MAC capacity regions as follows:

CDPC(P,H) =
�

�k
i=1 Pi=P

CMAC(P1, . . . , Pk,H
T )

The importance of this duality is two-fold. First, the DPC region covariances are non-

concave functions. However, the MAC covariances yield concave functions, thus using

them can considerably ease the capacity computations of the DPC region [76]. Second,

it also suggests that the DPC capacity region above could indeed be the elusive MIMO

BC capacity region, although this notion has yet to be proven rigorously.

Another important consideration is that even if the dirty paper region is proven

to be the overall capacity region for the MIMO BC, the inherent complexities involved

in the implementation of the DPC strategy at the encoder renders the scheme very

impractical. Hence, this is precisely where the codeword quantization techniques de-

veloped previously can contribute to dramatically reduce complexity and help attain

capacity. Section 4.1.3 demonstrates the feasibility of this approach via a simple

example.
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4.1.3 Two-User Dirty Paper Coding Example

The DPC strategy typically involves the use of nested lattice codes [84, 85]. Lattice

codes are often employed in Trellis-Coded Quantization (TCQ) schemes in conjunc-

tion with the Viterbi algorithm [86]. However, the complexity of lattice codes grows

exponentially with the constraint length thereby limiting its practical application.

Recent research efforts proposed the use of nested LDGM/LDPC codes (binning) for

source quantization with side information with very favorable results [1, 87]. There-

fore, the approach for this example is to use nested LDGM/LDPC codes along with

the new iterative source quantization procedures in an attempt to attain the DPC

capacity for a simple two-user BC. The DPC transmission scheme for a two-user BC

is described next following the exposition in [88].

Consider the situation where two users on the transmit side wish to send

separate messages, u1 and u2 of lengths K1 and K2 respectively, via a common access

point (base station) to two remote users on the receive side. The encoded messages are

represented by the codewords x1 and x2, both of length N which yield the following

ratesR1 = K1/N andR2 = K2/N for each user. LetH be aK×N parity check matrix

with good (capacity approaching) source coding properties be defined as follows:

H =




H∆

H2





where H∆ is the K∆ ×N parity check matrix of a capacity approaching error control

code and H2 the K2 × N parity check matrix of a capacity-achieving source code.
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Once the message from user 1 is encoded (via a procedure to be described later)

to create x1, the message from user 2 is encoded by introducing a small amount of

distortion to x1. The resulting codeword x2 is then transmitted over the channel.

The BC connecting the transmitter to receiver 2 is described by a memoryless BSC

with cross-over probability p2. To be precise, the codeword x2 is obtained from the

following constrained minimum distance problem:

x2 = argmin
ε

d(x1, ε) subject to




H∆

H2



 ε =




0

u2





On the receive (decoder 2) side, the received signal is denoted by z = [z1, . . . , zN ].

The estimated codeword is obtained as follows:

x̂2 = argmin
ε

d(z, ε) subject to H∆ε = 0

an the approximate message is recovered using:

û2 = H2x̂2

In principle, the estimate of codeword x1 could be obtained as follows:

x̂1 = argmin
ε

d(y, ε) subject to H1ε = 0

where the signal received at decoder 1 is given by y = [y, . . . , yN ] and H1 is the dual

of the generator matrix G1 used to produce the original codeword x1(i.e. x1 = G1u1).
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However, the transmitted codeword is x2, not x1. This seemingly insurmountable

difficulty is circumvented by the fact that a good codeword quantizer would make x2

very close to x1. Since H was assumed to be a good source code, x1 may be quantized

with an average Hamming distortion D consistent with the rate-distortion function

below:

RH = (N −K2 −K∆)/N ≈ 1− h2(D)

where h2 is the binary entropy function. From the point of view of receiver 1, codeword

x1 undergoes two transformations. The first occurs when the encoder attempts to

insert the message from user 2. This quantizing step could be modeled as a BSC

with cross-over probability D. The second step is when codeword x2 is sent over the

actual BSC connecting the transmitter (base station) to receiver 1 with cross-over

probability p1. Therefore, these two transformations can be modeled as two cascaded

BSC with an overall cross-over probability given by q = p1(1−D) +D(1− p1).

Thus, the DPC achievable capacity region is delimited by the following rate

inequalities:

R1 =
K1

N
≤ 1− h2(q)

R∆ =
(N −K∆)

N
≤ 1− h2(p2)

RH =
(N −K2 −K∆)

N
≥ 1− h2(D)

R2 =
K2

N
≤ h2(D)− K∆

N
≤ h2(D)− h2(p2)

where the cross-over probability q is again given by p1(1−D) +D(1− p1).
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A MATLAB model was used to represent the two-user DPC setting de-

scribed above. The first step is to build the low-density graph codes based on degree

distribution polynomial methods [67]. H1 is a LDPC matrix representing a good

error-control code of approximate rate 0.1 which produces a 1000-bit codeword x1 via

its corresponding generator matrix G1. H is the dual of a LDGM G corresponding

to a good source code of approximate rate 0.8 built from nesting two independently

generated LDGM (H2, H∆) of (approximate) rate 0.9 each. Note that the rate of the

error-control code was chosen to be low in order to tolerate both the channel noise

and the distortion introduced by the quantizer. On the other hand, the rate of the

quantizing code was chosen to be high in order to minimize the amount of distortion.

The next step is to encode the message from user 2. This message is treated by the

encoder as side information and incorporated into the scheme as a constraint. By an

abuse of notation, if ε is any particular solution of the constraint presented earlier:




H∆

H2



 ε =




0

u2





where all candidate codewords for x2 that satisfy the constraint can be formulated as

x2 = ε+Gw. Then the objective is to minimize the Hamming weight of x1+ ε+Gw,

which is equivalent to minimizing d(x1, ε+Gw).

Once the global minimum is reached (w ≈ wmin) via the MTP algorithm then

the codeword x2 (of length 1000) is generated according to x2 = ε + Gwmin. In

the DPC model, the message from user 2 is also used to form a syndrome vector.

This syndrome vector is then used to find a particular solution ε that satisfies the
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constraint via Gaussian elimination in the GF (2). The codeword x2 is transmitted

to their two recipients via a BSC with cross-over probabilities p1 and p2 respectively.

The message at receiver 1 is recovered with nominal BP decoding using H1. The

message at receiver 2 is obtained first by regular BP decoding using H∆ and then

calculating u2 = H2x2. This strategy can easily be extended beyond two users by

observing that a third user, for instance, would be accommodated by transmitting

x3 = ε+Gwmin based upon minimizing d(x2, ε+Gw) and so forth.

The achieved sum-rate capacity is calculated by setting the distortion D to

the appropriate value according to the achieved rate RH and gradually increasing

(or decreasing) the cross-over probabilities p1 and p2 until MTP convergence is lost.

The set of collected rate pairs constitutes the sum-rate capacity, which delineates the

achieved capacity region.

The set of achieved rate pairs in this example are:

R1 = [0, 0.0619, 0.0725, 0.0828, 0.0894, 0.0951]

R2 = [0.8768, 0.7658, 0.7278, 0.7060, 0.3216, 0]

with the corresponding maximum cross-over probabilities p1 = 0.3132 and p2 =

0.0492.

The capacity region obtained from this set is highlighted in Figure 4.3. The

dash line bordering the shaded area (i.e. capacity region) denotes the sum-rate ca-

pacity achieved with DPC using the MTP algorithm for codeword quantization. The
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achieved sum-rate is compared to the approximate corner points of the achievable

DPC sum-rate capacity. The achievable DPC sum-rate capacity is labeled as optimal

in the figure for simplicity. In reality, however, the optimal DPC capacity would be

a smooth curve through the corner points upper-bounded by the Sato bound.

