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With the growth of the number of vehicles around the world, the amount of congestion, 

pollution, and accidents is increasing. To solve this problem, highway traffic modeling, as 

one of the key components in traffic management, is becoming more important. 

In this dissertation, a methodological framework is first developed to deal with 

traffic-stream modeling based on data mining, steepest-ascend algorithm, and genetic 

algorithm. The new method is adaptive in nature and has greater flexibility and generality 

compared with existing methods. 

Secondly, a new method is developed to estimate and predict macroscopic traffic 

conditions in the area where no existing traffic information is available. The new method is 

based on shock wave theory. Unlike widely used data-driven methods, the proposed method 

has a clear traffic explanation and gives an accurate estimate and prediction of traffic flow. 

Based on the estimation and prediction of traffic conditions, travel time is the next 

information that needs to be estimated and predicted in traffic management. A piecewise 

truncated quadratic trajectory is proposed here to mimic the unknown speed trajectory 

between point detectors. The basis functions of the new method consist of quadratic and 



constant functions of time. Using the actual travel time obtained from field experiments, the 

new method yields a more accurate travel time estimate than other trajectory-based methods. 

Finally, for the microscopic level of traffic modeling, a new car-following model is 

proposed to solve problems in the application of existing Gipps car-following models. Gipps 

car-following models are based on the assumption that in car following behavior, drivers 

always attempt to get the maximum speed that is safe to prevent rear-end collisions in the 

event of an emergency stop. Since this assumption may not always be true during driving, it 

causes imaginary numbers due to the square root function in the model. This study introduces 

a new model without square root by using a nonlinear braking rate that was not adopted in 

the existing car-following models. 
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Chapter 1 Introduction 

 

Roadway traffic management is becoming more important to society, and traffic 

modeling is the key role to traffic management. The more accurately traffic can be modeled, 

the more efficiently traffic management will be. The objective of this dissertation is to 

develop more advanced highway traffic modeling methods. 

In general, highway traffic models can be categorized as macroscopic models and 

microscopic models. Macroscopic models deal with traffic characteristics like speed, flow, 

density, and travel time. Microscopic models, on the other hand, reveal driving behaviors 

(e.g. car following behaviors). Traffic flow is a system and its variables are related both in 

time and space, and it needs to be modeled on both the macroscopic level and microscopic 

level. 

In macroscopic models, traffic flow, density, and space mean speed are three 

fundamental characteristics to describe the collective vehicle behavior (May 1990; Khisty 

and Lall 2003). Traffic flow can be described by an equation system consisting of a 

continuity equation 0// =∂∂+∂∂ tkxq , a state equation kuq = , and an equilibrium speed-

density relation  (traffic-stream model), where, q , , and u  are flow, density, and 

space mean speed. Continuity and state equations reflect the fundamental physics of traffic 

dynamics, while the traffic-stream model specifies the characteristics of traffic flow at a 

particular site where the measurement is conducted. 

)(kuu e= k

1 
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The significance of traffic-stream models is not only for macroscopic traffic flow theory 

but also for microscopic traffic-flow theory. For instance, traffic-stream model is typically 

used in Dynamic Traffic Assignment (DTA) systems for simulating traffic conditions (Ben-

Akiva et al. 2001; Mahmassani 2001). Furthermore, every microscopic car-following model 

corresponds to a traffic-stream model under steady state flow conditions (Gazis et al. 1959, 

1961; May and Keller 1967; May 1990; Helbing and Treiber 1998; Zhang and Kim 2001; 

Sun and Zhou 2005a). It is possible that error structures may be related to microscopic driver 

behavior. Therefore, a better description of the traffic-stream model will be beneficial to 

capturing more precise driving behaviors, and will also help simulate and manage traffic. 

Developing a traffic-stream model is equivalent to approximating speed as a function 

(often perturbed by noise) of density (the dependent variable). The goal is to model the 

dependence of a response variable, u , on one predictor variable, , given realizations (data), 

 

k

N
ii uk 1},{ .

ε+= )(kuu e .      [1-1] 

The single-valued deterministic function, , captures the predictive relationship of u  

on . The additive stochastic component, 

eu

k ε , whose expected value is defined as zero, 

usually reflects the dependence of u  on quantities other than k  that are neither controlled 

nor observed. The aim of developing a traffic-stream model is to use the data to construct a 

function, )(kue
) , that can serve as a reasonable approximation to  over the domain of 

interest. 

)(kue
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The existing approaches for developing a traffic-stream model can be classified into 

parametric approaches and nonparametric approaches. The former pre-specifies a function 

form and uses it to fit the data, while the latter does not have a specific function form but 

uses the data by itself to fit the data. The benefit of parametric approaches is that the model is 

concise and can be interpreted easily, which is the price of reduced fitting to the actual data. 

The benefit of nonparametric approaches is that they typically fit the actual data very well. 

However, models using nonparametric approaches are very complex and difficult to interpret 

and use. 

To overcome the disadvantages of both approaches, an adaptive-regression method that 

is based upon data mining is developed for traffic-stream modeling. It uses the concept of 

data mining, genetic algorithm, and gradient-based optimization algorithm to achieve high 

flexibility and automation in model estimation and selection. The new approach takes 

advantage of parametric and nonparametric estimation and yields excellent fitting while also 

being easy to interpret. A computer program is developed using Visual Basic programming 

language (VB) to implement this process with the collected macroscopic traffic dataset. 

Specifically, the advantages of the proposed method include: (1) knot positions and model 

parameters are estimated optimally and simultaneously using Genetic Algorithm (GA), and 

presetting of knot positions can be performed in terms of either density or speed; (2) the 

method is automatic and data driven, and it will always lead to the best fitting model from the 

basic functions using actual traffic data; and, finally, (3) the user has greater flexibility in 

specifying the degree-model continuity and defining and adding new basis functions that are 

parsimonious and better fit the traffic data. 
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Although a traffic-stream model helps to estimate the unknown macroscopic 

information at the locations where observed data is available, traffic estimation at other 

locations and traffic prediction cannot be solved by traffic-stream model alone. Highway 

traffic flow is highly nonlinear and varies with different times and locations and, therefore, 

another method is required to estimate traffic information where no observed data is 

available and also to predict traffic information. Although traffic status changes constantly, 

and differs from place to place, it is timely and spatially related. Traffic in one place can be 

studied with the consideration of traffic in the upstream or downstream. In prediction, this 

dissertation mainly focuses on short-term prediction, which is no more than half an hour. 

Long-term prediction, which involves months or years, uses quite different methods. 

In this dissertation, shock wave simulation is used to solve the above problems. Shock 

waves have been studied with emphasis on theoretical and mathematical analyses, without 

applicability to traffic flow prediction. Using a hydrodynamic analogy (Lighthill and 

Whitham 1955), a shock wave is said to exist whenever traffic stream of varying stream 

conditions meet. Labeling the two conditions as, a  and , in the direction of traffic 

movement, the magnitude and direction of the speed of the shock wave between the two 

conditions is given by the following equation: 

b

ab

ab
sw kk

qq
u

−
−

= ,     [1-2] 

where  is the speed of the shock wave. If the sign of the shock wave speed is positive, the 

shock wave is traveling in the direction of traffic flow; if it is negative, the shock wave 

moves in the upstream direction. The estimation and prediction effects are then compared to 

swu
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the effects using other short-term traffic estimation and prediction methods, such as Auto-

Regressive Integrated Moving Average (ARIMA). 

With the basic traffic information estimated, travel time is another essential parameter 

for evaluating operational efficiency of transportation networks, for assessing the 

performance of traffic management strategies, and for developing real-time vehicle route 

guidance systems (Dailey 1993; Nam and Drew 1996; Petty et al. 1998). Travel time is 

defined as the time duration that a vehicle spends in traversing from an origin to a destination 

(O-D). The travel time between two adjacent detectors is termed "link travel time", while 

travel time from the origin to the destination between which there are multiple detectors is 

referred to as "corridor travel time". Clearly, link travel time is the building block for corridor 

travel time. The incorporation of travel time in Advanced Traveler Information Systems 

(ATIS) and Advanced Traffic Management Systems (ATMS) provides traffic management 

an important quantitative performance measure for highway transportation networks. 

Reliable travel time estimation and prediction over a road network provides useful 

information to travelers for rerouting and congestion mitigation. 