Figure 4.3: Two-User Achieved DPC Capacity

There are a number of reasons why the capacity region obtained above does

not saturate the optimal bound. First, a constant and non-optimized α parameter

in the MTP algorithm was used with only 50 iterations. Second, much larger block

lengths (N � 1000) would be needed in order to reach capacity. Third, the code

constructions used in this example do not yield the exact intended code rates. This

particular problem is compounded when the resulting codes are nested, thus giving
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a certain element of unpredictability to the actual rates. In addition, when a LDPC

matrix or a LDGM is generated using degree distributions their corresponding dual

matrices typically have high girth (i.e. not low density). This underscores the need

for further advances in those code constructions in order to approach the capacity

limits.

4.2 Information Embedding

The process of embedding information generally consists of placing data into a differ-

ent set of data for the purpose of asserting data ownership, protecting data content,

or hiding data transmission. Information embedding is a fairly broad subject, related

to but different than cryptography, which includes the popular topic of digital water-

marking as well as the lesser-known digital steganography [89]. The general setup for

information embedding is represented by the communication channel shown in Figure

4.4.

The data to be embedded, or hidden, is the message M to be communicated

secretly and it is sometimes referred to as the payload. The medium in which the

payload is to be inserted is known as the cover object X (or cover image, host signal,

carrier sequence, etc.) and is available only to the hider. After insertion, the modified

object S is called a stego (or stego image, cipher sequence, etc.). The stego key K is

only known to the sender and recipient and used to aid in the encoding and decoding

process. The stego object S is subjected to possible detection and/or alterations
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Figure 4.4: General Information Embedding Setup

(channel noise) from a presumptive attacker as it makes its way to its destination.

The (possibly altered) stego object Y ∼= S is received by the decoder which proceeds

to extract the intended message.

Many parallels between multi-user communications, DPC in particular, and

information embedding, particularly digital steganography, have been identified [61].

This opens up the possibility of using codeword quantization techniques to enhance

the embedding process and attain capacity. Thus, the focus in the subsequent example

is on source coding algorithms applied to digital steganography.

4.2.1 Steganography

Steganography refers to the covert transmission of information via overt communica-

tion channels [71]. It differs from both watermarking and cryptography in the sense
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that the main priority is to conceal the existence of hidden information rather than to

protect the hidden information itself. The advent of personal computers has shifted

the attention from classical steganography, known and used for many centuries, to

modern steganographic techniques used to hide data in digital media such as au-

dio, video, or image files (i.e. digital steganography) [71]. There is a large variety

of both free and commercially available software to perform data-hiding functions on

virtually any kind of digital media [90]. Nevertheless, theoretical insights about infor-

mation embedding capacity and its fundamental limits as well as capacity achieving

techniques are not yet widely understood. This not only pose risks to well-mounted

attacks that exploit system vulnerabilities but also underscores the need for more

effective embedding techniques attuned to recent information-theoretic advances ap-

plicable to this challenge.

The famous article by G.J. Simmons regarding the Prisoners Problem marked

the turning point of steganography as a scientific discipline [91]. In that setting, Alice

and Bob are in prison and poised to plan an escape. Their communications are being

monitored by the warden, Willie. If Willie sees any suspicious (possibly encrypted)

messages, they will be placed in solitary confinement and their escape plan becomes

thwarted. Hence, they need to devise a strategy to secretly communicate with each

other about their plan through seemingly harmless messages. It is assumed that

Willie has knowledge about the strategy but not about a message security-enabling

key that Alice and Bob managed to share prior to being imprisoned.

The analogy posed by the prisoners problem helped to re-shape the steganog-

raphy problem in the framework necessary to develop a more comprehensive under-



116

standing about its fundamental limits and underlying assumptions [71]. For instance,

the use of a public key versus a private key can have a significant impact on the

embedding capacity. So does the behavior of the warden (i.e. passive or active).

Another important assumption is that the warden has full knowledge of the embed-

ding mechanism, but not the key. This is in concert with the well-known Kerckhoffs

principle from cryptology where true security does not lay with the particular encryp-

tion method but with the knowledge about the key used to encrypt and decrypt the

message [92].

4.2.2 Embedding Capacity

A crucial aspect of information embedding is the question of how much data can

be hidden in a cover object. The answer came from the remarkable observation

that a duality exists between information embedding and source coding with side

information [61]. Referring back to the block diagram depicted in Figure 4.4, if the

distortion between the cover object X and the stego object S is constrained to d

or less, then the specific question becomes: what is the maximum rate of reliable

communication supported by the embedding algorithm for a particular transmission

channel characterization?

The characterization of the information embedding capacity is essentially drawn

from a generalization of the informed encoder channel case with defective memory

[93, 94]. This capacity relationship is modified in this case to add an arbitrary dis-

tortion constraint and a metric [61, 95]. The resulting information embedding (IE)
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capacity expression CIE(d) is given below following the notation in [71]:

CIE(d) = sup[I(Y ;U)− I(U ;X)]

where the supremum is taken over all probability distributions pUX(ux) and functions

f : U × X → S which satisfy E[D(X,S)] ≤ d for S = f(U,X) where D(·, ·) is an

arbitrary distortion metric and U is an auxiliary random variable. The relationships

among the different variables is illustrated by the fact that the auxiliary random

variable U forms the following Markov chain: U → (X,S) → Y .

The general information embedding capacity expression shown above can be

further specified in the context of the BSC. In this case, the distortion function d is de-

fined to be the Hamming metric and the cover object is modeled as a Bernoulli source

with cross-over probability of 0.5. Under these conditions, the capacity expression

becomes [61]:

CIE(d) =






cIEp (dp)

dp
d, if 0 ≤ d ≤ dp

cIEp (d), if dp ≤ d ≤ 1/2

where dp = 1 − 2−h(p), h(·) is the binary entropy, and cIEp (d) is an upper concave

envelope function given by:

cIEp (d) =






0, if 0 ≤ d ≤ p

h(d)− h(p), if p ≤ d ≤ 1/2
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Therefore, the information embedding capacity on a BSC is upper-bounded by

the concave function defined above. Thus, it sets the fundamental theoretical limits

on the amount of data that can be inserted in a digital cover file under specified

distortion constraints. Acceptable distortion constraints cannot be strictly defined on

a mathematical basis alone. Perceptual constraints are perhaps of more interest in the

case of digital imagery or audio (as seen in the subsequent example), though subjective

in the sense that it may not always correlate well with mathematical constraints.

4.2.3 Embedding Techniques

A number of embedding techniques have been developed over time drawing from

the rich parallels with multi-user communication schemes such as spread spectrum

[96]. These approaches appear attractive due to their relative effectiveness and imple-

mentation simplicity. Nevertheless, they seem to fall short of attaining the predicted

maximum embedding capacity. As such, the attention has recently turned to alternate

strategies such as those inspired by DPC. As mentioned in section 4.1, DPC-based

techniques have the distinct advantage of being capacity-achieving; however, their

implementation could be cumbersome. Two practical techniques, namely wet pa-

per coding and matrix embedding, are discussed next whose aim is to maximize the

embedding capacity.
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4.2.3.1 Wet Paper Coding

Wet paper codes are analogous to the dirty paper codes invoked by M. Costa in the

sense that the embedding process is akin to writing on the dry spots of a wet piece

of paper [72, 97]. Once the wet paper dries up, it is difficult to tell which spots were

actually altered. This covertness feature is very attractive from a steganographic

point of view. More specifically, the sender is constrained to insert the message into

a subset of the cover object. This subset is chosen according to an arbitrary selection

rule which is only known to the sender and not shared with the intended recipient.

The recipient proceeds to extract the message without knowledge of the location of

the altered spots in the object or how they were chosen. This communication setup

represents an instantiation of a channel with defective memory cells [98].

Given a cover object X with n elements the selection rule picks (either de-

terministically or randomly) q elements which could be modified by the embedding

procedure out of the set of indexed elements [1 . . . n], where q < n [97]. The cover

object X (or host sequence) is passed through a publicly-known parity function to

obtain the corresponding n-element carrier sequence. This sequence becomes the

stego object S after message insertion and sent over the channel to the recipient. The

recipient re-applies the parity function to obtain the sequence of altered bits and then

uses the secret key K to recover the message M according to M = KS ∼= KY (mod

2), per Figure 4.4. Again, this secret key is only known to the sender and recipient.

The capacity obtained with this approach is essentially q/n and the average

distortion is given by 0.5q/n [98]. The wet paper coding strategy boasts enhanced
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security against passive warden detections but it comes at the expense of lower em-

bedding capacity. A slightly modified approach allows for the selection of a greater

number of cover object elements to alter such that q ≤ l ≤ n [99]. This, in general,

yields an embedding capacity that approaches the theoretical limits.

4.2.3.2 Matrix Embedding

The matrix embedding technique is very similar to the wet paper coding technique

but instead it uses nested codes and additional constraints. Starting with a cover

object X of length n and a message M of length q, with q < n, the key K is a q × n

parity check matrix chosen such that the cipher sequence S satisfies the constraint

M ≡ KS (mod 2). Thus, only the recipient is able to recover the message since it is

the only other party that knows the unique secret key. Also, suppose that V K
0 is the

set of null vectors V defined in the GF (2) for matrix K such that:

V K
0 = {0 ≡ KV (mod 2)}

and the coset of vectors that produces the syndrome M (by intentional abuse of

notation) V K
M is defined by:

V K
M = {M ≡ KV (mod 2)}

Hence, in the GF (2) domain, the matrix embedding approach attempts to find a

stego object S such that the Hamming distance d(X,S) between the cover object X

and the stego object itself is minimized subject to the constraint M ≡ KS (mod 2)
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[61, 95, 100].

The immediate observation is that the structure of the problem presented by

this approach is strikingly similar to DPC, exposed earlier in section 4.1. In fact, the

problem reduces to performing binary quantization on the carrier sequence X to get

it as close as possible to a vector in the coset V K
M . If the vector vK(M) is the coset

leader of V K
M , then:

S ≡ X + vK(M)

The host signal X is quantized to the rate RX ≥ H(X) − H2(D), where

H(X) represents the per-bit entropy and H2(D) is the binary entropy of the average

distortion D. If the chosen parity function is able to generate a uniformly-distributed

sequence X, then the rate equation above simplifies to:

RX ≥ 1−H2(D)

which is the traditional rate-distortion function expression presented before. The ma-

trix embedding method could attain, in principle, the maximum embedding rate of

q/n by carefully selecting capacity-approaching low-density source and error-correcting

codes (i.e. LDGM and LDPC codes) and using them in a nested structure as described

in the DPC example earlier. By the same token, the same codeword quantization tech-

niques applied to the DPC example before can be applied to information embedding

as shown in the example in section 4.2.4.
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4.2.4 Digital Image Steganography Example

This example involves the succinct modification of a still image in order to embed

a message. The input image, shown in Figure 4.5, is the famous cameraman photo-

graph. This image is represented by a 256×256 array of pixels with an 8-bit gray-scale

per pixel stored in the Tagged Image File (TIF) format.

Figure 4.5: Original Cameraman Image

The first step is to extract the chosen bit plane in which to store the message
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among the eight bit planes available in the image. The Least Significant Bit (LSB)

plane is typically selected and constitutes the simplest parity function available. How-

ever, this choice appears to be more succeptible to detection since the attacker might

also be expecting the LSB to be chosen for hiding data [102][103]. Thus, the second

LSB plane was chosen for this example for two reasons. The first is to reduce the

risk of payload detection by either a passive and/or an active warden. The second is

to demonstrate that the employed embedding technique is still able to imperceptibly

insert data in more important bit locations throughout the image than just the LSB.

The second step is to build a code composed of a low-rate error-correction code

nested in a high-rate source code using the identical procedure discussed in the DPC

example in section 4.1. The rate of the nested error-control code is 0.2 and produces

codewords of 534 bits in length. The rate of the overall source code is 0.6.

The third step is to generate a 534-bit carrier sequence via a carefully-selected

parity function with the purpose of creating a bit sequence with high entropy [71].

This has the effect of reducing the rate even further as shown in section 4.2.3.2.

The parity function used in the example essentially computes each bit in the carrier

sequence as the XOR of three spatially-separated, randomly chosen bits along the

selected bit plane.

The MTP algorithm attempts to quantize the carrier sequence into a minimum

weight vector which is then used to produce a stego sequence that meets the same

constraint of M ≡ KS (mod 2) but is also part of the coset of the source code

generated in the second step above. This binary vector is the 534-bit cipher sequence
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which contains the message to be inserted in the image. The message is simply a 107-

bit sequence randomly generated from a Bernoulli source of equally probable bits.

Figure 4.6 shows the cameraman image containing the stego object.

The cipher sequence is embedded into the second LSB plane by randomly

chosing the pixel locations (indexes) along the plane. This is sometimes called the

inverse parity check function. Again, these random pixel locations are shared between

the sender and the recipient. After the embedding process is complete, the selected bit

plane is placed back into the image and the modified image is sent over the channel.

Note that the differences between the images in Figures 4.5 and 4.6 are im-

perceptible to the naked eye which underlines the early success of the embedding

algorithm. The robustness of the embedding procedure is put to the test by subject-

ing the modified image to an attack mounted by an active warden. It is assumed that

the warden is able to detect the possible presence of hidden data in the second LSB

plane but not the specific locations of the altered bits. Hence, the attack is modeled

as passing the entire second LSB plane through a BSC with bit flip probability of 0.1.

The post-attack image is shown in Figure 4.7. Note that the image now shows a few

scattered white spots across the photograph.

The message recovery process begins by collecting the modified bits from the

pixel locations chosen by the encoder from the second LSB plane. The message

is easily obtained using the regular BP algorithm to decode the low-density code

generated in the second step above.
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Figure 4.6: Modified Cameraman Image

The question that remains is to determine how close the embedding procedure

gets to achieving the presumptive theoretical embedding rate of q/n ≈ 0.2 for this

example. The average distortion was computed by replacing it with the empirical

mean of the distortion between the host and cipher sequences over 100 iterations. The

calculated mean was approximately 0.1511. To determine the rate, the message length

was lowered bit by bit, from a maximum of 107 bits until no discernible differences

between the original and modified images were observed. The achieved embedding

rate was 95/534 ∼= 0.1779. The plot in Figure 4.8 shows the specific attained rate
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Figure 4.7: Modified Cameraman Image after the Chanel Attack

compared to the theoretical bound. This is very good performance considering the

relatively short length of the cover signal in the example and the fact that it is more

difficult to achieve capacity when low distortion is desired. Also, the polynomial

degree distributions used to generate low-density codes do not yield codes with the

exact desired rate as seen in the previous DPC example.
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Figure 4.8: Digital Image Data Embedding Example

4.3 Information Secrecy

In many ways, information secrecy (also known as information-theoretic secrecy,

information-theoretic security, or perfect secrecy) could be seen as an extension of

the information embedding case conditioned on intercepted messages between Alice

and Bob. An eavesdropper named Eve has tapped into their communication chan-

nel and detected their messages. The challenge for Eve, though, is to successfully

decipher (i.e. decode) these messages.

In contrast to information embedding, where the main question is how much

data can be covertly hidden given a maximum level of allowed distortion, information
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secrecy is concerned with how much data can be securely transmitted while guaran-

teeing that an eavesdropper will not have more than a random chance of successfully

decoding the data. More specifically, once Eve intercepts a message between Alice

and Bob the probability that Eve decodes the message should ideally be uniform

across all possible (right and wrong) outcomes [101].

This concept differs from the notion of security afforded by cryptographic

means which rely heavily on computational intractability in order to curtail the ability

of an eavesdropper to decrypt the data [102, 103]. The level of security provided

by information secrecy goes beyond intractability, which can become obsolete by

eventual advances in algorithms and/or computer hardware. In fact, information

secrecy involves looking at the problem posed by cryptography from an information-

theoretic point of view rather than an algorithmic complexity point of view.