In this dissertation, a trajectory-based method is presented for travel time estimation. It 

uses piecewise truncated quadratic sample paths of speeds measured at detectors to mimic 

actual (unknown) vehicle speed trajectories. It was found that travel time estimation using 

different approaches is similar during free-flow conditions but significantly different during 

transition flow and congestion conditions. Therefore, this dissertation does not focus on the 

free-flow condition. Suppose that detectors are located at two ends of a link. Let ( ) e 

the spatial location of an O-D pair. The speed of a vehicle can be measured at detectors. 

DO xx ,  b
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Denote, , the time of departure of the vehicle from its origin. Denote, , the 

arrival time of the vehicle at destination, . Denote, 

t ),;( DOtAT xx

D ( )DOtTT xx ,; , the time-dependent travel 

time with departure time, t . Denote, xΔ , the length of the link and, , the vehicle speed 

trajectory. Unless otherwise necessary, in the following notations, the O-D pair will no 

longer be explicitly presented and arrival time,  and travel time  

will be abbreviated as  and 

( )tV ′

),;( DOtAT xx ( )DOtTT xx ,; ,

)(tAT ( )tTT , respectively. At any moment, t ′ , where 

, the relationship among vehicle speed, )(tATtt ≤′≤ ( )tV ′ , arrival time,  and the 

traversed distance, , is given by equation 1-3. Clearly arrival time, , depends upon 

the time of departure, t , the distance, 

)(tAT

xΔ )(tAT

xΔ , and vehicle speed, ( )tV ′  such that the following 

equation can be specified: 

( ) tdtVx
tAT

t
′′=Δ ∫

)(

 
.     [1-3] 

The constant functions, corresponding to upper and lower speed bounds, are determined 

using the maximum likelihood estimates of highest and lowest speeds that have been 

historically observed within a time interval. The purpose of setting a lower (upper) speed 

bound for simulating vehicle speed trajectory is to mimic a low (high) average speed during 

transition flow and congestion, and to restrict a quadratic speed trajectory to be within a 

realistic speed range, respectively. 

Computational implementation of the new trajectory method is tractable and can be 

done very efficiently, making it suitable for online real-time travel time estimation. 
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Another category of traffic models is microscopic models. These models offer 

significant potential for analyzing highway traffic, the operation of the Intelligent 

Transportation Systems (ITS), and developing and testing traffic management systems and 

strategies. Other application areas, such as safety studies and capacity analysis, can also be 

applied with traffic simulation, in which aggregate traffic flow characteristics can be derived 

from the behavior of individual drivers. 

If not in free-flow conditions, on most occasions, drivers follow the vehicles in front of 

them. Therefore, a car-following model is one of the key components of microscopic traffic 

modeling and simulation. There are many types of car-following models. This dissertation 

mainly focuses on Gipps category car-following models. This category of model assumes 

that in car-following behavior, the velocity that a driver tries to achieve is the maximum 

velocity that can avoid rear-end collision in emergency stops. Suppose the leading vehicle 

suddenly brakes at the rate of  (assuming <0). The driver of the subject vehicle will 

start to stop the vehicle after the reaction time, τ

1−nb 1−nb

n. If the leading vehicle’s position is ( )txn 1−  

at time t, the stopping/braking distance of the leading vehicle may be defined as: 

( ) ( )
1

2
1

1 2 −

−
− −

n

n
n b

tvtx ,     [1-4] 

and the stopping/braking distance of the subject vehicle is given by: 

( ) ( ) ( )[ ] ( )
n

nnnnnn
n b

tvtvtvtx
22

2τττ +
−

++
+ ,   [1-5] 

where  is the subject vehicle’s position at time t. ( )txn
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To avoid rear-end collision, the subject vehicle must stop behind the rear bumper of the 

leading vehicle, which can be displayed as follows: 

( ) ( ) ( )[ ] ( ) ( ) ( )
1

1

2
1

1

2

222 −
−

−
− −−≤

+
−

++
+ n

n

n
n

n

nnnnnn
n l

b
tv

tx
b

tvtvtv
tx

τττ
,  [1-6] 

where  is the length of the leading vehicle. By solving the inequality, the car-following 

model can be written as: 

1−nl

( )

( ) ( ) ( )nnnnnn
n

nnn
nnnnnn

nnn

txblb
b

btv
btvb

btv

τ
τ

τττ

τ

−Δ−+
−

+−+

+=

−−
−

−
,11

1

2
122 22

4
1

2
1

. [1-7] 

If the driver wants a buffer distance, , and a relaxing time, nd nθ , the model can be 

written as follows: 

( )
( ) ( )

( ) ( )

2
1

,11
1

2
1

22

222

2
4
1

2
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−Δ−++
−

+−++
+⎟

⎠
⎞

⎜
⎝
⎛ +=

−−
−

−
nnnnnnnn

n

nnn

nnnnnnn

n
n

nn

txbdblb
b

btv

btvb
btv

τ
τ

ττθτ
θ

τ
. [1-8] 

However, drivers do not always follow the assumption of the Gipps category car-

following model and, in some instances, it causes imaginary numbers from the model. To 

overcome this problem, the square root function in the model can be replaced by other 

functions. In this regard, a cube root function is finally adopted. 

 



Chapter 2 Literature Review 

 

This chapter presents a review of related research. It includes the existing models, data 

used, and the estimation results. 

2.1 Traffic-stream Models 

The earlier speed-density relations assumed a single regime phenomenon over the 

complete range of flow conditions. The first single regime model was developed by 

Greenshields (1935), which assumes a linear relation between density and speed: 

)/1( jamfe kkuu −= ,        [2-1] 

where the constant,  is free-flow speed and  is the jam density. fu jamk

Greenberg (1959) proposed the following model: 

)/ln( kkuu jamoe = ,        [2-2] 

where the constant,  is the optimum speed. ou

Greenberg’s model leads to the conclusion that free-flow speed is infinite, which is 

unrealistic. To overcome this defect, Underwood proposed the following model (May 1990): 

)/exp( 0kkuu fe −= ,        [2-3]

 
9 
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where  is the optimal traffic density. Taking similar functional form, Drake et al. (1967) 

developed another single regime model, which uses an S-shape curve: 

0k

]
)/(2

1exp[ 2
0kk

uu fe −= .       [2-4] 

Under the assumption of identical vehicles and spacing, a generalized, steady-state, 

traffic-stream model can be derived from the generalized car-following model: 

)1/(11
0 ])/(1[ αβ −−−= jame kkuu ,       [2-5] 

where, α  and β  are the parameters appearing in the car-following models (Aycin and 

Benekohal 2001; Helbing 2001). Single regime models that fit into this generalized model 

include the Pipes model (Pipes 1967), and the Drew model (Drew 1968). 

Van Aerde (1995) as well as Van Aerde and Rakha (1995) combined the Pipes model 

and Greenshields model into a single-regime model as follows: 

1
3

2
1 )( −+

−
+= e

ef

uc
uu

cck ,       [2-6] 

where, , , and , are the parameters. The van Aerde model fits traffic data better than 

other single-regime models because it includes additional degrees of freedom for different 

conditionss and facility types. The calibration of the van Aerde model is indirect and 

proceeds in two steps (Rakha and Crowther 2003). First, , speed at capacity, capacity, and 

jam density are estimated in an ad hoc manner from a traffic dataset. Then, , , , and 

1c 2c 3c

fu

1c 2c 3c
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eu  are calculated from these estimated traffic characteristics. Since ad hoc estimates of 

free-flow speed, speed at capacity, capacity, and jam density are very sensitive to the dataset, 

this two-step estimation may result in less accurate estimates of , , , and . A 

better method would be able to estimate these four parameters simultaneously from the 

dataset. 

1c 2c 3c eu

Although single-regime traffic-stream models have received considerable success, it is 

generally acknowledged that roadways accommodate different patterns of vehicular traffic 

(Edie 1961; May 1990; Kockelman 2001). These distinct patterns gave rise to the 

development of multi-regime traffic-stream models, which attempted to describe 

speed-density relationships in different regimes (e.g., free-flow regime, congested regime), 

using different function forms, so that a better fitting of observation points can be achieved. 