The example shown subsequently in section 5.2.4 is synergistic with the re-

newed interest in this problem motivated by the widespread awareness of the inherent

vulnerabilities of wireless networks due to their open nature and the increasing need

to integrate information security as a fundamental aspect in system design [102, 103].

4.3.1 Perfect Secrecy and Equivocation

The basic tenets of perfect secrecy were laid out by C.E. Shannon in 1949 [101].

In this seminal work, Shannon defined perfect secrecy as the requirement that the a

posteriori probabilities of a cipher (denoted by E) be equal to the a priori probabilities
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of the underlying message (denoted by M). This could be expressed as follows:

PE(M) = P (M)

where PE(M) is the a posteriori probability of message M if the encrypted message

E is intercepted and P (M) is the a priori probability of the message M . Shannon

also further developed the concept of equivocation, defined in terms of the following

(conditional) entropies [53, 101]:

HE(K) =
�

E,K

P (E,K) logPE(K) = H(M) +H(K)−H(E)

HE(M) =
�

E,M

P (E,M) logPE(M) = H(K) +HM(E)−H(E)

where HE(K) and HE(M) are the conditional entropies of the key and message re-

spectively, P (E,K) and P (E,M) are the joint probabilities of the cipher and key, and

the cipher and message respectively, and finally PE(K) is the a posteriori probability

of the key. Note that zero equivocation implies that one of the received (intercepted)

messages (or key) has unit probability of occurrence while the others have zero prob-

ability of occurrence. Typically, the equivocation function tends to decrease as the

number of intercepted ciphers increase. Nonetheless, perfect secrecy ideally means

that:

H(M |E) = H(M)

H(K|E) = H(K)
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Therefore, Eve has learned the same information about the message by intercepting

the cipher as if the cipher had never been intercepted in the first place. In other words,

Eves chances of deciphering the message did not improve by intercepting the cipher.

The basic situation described thus far is depicted in Figure 4.9 below: The underlying

Figure 4.9: Basic Information Secrecy Setup

assumption (as with information embedding) is that Eve has full knowledge about the

encryption/decryption mechanism but knows nothing about the key shared between

Alice and Bob. Further assuming that the message consists of n binary elements,

then the encryption scheme chooses a cipher (codeword) E among 2nR possibilities

according to the chosen code rate R. The key K is then selected among 2nR0 choices.

Hence, the fundamental result by Shannon states that the message length is limited

by the length of the key. Moreover, the chosen rate for the key R0 (and hence R) has

to be greater than the entropy of the message M in order to ensure perfect secrecy,

such that [101]:

R0 ≥ R = H(M)
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4.3.2 Secrecy Capacity

The perfect secrecy criterion developed by Shannon and presented in section 4.3.1

establishes the fundamental rate limits for any type of crypto (secrecy) system. How-

ever, just like in his mathematical theory of communication systems, no practical code

constructions were given to achieve these rate bounds. A big step towards developing

a more specific secrecy capacity expression was made by the introduction of the wire-

tap channel [104, 105]. The setup shown in Figure 4.9 assumes no alternate channel

for key sharing. The single-letter capacity expression is then given by [104, 105]:

C = max
U→E→(Y,Z)

[I(U ;Y )− I(U ;Z)]

where U is the auxiliary variable forming the Markov chain: U → E → (Y, Z). An

important simplification occurs if the eavesdropper channel is assumed to be degraded

compared to the receiver channel. The resulting equation is:

C = max
PE(E)

[I(E;Y )− I(E;Z)]

where the mutual information difference is maximized over the probability of the

channel input (i.e. cipher). The capacity expression above constitutes the rate limit

at which Alice (or Bob) can communicate with Bob (or Alice) under perfect secrecy

conditions (i.e. high equivocation by Eve). Multiple extensions of this capacity result

have since been developed [102, 103, 106, 107].

The expressions for secrecy capacity and embedding capacity appear to be
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strikingly similar. This peculiarity feeds the earlier notion about information secrecy

being an extension of the information embedding given their parallel objectives of

concealing/protecting information from third parties. This observation also implies

that nested coding strategies similar to those employed for DPC and data hiding

can be readily applied to this problem as shown in the subsequent example. The

remaining concerns about key sharing-agreement along with how to induce a degraded

eavesdropper channel are addressed next.

4.3.3 Secrecy Coding

Among the many ways that legitimate users can induce a degraded channel for an

eavesdropper the most well-known is the one-time pad [108]. The one-time pad is a

classical encryption method in which modular addition is performed between the in-

tended message and a random sequence generated from a Bernoulli source of equally

probable bits (p = 0.5). This random sequence is available exclusively to the legiti-

mate users (i.e. Alice and Bob only). This technique not only provokes obscurity in

the intruders channel but is also proven to achieve perfect secrecy [101]. However,

even though the one-time pad is able to attain theoretical perfect secrecy this tech-

nique is seldom used in practice for various reasons ranging from the impossibility of

generating truly random sequences to the difficulties in exchanging both the pad and

the key. Hence, other encryption alternatives must be pursued.

A breakthrough approach to circumvent these practical difficulties is based on

the idea of two-way protocols over a public channel [109]. These protocols are nothing
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more than secret key agreement methods over public channels to ensure that any

eavesdropper ends up with worst (degraded) channel conditions than any legitimate

user. Notionally, the procedure begins with Bob generating a random sequence X

and sending it un-coded to Alice (and Eve). Alice receives X +Wb, where Wb is the

channel noise between Bob and Alice. In turn, Eve gets X + We, where We is the

noise in Eves channel. Alice proceeds to generate her own random sequence V and

adds it to X. Alice now sends the coded sequence X + V + Wb back to Bob (and

Eve). Since Bob knows X his received sequence can be reduced to V +Wb from which

he can recover V after decoding. Eve, instead, receives X + V +Wb +We which can

only be reduced to V +Wb +We. By simple inspection, Eves sequence contains more

noise than Bobs, thus effectively inducing a degraded channel.

This protocol can be adapted to nested codes as shown in [110, 111]. Suppose

that two linear block codes with parity check matrices Hab and He are nested such

that:

He =




Hab

Hk





for some Hk chosen so that K = HkV , with K representing the key as before. Then,

instead of Alice sending her coded random sequence V , she generates a syndrome

S = HabV and sends it to Bob with coding for error correction. Bob receives the

syndrome S and attempts to decode the sequence V generated by Alice using S as



134

side information according to:

V̂ = argmin
Y

d(Y, V +Wb) subject to S = HabY

where Y is the sequence received by Bob. If Hab is the parity check matrix of a

capacity-approaching code, then there is a very high likelihood of V̂ ≈ V . At this

point, Bob (and Alice) may proceed to recover the key from K = HkV . The secrecy

assurance stems from the specific attributes ofHe. IfHe is also a capacity-approaching

code, then it is able to operate very close to the following rate limit given by [109]:

Re = h(p ∗ q)− h(p)

where the channel between Alice and Bob is modeled as a BSC with cross-over proba-

bility p, and the channel between Alice (or Bob) and Eve is also a BSC with cross-over

probability q, assuming binary variables and binary entropies. The argument p ∗ q in

the first entropy term is the convolution of the two cross-over probabilities represent-

ing the two cascaded BSC as described in section 4.1.

If the crypto system is operating at or near Re, then the following two inequal-

ities apply [110]:

I(K;S, Z) ≤ δ

h(p ∗ q)− h(p)−H(K) ≤ δ

for δ > 0 and Z the sequence intercepted by Eve. The first inequality means that the
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closer the crypto system operates to the rate limit, the smaller the mutual information

between the key and the data available to Eve becomes. In other words, Eve will not

be able to derive the key from the intercepted data and, thus, perfect secrecy is

achieved. The second inequality shows the direct relationship between the entropy of

the key and the theoretical secrecy rate limit presented earlier.