The idea of a two-regime model was first proposed by Edie (1961), in which the Underwood 

model was used for the free-flow regime and the Greenberg model for the congested-flow 

regime: 

⎩
⎨
⎧

≥
≤−

=
50for             )/5.162ln(8.26
50for        )9.163/exp(9.54

kk
kk

ue .     [2-7] 

Drake et al. (1967) proposed several multi-regime models using maximum likelihood 

estimation based on Quandt’s work (1958, 1960). The first two-regime model proposed by 
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Drake et al. (1967) makes use of the Greenshields-type linear model for both the free-flow 

regime and the congested regime: 

⎩
⎨
⎧

≥−
≤−

=
65for              265.040
65for           525.09.60

kk
kk

ue .      [2-8] 

The second two-regime model proposed by Drake et al. (1967) suggests a constant 

speed for the free-flow regime and a Greenberg model for the congested-flow regime: 

⎩
⎨
⎧

≥
≤

=
35for         )/5.145ln(32
35for                            84

kk
k

ue .      [2-9] 

The three-regime model developed by Drake et al. (1967) takes a linear form for all 

three regimes as follows: 

⎪
⎩

⎪
⎨

⎧

≥−
≤≤−

≤−
=

65for            265.040
6540for         913.04.81

40for            098.050

kk
kk

kk
ue .     [2-10] 

Multi-regime traffic-stream models provide a considerable improvement over single 

regime counterparts because of their flexibility in capturing different patterns of traffic flow 

across different regimes. However, there is a primary difficulty in developing multi-regime 

models, that is, the determination of breakpoints between regimes. Traditionally, the 

breakpoints are specified as exogenously based upon subjective judgment of the model 

developer (May 1990; Kockelman 2001). Such a treatment is empirical and heavily reliant on 

modelers’ engineering experience. Kockelman (2001) developed a two-regime model in 
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which the membership of an observation belonging to a free-flow regime or congested 

regime is determined by a binary, logit-type, discrete choice model; an endogenous 

segmentation approach similar to the one suggested by Maddala (1983) and Bhat (1997). Sun 

and Zhou (2005a, 2005b) proposed using cluster analysis for specifying the breakpoints 

before estimating model parameters. 

2.2 Shock Wave Based Traffic Flow Modeling and Prediction 

One method to estimate and predict traffic is using statistics, such as parametric or 

non-parametric methods. With statistical methods, people try to uncover the rules underlying 

traffic data. This kind of method includes historical averages and local regressions. However, 

the most widely used one is univariate linear time series analysis, such as Auto-Regressive 

Integrated Moving Average (ARIMA) model. With ARIMA model, traffic data in the next time 

interval is connected with the data in this time period or even with data in a previous time 

period. Equation 2-11 gives a representation of an  model: ),,( qdpARIMA

( ) ( )( ) ( ) t
q

qt
dp

p BBYBBB εθθμφφ −−−=−−−−− ...11...1 11 ,   [2-11] 

where, tε  is white noise,  is the time series of interest (e.g., speed, flow), tY μ  is mean of 

the differenced process, B  is the backward operator, iθ  and jφ  are parameters to be 

estimated from the data, and d , p , and q  are respectively orders of differencing, 

auto-regression, and moving average. The existing methods are mostly data-driven. They 

 



14 

 

lack the ability to explain the traffic condition in the locations without traffic detector 

facilities and short-term traffic prediction. 

This study presents a traffic estimation and prediction by simulating traffic shock waves. 

The traffic shock wave concept was adopted decades ago and the mathematic analysis has 

been performed by many researchers, such as Richard (1956). However, research on shock 

wave phenomena were limited to theoretical and mathematical analyses. Although the 

theoretical background of shock waves is thoroughly developed, there is still a need to 

develop a procedure for applying shock wave analysis (Abbas and Bullock 2003). 

Furthermore, because of the difficulty of data collection, very few studies have tracked 

several vehicles simultaneously over a long distance. A remarkable study is performed by 

Coifman (1996), who used a video recorder and manually tracked thirteen shock waves in 

California. In the application field, Abbas and Bullock (2003) developed an online analysis 

of shock waves at the downstream intersection to estimate a traffic platoon. 

2.3 Travel Time Estimation 

Travel time can be obtained directly and indirectly. Direct methods include instrumented 

vehicles, computerized and video license plate matching, point detection devices, radio 

navigation, automatic vehicle identification and cellular phone tracking. Indirect methods 

estimated from traffic data provided by point detection technologies, include inductive loop 

detectors and video cameras (Dailey 1993; Srinivasan and Jovanis 1996; Zhang and Kwon 
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1997; Oh. et al. 2003). While many of these methods are costly, deriving travel time based on 

point detection data is cost effective because many point loop detectors have been widely 

installed in existing highways due to the deployment of Intelligent Transportation Systems 

(ITS) over the past decade. 

Both single and double loop detectors can be used for traffic data collection (e.g., 

occupancy, volume, speed). Only double loop detectors can provide accurate measurement of 

the speed of individual vehicles. Traffic speed derived from single loop detectors needs to 

assume an effective (but unknown) vehicle length (Hall and Persaud 1989; May 1990; Dailey 

1999; Oh et al. 2003), and, therefore, it is just an approximation. In practice, reporting 

aggregated traffic information (e.g., speed, volume and occupancy) to form a longer interval 

summary (e.g., every 20 and 30 seconds, or 5 minutes) is more typically used. 

A number of methods for travel time estimation using speeds measured at detectors have 

been proposed in the literature (Nam and Drew 1996; Petty et al. 1998; Oh et al. 2002; van 

Lint and van der Zijpp 2003). Based on space mean speed, Oh et al. (2003) suggested the 

following definition for link travel time estimation: 

∑∑
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−−Δ+Δ=
N

n

up
nn
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n
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n
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11
]}),(max[]),({min[/)},max(),{min( , [2-12] 

where,  and  are positions of the vehicle, , at the downstream and upstream 

stations, respectively;  and  are times when the vehicle, , passes the downstream 

down
nx up

nx n

down
nt

up
nt n
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and upstream stations, respectively; N is the number of vehicles traversing the section during 

the time interval, . Oh, et al. (2003) further suggests using estimated link density to 

improve the accuracy of travel time estimation based on equation 2-12. The link density is 

estimated from the subtraction of cumulative traffic counts at two adjacent detectors at a 

given time point, provided that no on-ramp and off-ramp exists between two adjacent 

detectors. The disadvantage of this method is twofold: first, since each detector may have its 

own cumulative count drift toward undercounting traffic, the estimated density can be 

inaccurate and unreliable and, second, it requires that two adjacent detectors be reset while 

there is no traffic between them, making the method difficult to implement and maintain in 

practice. 

tΔ

The trajectory approach estimates travel time by hypothesizing the unknown vehicle 

trajectory or the unknown speed trajectory between detectors. To better illustrate various 

trajectory approaches, Figure 2-1 shows several commonly used hypothetical speed 

trajectories for representing the unknown vehicle trajectory between adjacent upstream and 

downstream detectors. 
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(b) Conservative piecewise constant sample path of speeds 
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(c) Piecewise linear sample path of speeds 
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(d) Piecewise quadratic sample path of speeds 
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Figure 2-1 Hypothetical speed trajectories between adjacent detectors 
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The bold line is an actual but unknown speed trajectory, while the dashed line stands for 

the hypothetical speed trajectories. The actual speed trajectory can only be measured and 

known at discrete locations where detectors (i.e., back dots in Figure 2-1) are placed. An 

often used, hypothetical speed trajectory is a piecewise constant interpolation of speeds 

measured at two adjacent detectors , (Cortes et al. 2002, Oh et al. 2003). That is, 

the actual speed trajectory, , while traversing a link is assumed to be a constant, taking 

the speed measured at either an upstream detector (e.g., Figure 2-1(a)), or an adjacent 

downstream detector. One may also use either a conservative or an optimistic estimate of 

travel time. While the conservative estimate always takes a lower speed, the optimistic 

estimate assumes a greater speed, as measured by two adjacent detectors to estimate link 

travel time. In the Advanced Traveler Information Systems (ATIS) in San Antonio, Texas, a 

conservative estimate (e.g., Figure 2-1(b)) is indeed used for travel time estimation (Fariello 

2002). Another popular hypothetical speed trajectory is piecewise, linear interpolation of 

speeds measured at two adjacent detectors (Cortes et al. 2001; Ishak and Al-Deek 2002; Oh 

et al. 2003). Figure 2-1(c) shows straight lines connecting two speeds measured at adjacent 

detectors. 

],[ 1+mm xx

)(tV ′

Van Lint and van der Zijpp (2003) suggested that vehicle speed be treated as a piecewise, 

linear function of distance between two adjacent detectors. As a result, the vehicle speed 

trajectory becomes a nonlinear function of time, producing continuous speed at detectors. 
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When traffic is in a free-flow condition, the above-mentioned methods work well and the 

estimated travel time is accurate and consistent with survey results of traveler experience 

(Fariello 2002). However, performance of these methods decreases when traffic is in 

transition flow (i.e., from free flow to congestion or vise versa) and congested flow. During 

these flow conditions, vehicles experience stop and go oscillation. Thus, a vehicle may 

sojourn at a low average speed for a while. The current travel time estimation methods do not 

have adequate flexibility to catch up to the low average speed phenomenon, resulting in 

inaccurate travel time estimation. 

2.4 Car-following Models 

In the 1950s, researchers became interested in car-following models. The first published 

car-following model is a stimulus-response model. The general form of this kind of model is: 

( ) ( ) ( )nnnn tstimulustysensitivittresponse τ−×= ,    [2-13] 

where,  is the time of observation and, t nτ  is the reaction time for driver, , and, 

 is the acceleration applied at time, t . The reaction time, 

n

( )tresponsen nτ , includes the 

perception time (i.e. the time from the presentation of the stimulus until the foot starts to 

move) and the foot movement time. 

Reuschel (1950) and Pipes (1953) formulated the phenomena of the motion of pairs of 

vehicles following each other by the expression (May and Keller 1967): 

 



20 

( )nnnnn vSClxx ++=− −− 11 ,       [2-14] 

where,  is the clearance of vehicle, , at standstill, (nC n 01 ==− nn vv ). It is measured as the 

distance between the rear bumper of the leading vehicle and the front bumper of the 

following vehicle.  is a function of . S nv

The differentiation of the above equation is given as (May and Keller 1967): 

nnn v
S

a ,1
1

−Δ= ,        [2-15] 

where,  is the acceleration applied by the driver. na nnnn vvv −=Δ −− 1,1  is the measurement 

of the relative leader speed (that is, the speed difference between the front vehicle’s speed 

and the subject vehicle’s speed). 

Chandler et al. (1958) proposed a simple linear model, which can be shown as: 

( ) ( )nnnn tvta τα −Δ= − ,1 ,       [2-16] 

where,  is the acceleration applied by driver, , at time, t . ( )tan n

( ) ( ) ( nnnnnnn tvtvtv )τττ −−−=−Δ −− 1,1  is the relative leader speed measured at time, nt τ− . 

α  is a parameter. 

This model was estimated using correlation analysis. Discrete measurements of 

acceleration, speed, spacing (i.e. the distance between the leading vehicle’s front bumper and 

the subject vehicle’s front bumper), and the relative leader speed were collected from eight 

drivers traveling in a two-lane freeway. Testing time was approximately 20 to 30 minutes per 
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driver. Measurement equipment was mounted on the subject vehicle. For each driver, the 

correlation between observed and predicted accelerations was computed for various 

combinations of α  and nτ . The combination that yielded the highest correlation was 

selected for the driver. The estimated, α  and nτ  averaged over all samples was 0.368 

second-1 and 1.55 seconds respectively. The model was again tested by Herman et al. (1959). 

They used General Motors test track and only four drivers, and did a similar experiment as 

did Chandler et al. (1958). 

Chandler et al. (1958) also noted that a given driver generally notices the behavior of the 

two vehicles ahead of him as well as that follows him (as seen through a rear view mirror or 

by horn signals used by the driver following him). In addition, they mentioned that the 

response of the following vehicle depends not only on the situation at a certain time, but also 

on its time history. 

Komentani and Sasaki (1958) noted a spacing model, (Toledo 2003): 

( ) ( ) ( )[ ]nnnnnnn tvtxftv ττ −−Δ= −− ,1,1 , .     [2-17] 

They used velocity as the dependent variable instead of acceleration. Both linear and 

quadratic (i.e. in the subject speed) formulations were proposed by the authors. 

To represent the relationship between the relative leader speed and the spacing between 

the vehicles, Gazis et al. (1959) added ( )nnn tx τ−Δ − ,1  into the existing stimulus-response 

car-following model. Their model can be represented as follows: 
 



22 

( ) ( )
( )nnn

nnn
n tx

tv
ta

τ
τ

α
−Δ
−Δ

=
−

−

,1

,1 ,       [2-18] 

where, ( nnn tx )τ−Δ − ,1  is the spacing between the subject vehicle and its leader measured at 

time, nt τ− . 

This model was estimated using data collected from three locations: the Lincoln Tunnel 

and the Holland Tunnels in New York, and the General Motors test track. The parameters, α  

and nτ , were estimated for each driver of each dataset using correlation analysis. The values 

of the parameters averaged over all samples were reported as the estimates. Table 2-1 below 

summarizes the estimation results. (Ahmed 1999; Toledo 2003) 

Table 2-1 Estimation results of the car-following model proposed by Gazis el al. (1959) 

Data Collection Site Number of Drivers α (mph) τ (second) 
Lincoln Tunnel 16 20.3 1.2 
Holland Tunnel 10 18.3 1.4 
GM Test Track 8 27.4 1.5 

Newell (1961) developed another spacing model: 

( ) ( )[ ]nnnnn txGtv τ−Δ= − ,1 ,       [2-19] 

where,  is a function that specifies the car-following behavior. No attempt to estimate 

this model was made. 

nG

Edie (1961) noted that previous stimulus-response models were unrealistic when the 

density is very low, so he modified Gazis’s model to the following format: 
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( ) ( )
( )

( nnn
nnn

nn
n tv

tx
tvta τ

τ
)τα −Δ

−Δ
−

= −
−

,12
,1

.      [2-20] 

A more general form of the stimulus-response models was proposed by Gazis et al. 

(1961): 

( ) ( )
( )

( nnn
nnn

n
n tv

tx
tvta τ

τ
α γ

β

−Δ
−Δ

= −
−

,1
,1

) .      [2-21] 

Unlike Edie’s model, Gazis et al. used ( )tvn  instead of ( )nn tv τ− . They also did a 

similar experiment and utilized a similar model fitting method used by Chandler et al., (1958). 

They tested different combinations of β  and γ . They noted that there was little difference 

in the correlation coefficient for the different sensitivity coefficients for any one driver. 

However, it seemed to indicate that the exponent, ( )tvn  is not negative, since in these cases, 

the correlation coefficient is generally the smallest for models where 1−=β . 

With the concept Chandler et al. (1958) noted, Lee (1966) developed a linear 

car-following model using a memory function: 

( ) ( ) ( )dssvstMta
t

nnn ∫ −Δ−=
0 ,1 ,       [2-22] 

where, , is a memory (or weighting) function, which represents the way the driver acts 

on the information that has been received over time. Lee proposed several examples of 

possible memory functions, but did not apply any data to fit or test the model. 

( )M
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May and Keller (1967) estimated this model using two methods. The methods were 

applied to a set of 118, one-minute samples of time mean speeds and mean densities recorded 

with the pilot detection system of the Chicago Area Expressway Surveillance Project. The 

data were collected in the middle lane of the three-lane freeway. The first method is 

transferring the car-following model into the macroscopic model, traffic-stream model, and 

fitting the data by minimizing the squared deviations of the data points from the regression 

curve. They mentioned that there was little difference in the mean deviations for different 

sensitivity factors or parameters, and it would be difficult to give the preference to certain 

speed-density relations as the best fit to the data with any assurance. The second method is 

using traffic flow characteristics to judge the macroscopic traffic models derived from 

car-following models. With the second method, they provided integer and non-integer 

solutions: 

( ) ( )
( )

( nnn
nnn

n
n tv

tx
tvta τ
τ

−Δ
−Δ

= −
−

,13
,1

000135.0 );    [2-23a] 

( ) ( )
( )

( nnn
nnn

n
n tv

tx
tvta τ
τ

−Δ
−Δ

= −
−

,18.2
,1

8.0

000133.0 ) .    [2-23b] 

Gipps (1981) proposed a new type of car-following model as given below: 
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This model is based on the assumption that each driver wants to achieve the maximum speed 

and that if he/she uses the desired braking rate, , the subject vehicle can be stopped 

behind the leading vehicle in an emergency stop.  is the braking rate of the leading 

vehicle in an emergency stop assumed by the driver of the subject vehicle. The model was 

preferred in a number of simulation projects and an in-depth numerical analysis of the model 

was given by Wilson (2001). 

nB

1
ˆ

−nB

People realized that drivers may not be aware of the small changes between the lead 

vehicle and the subject vehicle. Therefore, a psycho-physical model was developed based on 

the assumption that a driver will only perform an action when a threshold expressed as a 

function of speed difference and distance is reached. A perceptual threshold is defined as the 

minimum value of the stimulus the driver will react to. Michaels and Cozan (1963), and 

Michaels (1963) measured the perceptual thresholds for speed differences at given distances 

(Leutzbach and Wiedemann 1986). 