Moreover, suppose that instead of using the protocol described above to agree

on the key, Alice and Bob decide to use it for sending each other actual data. Then

the problem can be re-formulated as follows:




0

M



 =




Hab

Hk



V

where Alice now has to generate the sequence V not arbitrarily but according to this

condition. The rest of the steps are identical to the procedure already described.

The end result is the retrieval of the message M according to M = HkV . The rate

at which Alice can communicate with Bob with unconditional secrecy under this

particular setup is given by [112]:

R�
ab = [h(p ∗ q)− h(p)][1− h(p)]

where it is assumed that Eves channel is not initially degraded and the second brack-

eted term corresponds to the error-correcting code applied to the sequence sent by

Alice.
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4.3.4 Information Secrecy Example

The secrecy coding scheme leverages many aspects of the two-user DPC model de-

scribed previously. Hab is a 54 × 541 LDPC matrix with approximate rate of 0.9

produced with degree distribution polynomials [67]. He has an approximate rate of

0.8 and is built by nesting the LDPC matrices Hab and Hk of (approximate) rate 0.9

each with the hope that He remains a LDPC matrix. The matrix Hk is simply a

column-permutated version of Hab. It is also assumed that the dual of He (i.e. Ge)

produces a good LDGM code.

Both the sequence X received from Bob and the message M from Alice are

randomly generated from a Bernoulli binary source with probability of 0.5. The

message M is treated by the encoder as side information and incorporated into the

scheme as a constraint. If ε is any particular solution of the constraint presented

earlier [112]:




Hab

Hk



 ε =




0

M





where all candidate ciphers (codewords) for V that satisfy the constraint above can

be formulated as V = ε + Gew. Then the objective is to minimize the Hamming

weight of V + ε+Gew, which is equivalent to minimizing d(V, ε+Gew).

Once the global minimum is reached (w ≈ wmin) via the MTP algorithm then

the codeword V of length 541 bits is generated according to V = ε + Gwmin. The
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message M from Alice is also used to form a syndrome vector. This syndrome vector

is then used to find a particular solution ε that satisfies the constraint via Gaussian

elimination in the GF (2) domain. The cipher V is transmitted to Bob via a BSC with

cross-over probability p. Bob recovers the message first by regular BP decoding using

Hab and then calculating M = HkV . This strategy can easily be extended beyond

two legitimate users by observing that a third legitimate user, say Carol, would be

accommodated by assuming that the sequence X received from Bob has already been

agreed upon separately between Bob and Carol. Alice can now broadcast her message

to both users in secrecy from Eve [112].

The achieved secrecy rate capacity shown in Figure 4.10 is obtained by setting

the cross-over probability p of the Alice-Bob channel to the minimum value according

to the actual rate achieved by the parity check matrix Hab and then gradually increase

the cross-over probability q until convergence with MTP is lost. The procedure is

repeated by increasing p from its minimum and increasing q again until convergence is

lost. The maximum probability q where convergence is lost varies with each minimum

probability p.

The set of collected rate pairs (R2, Cs(R2)) constitutes the secrecy rate capac-

ity, which delineates the achieved secrecy region. This secrecy capacity is a function

of the attained rate in the Alice-Eve channel (R2) as exposed earlier. The MTP

algorithm once again shows good performance given the limitations imposed by the

short block lengths and nested codes built for this example whose actual rates fall

below the intended ones.
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Figure 4.10: Information Secrecy Capacity Example

The set of achieved rate pairs in this example are:

Cs(R2) = [0, 0.2711, 0.4525, 0.6621, 0.7194]

R2 = [0.8464, 0.6581, 0.3978, 0.1260, 0]

with the corresponding minimum cross-over probability p = 0.2215.
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4.4 Distributed Information Sharing

A potentially new application of the source coding techniques discussed thus far has

emerged in the context of wireless sensor networks. Suppose that a wireless (ad hoc)

network of sensors distributed in a relatively large space is used to monitor certain

conditions across that space. Each sensor collects a fair amount of raw measurements

which need to be post-processed somehow in order to extract any useful information

out of the network. The naive approach would be for each sensor to haul its own

data to a centralized node responsible for processing all the network data. The large

amount of incoming/outgoing data could easily overwhelm the network deeming it

useless for extended periods of time. A common approach to deal with this problem is

to relay the data from sensor node to sensor node (multi-hop) where each sensor takes

the incoming set of measurements and combines it with its own to create an aggregate

set [113, 114]. This set is then sent to the next node where the process is repeated

until it gets to the centralized node. For large sets of measurements, the aggrega-

tion scheme could also become problematic from a communications, computational,

memory storage, and energy efficiency standpoint.

This section focuses on the dilemma of finding alternative efficient means of

sharing information in a distributed (multi-terminal/multi-sensor) environment. A

realizable coding scheme that allows more efficient data diffusion is identified by

drawing from the structure of the previous examples. The scheme is also evaluated

and compared against known information-theoretical bounds via a simple three-node

example.
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4.4.1 Wireless Sensor Networks

The study of wireless sensor networks (WSN) is a very broad and multi-disciplinary

subject encompassing electronics, embedded systems, computer networking, commu-

nications theory, and computer science among many other scientific fields. A wireless

sensor network is essentially a set of autonomous spatially-distributed devices (nodes)

used to measure/monitor the conditions of their surrounding environment and collab-

orate to pass and/or process their collected data for meaningful information extraction

[115]. The measured quantities could be temperature, pressure, vibration, or mul-

tiple others. They were originally conceived to be employed in military battlefields

but additional applications are continuously on the rise such as industrial process

monitoring, traffic control, and air pollution monitoring. A generic WSN is shown in

Figure 4.11 composed of 12 nodes spread out over a certain area.

Figure 4.11: Generic Wireless Sensor Network

Once a node (or a group of nodes) detects an event or collects measurements
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it proceeds to send this data to one of the nodes in the group designated as the su-

per node. This node is distinct from the others in that it has the ability to handle

external queries and perform certain post-processing functions on behalf of the group

(i.e. count, sum, average, etc.) [115]. The data collected by the nodes reaches the

super node by relaying it (multi-hop) through intermediate nodes. The two most

common routing schemes are peer-to-peer and multicast, although many adaptive

techniques have also been proposed [115]. The communications, handshake protocols,

and network-sensor interface/interaction typically comply with one or more network-

ing standards such as WLAN (IEEE 802.11), Bluetooth (IEEE 802.15), Zigbee (IEEE

802.15.4), IEEE 1451, Token Ring (IEEE 802.5), or others. The topology of these

networks usually follows either one or a combination of the usual configurations: star,

ring, bus, mesh, or fully connected [115]. In addition, many commercially-available

WSN have the ability to self-organize and know their relative sensor positions (local-

ization). These features are important in applications requiring ad hoc connections

between sensors. Some possess aggregators (super nodes) with advanced data fusion

functions and the ability to make rudimentary decisions [115, 116].

The size and cost of each sensor vary dramatically but the current trend is

towards lightweight and low-cost devices such as Micro-Electro-Mechanical Systems

(MEMS). These two factors have a direct impact on energy consumption, memory,

computational power, and communications throughput [115, 117]. Network and sen-

sor security and reliability have also become critical considerations as these systems

are now often deployed in harsh environments and possibly subject to attack/tamper

by external entities [118].
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Thus far, the discussion assumed a network architecture centralized around the

super node. While useful, such centralized architectures are also vulnerable to super

node unavailability and failure. Distributed architectures improve reliability since any

node can replace the super node in case of failure and monitoring stations are able to

interrogate any node. Data fusion functions may not necessarily be exclusive of the

super node. In fact, this approach is preferred since it has been shown that allowing

the nodes to perform rudimentary (aggregate) operations on external data could result

in reduced inter-network data traffic as well as considerable savings in sensor energy

consumption [113, 114]. The coding technique exposed in the subsequent example

could potentially afford further savings in the sense that even less data would need

to be exchanged between nodes in order to perform these aggregation tasks.

4.4.2 Coset Encoding

The coset encoding technique is equivalent to nested coding (or binning) presented

in the preceding examples. The basic ideas behind the code partitioning into coarse

and fine codes remain unchanged [112, 111]. The only aspect that is different is the

context. Suppose that a small network composed of only three sensors has collected

some information of interest (in binary form) about the space where they are deployed

as shown in Figure 4.12. Furthermore, assume that the particular application requires

each node to know the measurements of the other two nodes. Aside from the obvious

inefficiency, the transmission capacity of the network can be quickly overwhelmed if

all the nodes attempt to send each others measurements or if the number of nodes

increases. Hence, an alternate strategy would be for node 1 to take its set of N
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measurements xN and calculate the syndrome:

s = HxN

where H is the (N −K)×N parity check matrix of a linear block code C known to

all the nodes.

Figure 4.12: Three-Node Sensor Network

Node 1 proceeds to send just this syndrome (N − K bits) to both nodes 2

and 3 rather than its entire set of measurements (N bits). Node 2 can then find an

estimate of xN according to:

x̂N = argmin
ε

d(yN , ε) subject to Hε = s

where ε is a binary vector candidate to belong in the coset of C and yN is the set of

measurements taken by node 2 under the assumption that they are correlated to xN .

If the channel characteristics between nodes 1 and 2 are the same as those between
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nodes 1 and 3 (i.e. H(x|y) = H(x|z), where H(·|·) is the conditional entropy), then

node 3 is able to obtain x̂N via a common message (same side information s) as:

x̂N = argmin
ε

d(zN , ε) subject to Hε = s

where zN is the set of node 3 measurements. On the other hand, if the channels are

characterized differently, then two different code rates need to be used. This can be

accomplished (just as before) by partitioning the parity check matrix H as follows:

H =




H12

H∆





assuming that H(x|y) > H(x|z). As such, node 2 can recover xN via the following:

x̂N = argmin
ε

d(yN , ε) subject to H12ε = s12

while node 3 is able to estimate xN by:

x̂N = argmin
ε

d(zN , ε) subject to Hε =




s12

s∆





Note that extensions beyond the three-node case are straightforward by further par-
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titions of the parity check matrix H:

H =





H12

H∆3

...

H∆T





and following the same steps described before. Under the three-node setup, node 1

broadcasts the vector s12 to both nodes 2 and 3, but unicasts (sends) the vector s∆

only to node 3 as shown in Figure 4.12. The minimum theoretical rate necessary to

estimate a source sequence X by using a correlated sequence Y as side information

at the decoder is given by the conditional entropy H(X|Y ) [119]. In practice, this

estimation problem is solved with high probability via message-passing decoding with

side information when the linear code C is capacity-approaching. This alternate

strategy is more efficient in terms of the total number of bits carried over the network

than the original scheme of all nodes exchanging all their data.

It is important to note that the encoding technique above involves lossless

measurement reconstruction. A variation from that setup comes up in applications

where only an approximation of the measurements is sufficient or acceptable for post-

processing. Lossy reconstruction of measurements affords an even greater reduction

in communications expenditures across the sensor network and is able to achieve

the same compression rates as the lossless case, up to a maximum distortion level

[59, 120]. The general coset encoding approach is certainly not new in the WSN

context; however, previous constructions differ from the current framework in very
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notable ways. One proposed technique is to perform distributed source coding in

highly-dense sensor networks with scalar quantizers and trellis-based partitions using

convolutional codes [120, 121]. While this technique yields relatively simple and

effective implementations, the drawback is that the achieved rates are suboptimal.

Another approach is for each sensor to compress its own data blindly (without any

inter-sensor communication) and send it to a super node where the all the quantized

measurements are reconstructed via an adaptive algorithm that tracks the correlations

among the measurements [122]. The encoding procedure is akin to the binning process

but it does not use error-correcting codes. This approach provides non-trivial energy

savings but a major shortfall is that the achieved rates turn out to be suboptimal as

well.

The work by A. Scaglione and S. Servetto exposed the remarkable connection

between routing and distributed compression in WSN [123]. More specifically, the

tradeoff between bandwidth usage and decoding delay was established according to

the routing strategy employed across the sensor network. Thus, their approach is a

combined strategy of simple source coding, re-coding of data at intermediate nodes,

and efficient routing of sensor estimates. Although the significance of the routing-

compression connection cannot be overstated, one notably flawed assumption is made

about the inherent complexity of vector quantizers and their inability to exploit the

underlying correlations among measurements. While this assumption remained true

for a long time, it appears to ignore the recent advances in capacity-approaching codes

combined with the efficient quantization algorithms exposed previously. The next

example described herein challenges this notion and unveils the potential application

of codeword quantization to WSN problems.
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4.4.3 Three-Node Wireless Sensor Network Example

Consider a relatively simple sensor network composed of just three nodes denoted

x, y, and z. The main objective is for nodes y and z to attempt to estimate the

measurements obtained by node x. The set of measurements XN collected by node x

is modeled as a Bernoulli sequence of 1000 independent samples with equal probability

of bit occurrence. The correlation among the measurements is modeled by passing

the sequence XN through two separate BSC with cross-over probabilities py and pz.

A low-density linear block code of approximate rate 0.9 is created by generating a

106 × 1060 parity check matrix H12 via the polynomial degree distribution method

[67]. A different low-density parity check matrix of the same rate denoted by H∆ is

created by randomly permuting the columns of H12. This two matrices are nested to

form a new matrix labeled H13:

H13 =




H12

H∆





The set of syndrome binary vectors are produced as follows:

s12 = H12XN

s∆ = H∆XN

s13 =




s12

s∆




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An approximate rather than a perfect reconstruction of the measurements XN

implies that a lesser number of bits need to be sent to nodes y and z. Since the

minimum number of bits required to perfectly reconstruct XN is given by the entropy

H(XN), a lesser rate denoted by Rb would thus be acceptable [59, 124]:

Rb =
H(XN)− b

N

where b > 0. The rate Rb is associated with the average distortion Db as follows:

Db =
�

XN

Pr(XN)
d(XN), X̂N

N

where the measurement estimates are given by the expressions:

x̂N = argmin
ε

d(xN , ε) subject to H12ε = s12

x̂N = argmin
ε

d(xN , ε) subject to H13ε = s13

The MTP algorithm is applied to the general decoding problem posed by the

two expressions above. As the cross-over probabilities of the virtual BSC increase, the

average of 10 XN estimates is obtained at both nodes y and z the results are compared

to the original sequences and the errors are tabulated. Figures 4.13 and 4.14 show the

results compared to the results obtained with using the regular BP algorithm with

side information at the decoder. It can be seen in the plots that even though the BP

algorithm (with side information) maintains an error-free virtual channel for longer,

once the errors appear they continue to grow very rapidly. On the other hand, the
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MTP algorithm yields errors at lower cross-over probabilities. Nonetheless, the errors

appear to settle around 100 bit errors until the cross-over probabilities get closer to

their theoretical maximum.

Figure 4.13: Node y Estimation Errors of Node x Measurements

The maximum values for the cross-over probabilities are py ≈ 0.013 and pz ≈

0.031, which are consistent with the nested code rates of 0.9 and 0.8 according to:

R12 = 1− h2(py)

R13 = 1− h2(pz)
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Figure 4.14: Node z Estimation Errors of Node x Measurements

The number of bits required to be sent to nodes y and z using the BP algorithm

scheme is 106 and 212 respectively. One strong advantage of the MTP algorithm

scheme is that it could still perform well even with a lesser number of side information

bits.
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Summary and Conclusions

The continuous expansion of wireless services and capabilities around the world has

placed severe strains on the limited bandwidth resources that an ever-increasing num-

ber of users have to share. Attaining communication (Shannon) capacity in this multi-

user setting is a critical challenge to both the academic research community and the

wireless communications industry. The exploitation of modern coding advances such

as dirty paper coding has been slowed considerably by the apparent prohibitive com-

plexities inherent to their implementation. Concepts drawn from statistical physics

have been recently applied with success asymptotic to the block length [2, 3]. These

techniques were originally devised to solve difficult constraint-satisfaction problems

common in computer science. Nonetheless, their computational complexity is also

non-trivial. This research was mainly motivated by the development of new source

coding procedures based on traditionally simpler message-passing techniques. The

151
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results are summarized next along with a discussion about potential future research

directions.