Leutzbach (1988) noted that the perceptual threshold value increases with spacing. 

Perceptual thresholds were found to be different for acceleration and deceleration decisions 

(Ahmed 1999; Toledo 2003). 

The ability to perceive speed differences or estimate distances varies widely among 

drivers, and it is difficult to estimate and calibrate the thresholds associated with 

psycho-physical models. 
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Kikuchi and Chakroborty (1992) responded to the concern that drivers do not exercise 

the dichotomous decision criteria assumed in the traditional deterministic, car-following 

models and reported an application of "fuzzy logic principles" to the car-following models. It 

consisted of many straightforward natural language-based driving rules. The model divided 

the selected inputs into a number of fuzzy sets. Logical operators are then used to produce 

fuzzy output sets or rule-based car-following behaviors. However, it is difficult to estimate 

the membership functions, which are crucial to the operation of the model. The authors did 

not verify the model with field traffic data. 

Addison and Low (1998) proposed the following model: 

( ) ( )
( )

( ) ( )[ 3
,12

,1

,1
1 nnnnnm

nnn

l
nnn

n Dtxtv
tx
tv

ta −−Δ+
−Δ

−Δ
= −

−

− τα
τ
τ

α ] ,   [2-25] 

where, , represents the desired separation that the follower attempts to achieve. They noted 

that  is most naturally taken to be a constant multiple of the mean velocity, , of the 

leader vehicle, 

nD

nD 1−nv

1−= nnn vD λ . 

Aycin and Benekohal (1998) developed a car-following model for use in time-based 

simulation tools. They assumed that drivers try to attain preferred time headways with 

respect to their leader and to imitate the leader's speed. To ensure a continuous acceleration 

profile, they computed the rate of change in the acceleration for the next simulation time step 

based on the current spacing, speeds, and accelerations of the subject vehicle and the leader 
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using equations of laws of motion. The model was calibrated as follows: the preferred time 

headway was computed as the average of observations in which the absolute value of the 

relative speed was less then five feet per second. Reaction time was assumed equal to 80% of 

the preferred time headway. A driver was assumed to be in car-following behavior if the 

leader spacing was less than 250 feet. The values were rather arbitrarily selected based on 

values found in the literature (Toledo 2003). 

Ahmed (1999) included traffic density into the stimulus-response model and made a 

new car-following model as shown below: 
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where,  is the density of traffic ahead of the subject. ( )tkn [ ]1,0∈ξ  is a sensitivity lag 

parameter and, ( )tnε  is a normally distributed error term. A distance of 100 meters ahead of 

the subject vehicle was used to compute the density. 

The model was calibrated with the video record collected on a 150 to 200 meter section 

of Interstate 93 at the Central Artery in downtown Boston, Massachusetts. The video was 

processed using the VIVA software package and local regression to get the vehicle trajectory 

information. In addition to the length of each vehicle, the data contains position, speed, and 
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acceleration of every vehicle for every second. The position measurement error for the video 

was estimated to be ±1 meter. The estimation results are: 
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where, ~( )tacccf
n

,ε ( )2825.0,0N  is random term associated with the acceleration model of 

driver, , at time . ~n t ( )tdeccf
n

,ε ( )2802.0,0N  is a random term associated with the 

deceleration model of driver, , at time . n t

The application of stimulus-response models and their extensions requires the 

parameters to be calibrated for a particular network. However, a large number of 

contradictory findings for the values of parameters have been reported (Brackstone and 

McDonald 1999). 

Zhang and Kim (2001) modeled driver reaction times in the car-following models. They 

noted that drivers adopt a speed according to spacing and reaction times. The reaction time 

was modeled as a function of vehicle spacing and the amount of traffic. Although computer 

simulation was used in the study, no real traffic data was utilized. The model uses the 

following equation: 
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( ) ( )( )
( )t

bLttx
ta

n

nnnn
n τ

τ −−−Δ
= −− 1,1 ,      [2-29] 

where,  is the legal distance between the vehicles at standstill. b

Toledo (2003) used the dataset collected in 1983 by the Federal Highway 

Administration (FHWA) in a section of Interstate Highway 395 (I-395) southbound in 

Arlington, Virginia. The four-lane highway section is 997 meters long and includes an 

on-ramp and two off-ramps. An hour of data at a rate of one frame per second was collected 

through aerial photography. His results are: 
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where, ~( )tacccf
n

,ε ( )2134.1,0N  and ( )tdeccf
n

,ε ~ ( )2169.1,0N . 

Hamdar and Mahmassani (2008) stated that the Gipps model is advantageous because it 

models driving behavior following cognitive logic that may be adopted by the driver. They 

modified Gipps model as follows: 
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where,  is a function of the initial risk factor representing the distance a driver is willing 

to travel beyond the safety threshold. When this value is positive, the driver is willing to take 

risks and this may increase the probability of causing an accident. If this value is negative, 

nD
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the driver prefers to stay within the safety margin so he or she can come to a stop without 

hitting the vehicle in front of them. They used FHWA’s Next Generation SIMulation Program 

(NGSIM) data and estimated models that fit macroscopic traffic properties. 
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Chapter 3 Methodology 

 

In this chapter, the proposed methodologies for developing highway traffic models are 

presented. The methodologies are presented with the same sequence that people do research 

on traffic science, which is from macroscopic to microscopic and from estimation to 

prediction. 

3.1 Traffic-Stream Models 

It is generally acknowledged that a multi-regime traffic-stream model provides a better 

fit to the actual data than its single-regime counterpart. The difficulty in developing a 

multi-regime model lies in the determination of knot (i.e. breakpoint) positions. This is often 

achieved based on subjective judgment, where rigorous justification is lacking. To overcome 

this difficulty, this study presents a new method of adaptive semi-parametric regression for 

modeling the traffic speed-density relationship. It takes advantages of gradient-based 

optimization techniques and Genetic Algorithm (GA) to simultaneously and optimally 

implement parameter and knot estimation. The methodology appears to have the potential to 

be a substantial improvement over the existing univariate regression methodology and 

traffic-stream models.
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The multi-regime traffic-stream model can be written as: 

∑
=

∈=
M

m
mme RkIkBku

1
][)()(ˆ ,       [3-1] 

where, M  is the number of sub-regimes; I  is an indicator function, which is one, if its 

argument is true, and zero otherwise;  are basis functions taking one of the function 

forms from the basis function set 

M
mB 1}{

B ;  are sub-regimes and since these sub-regimes 

are disjoint only one basis function is nonzero for any point, . 

M
mR 1}{

k

The model should be able to predict accurately the observed data. In other words, the 

predictability or accuracy of a traffic-stream model is the number one concern. For this 

reason, a model that can minimize an overall deviation from the actual observations should 

be given priority. 

The notion of reasonableness depends upon the purpose for which the approximation is 

to be used. In almost all applications, however, accuracy is important. The lack of accuracy is 

often defined by the expected error, E , as: 

∑
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1
)](),(ˆ[)(1 ,       [3-2] 

where,  is some measure of distance and,  is a possible weight function. If the sole 

purpose of the regression analysis is to obtain a rule for predicting future values of the 

response, , for given values for , then accuracy is the only important virtue of the model. 
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Often, however, one wants to use  to understand the properties of the true underlying 

function , and thereby the traffic dynamics that generated the data. Depending on the 

application, other desirable properties of the approximation might include rapid 

computability and smoothness; that is,  should be a smooth function of  and at least its 

low-order derivatives should exist everywhere in the domain of interest. 

eû

eu

eû k

A number of studies (May 1990; Sun and Zhou 2005a) have shown that traffic patterns 

can be adequately captured by free flow, transition flow, and congestion. Therefore, for the 

purpose of illustration of the adaptive regression method, the maximum number of regimes is 

set as three in this study. Models of single-, two-, and three-regimes will be screened by 

adaptive regression, each corresponding to 0, 1, and 2 knots, respectively, whose positions 

need to be estimated from the actual data. 

First of all, the proposed adaptive regression function forms for each sub-regime of the 

domain in PPR are taken from a relatively large pool, that is, a basis function set consisting 

of an existing single-regime traffic-stream model and quadratic functions. Specifically, the 

basis function set, B  is defined as: 
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where, 0β , 1β , 2β , and 3β  are coefficients and through  are basis function 

elements, constituting the basis function set. In this way, the possible number of 

combinations of the piecewise multi-regime traffic-stream model is greatly enlarged. The 

reason that these seven basis functions in equation 3-3 are chosen is because their 

performances of fitting actual speed-density observations have been well investigated in the 

literature (Rakha and Crowther 2003; Sun and Zhou 2005a). Figure 3-1 shows the fitting of 

the seven basic functions. 

1B 7B
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Figure 3-1 Single-regime traffic-stream models 

It should, however, be noted that the basic functions described in equation 3-3 are by no 

means exclusive. Other types of basis functions can also be added to allow more flexible 

choices. Among the seven basis functions in equation 3-3, the first four basis functions only 

require two unknown parameters to be calibrated for each basis function. The fifth and sixth 

basis functions have three unknown parameters that will be estimated from actual datasets, 

while the seventh basis function demands four unknown parameters to be obtained from data. 

The larger the number of unknown parameters involved in the basis function, the more 

complex the developed traffic-stream model will be. In order to control the model's 
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complexity, (although all seven basis functions are used for developing single-regime 

traffic-stream models), only the first four basis functions are used in developing two-regime 

and three-regime traffic-stream models. The final traffic-stream model will be the one that 

among all single-regime, two-regime, and three-regime models has the best fitting 

performance. 

The parameter estimation of selected basis function in equation 3-3 is achieved by 

minimizing the overall square error of the fitting equation 3-4 over the entire regime: 

∑
=

−=
N

i

J
jiei

J
j kuu

J
j 1

2
1

}{
1 )]}{|(ˆ[minarg}ˆ{

1

ββ
β

,      [3-4] 

where,  is the total number of observations over the entire regime and,  is the total 

number of unknown parameters to be estimated for a particular model. It should be noted that 

equation 3-4 contains not only coefficients 

N J

0β , 1β , 2β , and 3β  that may appear in 

equation 3-3, but also unknown positions of knots, , in which  is the number of 

unknown knots and equal

nK
Kk 1}{ nK

1−M . In other words, parameters and knots, 

 are jointly optimized using a goodness-of-fit criterion. },...,, ,,,{}{ 132101 K
J

j kkβββββ =

It is also desired that the speed-density relation should be governed by a continuous 

function. To achieve this requirement, the following constraint can be imposed such that 

function values at knots predicted from left and right functions of the multi-regime stream 

model are identical: 
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0)(ˆ)(ˆ =− +− KeKe kuku ,       [3-5] 

where,  and  are the traffic density values at left and right sides of knot, . 

Hence, parameter estimation of the traffic-stream model becomes the minimization of 

objective function (i.e. equation 3-4) subject to constraint (i.e. equation 3-5). In principal, 

higher-order continuity of the speed-density relationship can also be achieved by imposing 

additional constraints on derivatives of the model. 

−Kk +Kk Kk

The proposed adaptive regression differs from the piecewise parametric regression (PPR) 

in that the former has an additional model selection functionality that allows the best model 

to be chosen from a large set of models. Specifically, the procedure is implemented by 

constructing a set of globally defined basis functions that span the space of the basis function 

sets and fitting the coefficients of the basis function expansion to the data by ordinary least 

squares. Candidate models consist of all possible combinations of basis functions for M  

sub-regimes, each associated with a different number of knots. The resultant sum of squared 

error (SSE) of the model or: 

∑
=

−=
N

i

J
jiei uu

1

2
1 )]}{|(ˆ[SSEmin βρ ,      [3-6] 

subject to equation 3-5, is used as the goodness-of-fit criterion for selecting the final model. 

A better fitting model could be achieved if the smoothness or continuity requirement on the 

traffic-stream model is relaxed. To this end, the following objective function, rather than 

equation 3-6 can be used: 
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where,  is the total number of knots and,  is the weight function that controls the 

degree of continuity of the traffic-stream model. If one assigns a very large weight, w, to the 

second term in equation 3-7, it is equivalent to significantly penalizing the difference 

between function values at knots computed from left and right functions of the traffic-stream 

model. Therefore, this is the same thing as equation 3-6 subject to equation 3-5. If a very 

small weight,  is assigned to the second term, the continuity requirement can be basically 

ignored. Since equation 3-7 is a more generic setting, from now on only equation 3-7 will be 

used. 

nK w

w

The trade-off between complexity and flexibility of the model is controlled by M . 

Increasing the value of M  enlarges the pool of candidate models but the price is increased 

model complexity (that is, the number of sub-regimes and associated parameters) as well as 

computational burden. For instance, to one extreme when, 1=M , the resultant model from 

adaptive regression is a single-regime model. On the other extreme, when M  is very large 

and approaches , the model mimics the behavior of a nonparametric, local regression 

model. The adaptive regression proceeds by screening all models with  knots in a set 

of candidate models and selecting the one with a minimum SSE, while controlling proper 

model complexity as the best traffic-stream model. 

1−N

M,...,1
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3.2 Shock Wave Based Traffic Modeling and Prediction 

In order to implement and test the shock wave based traffic estimation and prediction, 

two computer programs are developed using Visual Basic programming language (VB). The 

first computer program (see Appendix II) simulates a highway segment with three traffic 

detector stations and the second one (see Appendix III) uses two traffic detector stations. 

At the beginning time, 0, the program generates two shock waves denoted as SW1 and 

SW2. In order to make it simple, the new shock waves are located at the midpoint between 

traffic detector stations, which means SW1 is of the same distance from traffic detector 1 and 

traffic detector 2, and SW2 is the same distance from traffic detector 2 and traffic detector 3 

(see Figure 3-2 below). SW1 demarks status 1,0 and status 2,0, and SW2 demarks status 2,0 

and status 3,0. Each status includes all the information measured by a certain traffic detector, 

such as status i,t contains speed, volume, and density data from traffic detector, i, at time, t. If 

the density in status 1,0 is not equal to the density in status 2,0, then the speed of shock wave 

1 is calculated by equation 1-2, otherwise the speed of shock wave 1 is given as 0. 
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Figure 3-2 Generation of initial shock waves 

After one time interval, the shock waves, SW1 and SW2, arrive at the new positions as 

shown in Figure 3-3 below. And new shock waves, SW3, SW4, SW5, and SW6, are 

generated since new traffic data is available at the time. Their initial positions are at the mid 

points between traffic detector stations and the closest shock waves nearby. 

TRAFFIC TRAFFIC TRAFFIC 

DETECTOR 2 DETECTOR 3 DETECTOR 1 

 

Figure 3-3 Generation of new shock waves 

If two shock waves hit each other, the program will generate a new shock wave. For 

example, in Figure 3-4 below, shock waves SW X moves to shock wave SW Y. A new shock 

SW1 SW2

TRAFFIC DIRECTION 

SW3 

0

STATUS3,1 STATUS2,0 STATUS2,0

STATUS1,0 STATUS1,1 

STATUS2,1 STATUS3,

SW4 SW5 SW6
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wave, SW Z, will be calculated when SW X meets SW Y. The new shock wave’s speed 

depends on Status A and C, but Status B is no longer in the system. 

Distance

Time

Status A

Status B

Status C

SWX SWY

SWZ

Figure 3-4 Shock Wave X meet Shock Wave Y 

If a shock wave moves outside the researching road segment, it will be deleted from the 

simulation system. 

The system is kept updated provided new data is available. When shock waves exist 

between traffic detector stations, the traffic status can be estimated at any point between the 

stations. To predict traffic information in the future, the simulation should be run without 

inputting any new measured data until the prediction time arrives. 

The second computer program simulates a freeway segment with only two traffic 

detector stations. It can be used to estimate and predict the traffic information between these 

two traffic detector stations as well. However, without a traffic detector giving updated 

information, the estimation and prediction precision is less than the program using three 

traffic detector stations. The program uses traffic data from the first and third traffic detectors 

to estimate traffic information at the second traffic detector. Then the result can be compared 
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to the real data measured by the second traffic detector. With this program, the traffic 

estimation effect can be tested. 

3.3 Travel Time Estimation 

3.3.1 Notations 

A new travel time estimation method based on speed trajectory is developed here. 