5.1 Research Objectives and Contributions

Recent techniques such as SP gave rise to the wide spread belief that the codeword

quantization problem could not be solved just by BP-based methods. One of the

main accomplishments of this research effort has been to refute this claim. Similar

assertions have been made in [32, 34]. Nevertheless, the algorithms proposed in

chapter 3 are distinct from those in the sense tha they are computationally less

onerous and the results appear to hold even for short block lengths. This feature

is very atractive in many applications were high-speed communications are required.

To this end, this research focused on two primary objectives:

1. Develop new computationally efficient algorithms to perform codeword quanti-

zation

2. Develop and/or expand theoretical background of these new procedures

With regards to the first objective, two new iterative algorithms have been

proposed in chapter 3. The first algorithm is called TP, which is essentially BP with

a slight modification to the check to variable node update equation as follows:

xj → fj = αxj + (1− α)qj → xj, for 0 < α < 1
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Even though TP was developed empirically, additional insight was gained by leverag-

ing key ideas from information geometry. This insight is captured in the proposition

below The proof details are found in chapter 3.

Proposition 1.

The fixed points of the TP algorithm are the information-theoretic projection of

marginal distributions ta onto the scaled (1/1−α) set of product distributions
�

i∈a ti.

The second iterative algorithm proposed was labeled MTP. It was inspired

by TP however, its development followed a very distinct path. The MTP update

equations are shown below:

Mts(xs) ∝
�

xt

exp(θst(xs, xt)− θt(xt))Mεt(xt)
�

u∈N(t)\s,ε

Mut(xt)

The message coming from the hard constraint ε denoted by Mεt(xt) is defined by:

Mεt(xt) ∝
�

xε

exp((1− α)θtε(xt, xε)− αθε(xε))(Mε(xε))
α




�

u∈N(ε)

Muε(xε)




1−α

where the message Mε(xε) is either a fixed value or a known a priori probability.

The equation above unveils the essence of the MTP algorithm since it show-

cases the peculiar relationship between the hard constraint nodes and their sur-

rounding nodes. More specifically, it shows that the message coming from the hard

constraint node is a convex combination (in the log-probability space) of the hard

constraint value and the messages arriving at the hard constraint damped by the
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truthiness parameter α.

One possible physical interpretation of the truthiness parameter α is that

it represents the level of confidence (or reliability) in the side information given.

Furthermore, the higher the value of α the more emphasis (reliability) is placed on

the hard constraint (side information). On the other hand, the lower the value of α

the less reliable the side information is believed to be.

The following two propositions encapsulate the main findings with regards to

the MTP algorithm derivation. Additional details can also be found in chapter 3.

Proposition 2.

The interior stationary points of an α-modified constrained Bethe free energy are the

MTP fixed points.

Proposition 3.

The MTP candidate marginals µ lay in the relative interior of an α-modified local

marginal polytope LOCAL(α)(G) obtained from a modified Bethe approximation to

the entropy H(µ).

Important rate-distortion results obtained with TP and MTP are summarized

in section 5.2. Also, interesting results have been found across a number of diverse

applications such as steganography, secrecy coding, and wireless sensor networks.

These are also discussed in section 5.2.



155

5.2 Summary of Results

5.2.1 Discussion of Rate-Distortion Results

The rate-distortion experiments were conducted according to the following set up:

1. Fixed code block length of 300 bits.

2. 10 randomly-generated LDGMs per code rate using the method outlined in [67].

3. 1000 runs (100 repetitions over 10 LDGMs) per code rate.

4. Hamming distortion D = E[d(x,Gz)]/N computed as ensemble average (N =

1000) for each code rate.

5. 300 TP and MTP iterations allowed for each repetition.

6. An optimized α determined for each code rate.

The MTP rate-distortion function (see Figure 3.3) is in the order of 1 dB above

the Shannon limit. This rate-distortion performance is pretty remarkable considering

that, in general, coding performance tends to get worse with shorter block length

sequences as demonstrated in channel coding results [19, 56, 67, 68, 69].

This feature could be very advantageous in high data rate applications where

the required throughput makes it nearly impossible to use long block codes. As
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expected, the performance does improve (i.e. get closer to the lower bound) as the

sequence length increases in accordance with [53]. Another impressive fact is that

regular LDGMs were used to generate these results. Some of the techniques presented

in chapter 2 tend to perform poorly or even fail to converge altogether when used

with regular LDGM codes.

The performance of TP (not shown in Figure 3.3) appears to be slightly better

than MTP as seen on [62]. Nonetheless, the MTP behavior seems to be consistently

better than the TAP algorithm results reported in [32, 62]. No direct comparisons

were made against the SP algorithm over LDGM codes since their source coding

results appeared to be very similar to those obtained with the TAP algorithm as

documented in [2, 32, 62].

The rate-distortion performance between TP and MTP using irregular LDGMs

(see Figure 3.4) is comparable under the same set of conditions, again with TP having

a slight edge. It is interesting to note that in this case the TAP algorithm is inadequate

(i.e. non-convergent) for irregular LDGMs with degree greater than two. This could

possibly be due to its close ties to the Ising spin model framework which only accounts

for pairwise node relationships [32].

5.2.2 Dirty Paper Coding Example

The implementation of DPC typically involves the use of nested lattice codes [84, 85].

Nonetheless, the complexity of lattice codes grows exponentially with the constraint
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length thereby limiting its practical application. Therefore, the approach for this

example is to use nested LDGM/LDPC codes along with the new iterative source

quantization procedures in an attempt to attain the DPC capacity for a simple two-

user BC. The set of rate pairs obtained with MTP was:

R1 = [0, 0.0619, 0.0725, 0.0828, 0.0894, 0.0951]

R2 = [0.8768, 0.7658, 0.7278, 0.7060, 0.3216, 0]

with the corresponding maximum cross-over probabilities p1 = 0.3132 and p2 =

0.0492.

The achieved sum-rate (see Figure 4.3) is compared to the approximate corner

points of the achievable DPC sum-rate capacity. There are a number of reasons that

explain why the achieved capacity region does not saturate the optimal bound. Some

of them are discussed below:

A constant and non-optimized α parameter in the MTP algorithm was used

with only 50 iterations.

Much larger block lengths (N � 1000) would be needed in order to reach

capacity.

The code constructions used in this example do not yield the exact intended

code rates.

Code rate unpredictibility worsens when the using nested codes.
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The dual of either LDPC or LDGM codes typically have high girth (i.e. not

low density).

5.2.3 Steganography Example

This example involves the succinct modification of a still image in order to insert a

message. The input image (see Figure 4.5) is the infamous cameraman photograph.

This image is represented by a 256× 256 array of pixels with an 8-bit gray-scale per

pixel stored in the Tagged Image File (TIF) format.

The MTP algorithm attempts to quantize the carrier sequence into a minimum

weight vector which is then used to produce a stego sequence that meets a certain

constraint but is also part of the coset of the source code. This binary vector is

the cipher sequence which contains the message to be inserted in the image. The

message is simply a bit sequence randomly generated from a Bernoulli source of

equally probable bits. Figure 4.6 shows the cameraman image containing the stego

object.

The cipher sequence is embedded into the second LSB plane by randomly

chosing the pixel locations (indexes) along the plane. This is sometimes called the

inverse parity check function. Again, these random pixel locations are shared between

the sender and the recipient. After the embedding process is complete, the selected bit

plane is placed back into the image and the modified image is sent over the channel.
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Note that the differences between the original and modified images (see Figures

4.5 and 4.6) are imperceptible to the naked eye which underlines the early success of

the embedding algorithm. The robustness of the embedding procedure is put to the

test by subjecting the modified image to an attack mounted by an active warden. It

is assumed that the warden is able to detect the possible presence of hidden data in

the second LSB plane but not the specific locations of the altered bits. Hence, the

attack is modeled as passing the entire second LSB plane through a BSC with bit flip

probability of 0.1. Note that the post-attack image (see Figure 4.7) now shows a few

scattered white spots across the photograph.