Suppose that there are M  detectors located between and including origin, O, and 

destination, D. Let  be the distance between the th and the mxΔ m ( )1+m th detectors where, 

. The location of detectors at the origin and the destination are labeled,  and 

, respectively. Let  be the arrival time of the vehicle at the th detector with, 

 at the origin and, 

Mm ,...,1= 1x

Mx )(tATm m

ttAT =)(1 )()( tATtATM =  at the destination. As the vehicle traverses 

from the origin through each intermediate point to the destination, corridor travel time can be 

constructed as follows based on equation 1-3: 
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τ ,   [3-8] 

where speed, ( )tV ′  is assumed to be a continuous function over time and space, 

, real number )](),([ 1 tATtAT mm + )](),([)( 1 tATtATtt mmm +∈′ ; and )]([ ttV m′  is the time mean 

value of speed  over space-time interval . In addition, the mean 

value theorem for integrals is used in the derivation of equation 3-8 (Courant, 1988). 

( )tV ′ )](),([ 1 tATtAT mm +
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Equation 3-8 leads to an iterative expression of arrival time at the ( )1+m th 

detector, , in terms of arrival time at the th detector, : )(1 tATm+ m )(tATm

)]([
)()(1 ttV

x
tATtAT

m

m
mm ′

Δ
+=+ .       [3-9] 

Successively applying equation 3-9 to Mm ,...,1= , summing up both sides of the resulting 

equations, and canceling and rearranging terms leads to a concise expression of corridor 

travel time, : ( )DO,;tTT

( ) ( ) ∑∑
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=
+ ′

Δ
==−=

1

1

1

1
11 )]([

,;)()(DO,;
M

m m

m
M

m
mmM ttV

x
tTTtATtATtTT xx ,   [3-10] 

where,  is link travel times between two adjacent detectors. ( 1,; +mmtTT xx )

At the time of departure, t, the speed trajectory of a vehicle over future time interval, 

 is indeed unknown in advance. To infer such an unknown future speed 

trajectory, two methods can be used: “travel time estimation” and “travel time prediction”. 

“Travel time estimation”, means that no predicted traffic information is incorporated into the 

inference of travel time. The synchronously measured speeds at the departure time at all other 

detectors are used as substitutes of the anticipated future speeds at these detectors for 

inferring travel time at time, . An implicit assumption embedded in “travel time estimation” 

is that speeds measured at downstream detectors at various future times can be substituted for 

speeds measured at these detectors at the departure time, . It requires that, within the 

)](),([ 1 tATtAT M

t

t
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space-time interval, , the traffic flow needs to be homogenous with respect 

to space and stationary with respect to time. This is a fairly strong assumption and is often 

violated when congestion occurs within the links. The validity of the above-mentioned 

assumption would be high if the space-time interval,  is short enough. As a 

result, the accuracy of estimated travel time, 

)](),([ 1 tATtAT M

)](),([ 1 tATtAT M

( )DOtTT xx ,; , increases when travel time 

estimation is updated periodically as the vehicle approaches the destination. Nevertheless, 

“travel time estimation” is researched only in this study, since it is the basis of “travel time 

prediction” and can be extended to the latter. 

3.3.2 Quadratic Basis Functions 

Given that a number of speed measurements are known at different time-space locations, 

the construction of the unknown speed trajectory, )(tV ′ , can be treated as a function 

interpolation problem, though other approaches may also apply. Polynomials can be used for 

function interpolation (Burden and Faires 1997; Heath 1997; Epperson 2003). A high degree 

polynomial for interpolating and approximating the unknown speed trajectory between 

multiple detectors may lead to an expensive computation burden and excessive speed 

oscillation. A piecewise quadratic function can be used to lessen these problems (e.g., Figure 

2-1(d)). 

In reality, drivers may decelerate more when getting close (either in time or in space) to 

a congested zone (i.e. when they slow down) or accelerate more when leaving a congested 

 



45 

zone to enter free flow traffic. In essence, drivers adjust their acceleration in response to 

foreseeing downstream traffic conditions. The benefit of having a quadratic basis function is 

that, under this model, vehicle acceleration becomes a linear function of time (other than a 

constant or zero in piecewise linear or constant speed trajectory). The acceleration rate is 

determined by the current position of the vehicle and traffic condition as reflected in 

observed speeds at three detectors. This provides flexibility for mimicking actual vehicle 

speed change. 

A piecewise quadratic interpolation uses speed observations at three adjacent detectors 

to construct the unknown speed sample path over two segments, as shown in Figure 2-1(d). 

Suppose that the number of detectors, M  is odd. If a Lagrange quadratic interpolation 

polynomial is used, the actual speed trajectories over two consecutive links can be 

approximated as follows: 

}{);(}{);(}{);()( 121222121212 ttVttVttVtV jjjjjjj ′+′+′≈′ ++−−− lll xxx ,  [3-11] 

where,  are speeds measured at three adjacent detectors, 

, 2
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Without loss of generality, let 0)(12 =≡− ttAT j , 22 )( ttAT j ≡  and 312 )( ttAT j ≡+ . Let 

,  and 112 )( VtV j ≡− 22 )( VtV j ≡ 312 )( VtV j ≡+ . Equation 3-11 can now be simplified as: 

}{}{}{)( 1232212112 ττττ +−− ++≈ jjjj VVVV lll ,    [3-15a] 

where the Lagrange basis functions are now: 
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3.3.3 Constant Basis Functions 

Traffic between three adjacent detectors may experience transition flow or congestion. 

When a vehicle at a high speed in free-flow condition enters a congestion zone, it slows 

down and then exhibits stop and go behavior. This behavior corresponds to a low average 

speed for a period of time, depending upon downstream traffic conditions. To better capture 

vehicle sojourn time at low-speed, piecewise truncated quadratic speed trajectory is proposed, 

which is equivalent to imposing a lower speed bound to the quadratic speed trajectory. When 

a quadratic speed trajectory reaches a lower speed bound (see Figure 3-5 below), the 

hypothetical quadratic speed trajectory will be replaced by the lower speed bound. Similarly, 

an upper speed bound will be imposed when the quadratic speed trajectory reaches an 

unrealistic high speed as also shown in Figure 3-5. 
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(b) Quadratic speed trajectory 

(c) Truncated quadratic speed trajectory 

Figure 3-5 Travel distance conditions for adjacent detectors 
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During transition flow or congested conditions, the truncated piecewise quadratic speed 

trajectory over-performs a piecewise constant or a linear speed trajectory because it allows 

the vehicle to have a longer sojourn time at a very low speed. This indeed provides a 

mechanism to mimic vehicle speed change in the following conditions: entering congested 

conditions from free-flow traffic, staying in the congestion zone as stop-and-go traffic, and 

discharging from congeste

In this study, the following method is used to construct the lower and upper speed 

boun

d conditions to become free-flow traffic. 

ds. At any time, t , of a weekday or weekend, speed observations within a certain 

interval of t , recorded by a detector are collected. For instance, suppose that a detector 

reports aggregated speed every 20 seconds. At 9:00am, 36 speed observations measured 

during [8:58am, 9:02am] at three adjacent detectors for a specific Monday are compiled. The 

minimum speeds among these 36 speed observations (i.e. 3620/6043 =×× ) are recorded 

as )(min tV , with 00:9=t am, in which suffix i  is the date. ,im hat there are 

n mitigate the effe

Suppose t

100,...,2,  past Mondays speed observations available. The resultant 100 low speed 

observations, )(min
, tV im , can be used to construct an empirical probability density function 

(EPDF) of low speed. The lower speed bound can be set as the maximum likelihood 

estimation based on the EPDF and this is the approach used in this study. The length of the 

interval, [8:58am, 9:02am], may be adjusted to include more speed observations. Estimating 

EPDF using data from an individual weekday or weekend ca ct of weekday, 

1=i
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bound. It sho

Let  and be link distances between the 

weekend, month, and season. The same approach can be applied to give an upper speed 

uld be noted that the determination of two speed bounds is critical and can be 

done in many ways. For instance, instead of using the maximum likelihood estimate of EPDF, 

one may also use the 85th percentile of these 100 low speed observations to construct the 

lower speed bound for a segment of speed trajectory. 