The message recovery process begins by collecting the modified bits from the

pixel locations chosen by the encoder from the second LSB plane. The message

is easily obtained using the regular BP algorithm to decode the low-density code

generated earlier.

It is of interest to determine how close the embedding procedure gets to achiev-

ing the theoretical maximum embedding rate (q/n ≈ 0.2 for this example). The

average distortion was computed by replacing it with the empirical mean of the dis-

tortion between the host and cipher sequences over 100 iterations. The calculated

mean was approximately 0.1511. To determine the rate, the message length was

lowered bit by bit, from a maximum of 107 bits until no discernible differences be-

tween the original and modified images were observed. The achieved embedding rate

was 95/534 ∼= 0.1779. The performance is very good considering the relatively short

length of the cover signal (see Figure 4.8) and the fact that it is more difficult to

achieve capacity when low distortion is desired. Also, the polynomial degree distri-
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butions used to generate low-density codes do not yield codes with the exact desired

rate.

5.2.4 Information Secrecy Example

The secrecy coding scheme leverages many aspects of the two-user DPC strategy

described previously. The main setup steps in the experiment are laid out below:

Generate LDPC matrix Hab of approximate rate of 0.9.

Build He of approximate rate of 0.8 by nesting the LDPC matrices Hab and Hk

of approximate rate 0.9 each (Hk is a column-permutated version of Hab).

Generate dual of He (i.e. assumes Ge produces a good LDGM code).

The sequence X received from Bob and the message M from Alice are randomly

generated from a Bernoulli binary source with probability of 0.5.

The message M is treated by the encoder as side information and incorporated

into the scheme as a constraint.

Once the global minimum is reached (w ≈ wmin) via the MTP algorithm then

the codeword V is generated according to V = ε + Gwmin. The message M from

Alice is also used to form a syndrome vector. This syndrome vector is then used to

find a particular solution ε that satisfies the constraint via Gaussian elimination in

the GF (2) domain. The cipher V is transmitted to Bob via a BSC with cross-over
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probability p. Bob recovers the message first by regular BP decoding using Hab and

then calculating M = HkV .

The achieved secrecy rate capacity (see Figure 4.10) is obtained by setting the

cross-over probability p of the Alice-Bob channel to the minimum value according to

the actual rate achieved by the parity check matrix Hab and then gradually increase

the cross-over probability q until convergence with MTP is lost. The procedure is

repeated by increasing p from its minimum and increasing q again until convergence is

lost. The maximum probability q where convergence is lost varies with each minimum

probability p.

The set of collected rate pairs (R2, Cs(R2)) constitutes the secrecy rate capac-

ity, which delineates the achieved secrecy region. This secrecy capacity is a function

of the attained rate in the Alice-Eve channel (R2) as exposed earlier. The MTP

algorithm once again shows good performance given the limitations imposed by the

short block lengths and the nested codes built for this example.

The set of achieved rate pairs in this example are:

Cs(R2) = [0, 0.2711, 0.4525, 0.6621, 0.7194]

R2 = [0.8464, 0.6581, 0.3978, 0.1260, 0]

with the corresponding minimum cross-over probability p = 0.2215.
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5.2.5 Three-Node Wireless Sensor Network Example

Consider a relatively simple sensor network composed of just three nodes denoted

x, y, and z. The main objective is for nodes y and z to attempt to estimate the

measurements collected by node x. The set of measurements XN collected by node x

is modeled as a Bernoulli sequence of 1000 independent samples with equal probability

of bit occurrence. The correlation among the measurements is modeled by passing

the sequence XN through two separate BSC with cross-over probabilities py and pz. A

low-density linear block code of approximate rate 0.9 is created by generating a parity

check matrix H12 via the polynomial degree distribution method [67]. A separate low-

density parity check matrix of the same rate denoted by H∆ is created by randomly

permuting the columns of H12. This two matrices are nested to form a new matrix

dubbed H13.

An approximate reconstruction of the measurements XN implies that a lesser

number of bits need to be sent to nodes y and z. Since the minimum number of bits

required to perfectly reconstruct XN is given by the entropy H(XN), a lesser rate

denoted by Rb would thus be acceptable [59, 124]:

Rb =
H(XN)− b

N

where b > 0.

As the cross-over probabilities of the virtual BSC increase, the average of

10 XN estimates is obtained at both nodes y and z, the results are compared to the
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original sequences, and the errors are tabulated. show The results obtained with MTP

(see Figures 4.13 and 4.14) are compared to the results obtained with using the regular

BP algorithm with side information at the decoder. Even though the BP algorithm

(with side information) maintains an error-free virtual channel for longer, once the

errors start to show up they continue to grow very rapidly. On the other hand, the

MTP algorithm does yield errors at lower cross-over probabilities. Nonetheless, the

errors appear to settle at around 100 bit errors until the cross-over probabilities get

closer to their theoretical limits.

The maximum values for the cross-over probabilities are py ≈ 0.013 and pz ≈

0.031, which are consistent with the nested code rates of 0.9 and 0.8. The number of

bits required to be sent to nodes y and z using the BP algorithm scheme is 106 and

212 respectively. One clear advantage of the MTP algorithm scheme is that it can

still perform well even with a lesser number of side information bits available.

5.3 Conclusions and Future Directions

One of the most remarkable aspects of this research has been the formal establish-

ment of a link between the new algorithms and the standard BP algorithm. This

relatiionship helps to situate the new source coding procedures on firm theoretical

ground given the broad acceptance and usage of BP and BP-derived techniques. As

previously mentioned, it provides further evidence which disputes the widely held as-

sumption about the inadequacy of BP-based procedures for codeword quantization.
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Another crucial and rather pleasing aspect of this research was the wide ap-

plicability of these methods to many seemingly unrelated areas (e.g. steganography,

WSN, etc.). The relative ease of implementation as well as the rapid convergence

times observed in the examples discussed in the previous section (5.2) make the al-

gorithms a feasible option for real-time applications.

On the other hand, there are a number of open questions that could serve as

starting points for future research endevours. For instance, the truthiness parameter

α required manual tuning in virtually all of the examples in order to yield good

results. This makes it difficult for fast applications where there is very little time to

fine tune this parameter. Hence, any effort that develops either an analytical (closed

form) solution or better rules of thumb to find the optimal α would certainly be

welcomed. Another area that needs further investigation is to determine if there is

a more rigorous connection between TP/MTP and the generalized SP algorithms, as

implied in [29].

Another factor that influenced the results presented here was the imperfect

nature of the sparse code constructions. The development of methods that could yield

more sparse codes and/or codes with more accurate code rates would have a significant

impact. Moreover, the need to nest codes and the relative high girth of some of the

dual codes further exacerbates the problem. Potential clues are suggested in [1]. A

peculiar aspect of the results is that better rate-distortion performance appears to

have been achieved using regular LDGM codes rather than irregular LDGM codes.

This certainly needs to be confirmed under a wider variety of conditions before any

definitive assertions can be made mainly because the opposite behavior is usually
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expected.

Since a number of recently proposed algorithms for codeword quantization

involves some sort of decimation or pruning step, it would be very constructive to

look into potential quantization gains for both TP and MTP when coupled with

decimation even at the expense of additional complexity. It is also very important to

note that the results presented in this work assumed discrete binary sources. Possible

extensions that consider Gaussian sources would indeed be very valuable.

In closing, the findings outlined in this dissertation certainly provide enough

fertile ground for further research and improvements that could result in even more

powerful algorithms that could bring the multi-user communication technologies of

tomorrow closer to reality.
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