3.3.4 Combination of Quadratic and Constant Basis Functions 

1xΔ 2xΔ  )12( −j th detector and the th 

detector, and between the th detector and the 

)2( j

)2( j )12( +j th detector, respectively, in which 

. When combining quadratic and constant basis functions, the task is to 

es,  and , considering a possible truncation of quadratic 

speed trajectory by the lower and upper speed bounds. The relationship between the 

quadratic speed trajectory and two speed bounds can be written as the following two 

max12322121

2/)1(,..,1 −= Mj

solve two unknown arrival tim 2t 3t

equations: 

0{}{}{ }′+′+′ − =+− Vjjj 3-16tVtVtV lll ,    [ a] 

0}{}{}{ min12322121 =−′+′+′ +− VtVtVtV jjj lll .    [3-16b] 

,       [3-17b] 

By substituting equation 3-15b into the above two equations, one obtains: 

0)( max
2

max =+′+′=′ ctbtatf ,      [3-17a] 

0)( min
2

min =+′+′=′ ctbtatf
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where coefficients are )()( 312213 VVtVVta −−−= , )()( 31
2
2

max123 VVt −−

21
2
3 VVtVVtb −+−−= , 

(32max tttc = ))( , and ))(( min12332min VVttttc −−= . Let and 

be discriminants of quadratic equations 3-17a a

Let  and , and  and be two zeros of equations 3-17a and 3-17b, 

respectively. Let  and  be the maximum value of  and the minimum 

max
2

max 4acb −=Δ
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2

min 4acb −=Δ  nd 3-17b, respectively. 
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If zeros in equation 3-18a a valued, it is required that ′  and 

Also, tt <<=

D e ex f tw

ctories (i.e., linear speed trajectories). Cases 4, 5, 6, 

9, 10, and 11 belong to a scenario of quadratic speed trajectories, where the quadratic speed 

trajectory between the th detector and the 

min

abtt 2/minmax −=′=′

re real- 1 tt ≤′ min
2 . 

3t  is always implicitly stated. 

ue to th istence o o speed bounds, the proposed speed trajectory may fall into 

one of the thirteen cases or three scenarios listed in Table 3-1. Cases, 1, 2, and 3 belong to a 

scenario of degraded quadratic speed traje

max
2

max min
1 tt ′≤′

210

)12( −j )12( +j

Case

th detector intercepts with neither 

the upper speed bound nor the lower speed bound. 

 speed traje etween th

th detector a

s 7, 8, 12, and 13 belong to a scenario 

of truncated quadratic speed trajectories, where the quadratic ctory b e 

2( −j nd the )12( +j th detector in)1 tercepts with either the upper or the lower 
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speed b

= −
1 0 121

j∫ ′=Δ −122 .        [3-19b] 

ter takin  into account the thirteen cases, arrival times,  and , can be uniquely 

ound. Figure 3-5 shows these three representative scenarios. The two link distances, 

1xΔ  and 2xΔ , can be related to two segments of speed trajectory as follows: 

( ) τdtVx
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Table 3-1 Scenarios of truncated quadratic speed trajectory 

a=0 a>0 a<0 
   

  

 

 

 

 

 

 

 

 

  

 

 

 

 

  

   

 

 

 

Case 8: Δmin> 0, 
0=t1 <t1’min< t1’min <t2<t3

t’t’

t’
Case 13: Δmax> 0, 

0=t1 <t1’max< t1’max <t2<t3

t’

t’t’t’ 

t’t’t’ 

t’t’t’ 

Case 12: Δmax> 0, 
0=t1<t2<t1’max< t1’max <t3

Case 7: Δmin> 0, 
0=t1<t2<t1’min< t1’min <t3

Case 11: Δmax≤ 0, 
0=t1<t’max<t3

Case 6: Δmin≤ 0, 
0=t1<t’min<t3

Case 3: b=0 

Case 10: t’max≤t1=0 Case 5: t’min≤t1=0 Case 2: b>0 

Case 9: t’max≥t3 Case 4: t’min≥t3 Case 1: b<0 

N/A 

N/A Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 

Vmin 

Vmax 
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3.4 Improved Gipps Car-following Model 

The assumption of the Gipps category car-following model is that to avoid a rear-end 

collision, the subject vehicle must stop behind the rear bumper of the leading vehicle in an 

emergency stop, which can be displayed as: 
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After solving the inequality, the maximum speed that the subject vehicle can achieve is given 

by: 
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If the driver wants a buffer distance, , and a relaxing time, nd nθ , the inequality is 

rewritten as: 
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and it can be solved as: 

 



54 

( )

( ) ( ) ( ) ( )txbdblb
b

btv
btvb

btv

nnnnnnn
n

nn
nnnnnn

n
n

nnn

,11
1

2
122 2222

4
1

2

−−
−

− Δ−++++++

⎟
⎠
⎞

⎜
⎝
⎛ +≤+

τθτ

θ
τ

τ

, [3-23a] 

or 
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Gipps (1981) set 
2
n

n
τ

θ =  and proposed the model of equation 2-24.  is not 

included in the model. 

nd

Hamdar and Mahmassani (2008) removed the relaxing time, ( nθ ), and defined  as 

the initial risk factor. Their model becomes model of equation 2-31. 

nD

Although the theories are sound, imaginary numbers are derived sometime when 

estimating with the real data. The imaginary numbers are caused by the square root in the 

models. To eliminate this problem, the square root can be replaced by a cube root. In order to 

include a cube root, the model is first simplified. Because the reaction time is short, the speed 

change during the reaction time can be ignored. Thus, the distance traveled by the subject 

vehicle during reaction time is ( ) nn tv τ  instead of ( ) ( )[ ]
2

nnnn tvtv ττ++ . The Gipps 

car-following model then can be derived from the following steps: 
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The second inequality is always true. So the car-following model can be written as: 

( ) ( ) ( ) ( )txblb
b
b

tvbtvtv nnnnn
n

n
nnnnnn ,11

1

2
1 222 −−

−
− Δ−++=+ ττ ,   [3-24a] 

or 

( ) ( ) ( ) ( )nnnnnn
n

n
nnnnnnn txblb

b
b

tvbtvtv ττττ −Δ−+−+−= −−
−

− ,11
1

2
1 222 .  [3-24b] 

If the initial risk factor, ( ) is included, the model is changed to: nD
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In all the existing models, the distance traveled by a vehicle during braking is ( )
i

i

b
tv

2

2

. It 

is based on a constant braking rate. The time-speed relation is modeled as: 

btav −= .         [3-26] 

In reality, the braking rate of a vehicle is not constant as all the existing models assume. 

With the pushing or releasing of the brake pedal, the braking rate changes. If the braking rate 

is modeled non-constantly, the model formation changes. A quadratic function is then tried 

first to model the time-speed relation as: 

( ) 2
21 tbtbtvv ++= . 

The braking/stopping distance is then calculated as: 
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Therefore the Gipps category car-following assumption is written as follows: 
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That turns out to be too complex for the car-following model if solving for . For the same 

reason, trigonometric functions also unhelpful. 

nv

Other method has to be tried. The next option is to change the braking/stopping distance. 

It may be assumed that the braking/stopping is ( )
i

i

B
tv 3 ( )

i

i

b
tv

2

2

 instead of , which is derived 

from linear brake rates, where,  represents the braking characteristic of vehicle i. The unit 

of  is 

iB

3

2
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ft

iB  and the new model can be derived as 
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So an improved Gipps car-following model with a cube root function is developed. 

Comparing the existing Gipps category car-following models (i.e. see 2-24 and 2-31), the 

proposed model is simpler and will not cause any imaginary number problem. The 

performances of the proposed methods will be presented in the following chapters. 
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Chapter 4 Data Preparation 

 

In this chapter, the data used in model estimation is introduced. Three datasets are used 

in this dissertation. The first two datasets include macroscopic traffic information (e.g. speed, 

occupancy, travel time) and are for macroscopic traffic modeling. The third one has vehicle 

trajectory data and is for microscopic modeling. 

4.1 Traffic-stream Models and Shock Wave Based Traffic Modeling and Prediction 

The wide deployment of Intelligent Transportation Systems (ITS) in the last decade has 

made it possible to collect a large amount of traffic information. The dataset used here is 

published by the Texas Department of Transportation (TxDOT). The system, TransGuide, 

collects traffic data throughout the highway network in San Antonio, Texas. At every location, 

several loop detectors collect data from each lane. 

Before the data provided by the TransGuide can be used in this research, two quality 

control processes are applied to ensure data integrity and correctness. First, the dataset 

sometime shows the occupancy as zero while the speed is nonzero. These highly suspect data 

account for less than 1% of the entire dataset and are removed from the analysis. Second, the 

loop detectors used in this study is set to collect data every 40 seconds. However, many data 

collection intervals are not exactly 40 seconds, but have several seconds more or less.
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A computer program is then developed to aggregate the original data to 40 seconds intervals 

using linear interpolation. 

Occupancy, flow, and time mean speed are derived from loop detectors and reported to 

the ATMS. The lane occupancy,  is defined as (May 1990; Khisty and Lall 2003): oρ

∑
=

=
n

i
i

o t
T 1

1ρ ,        [4-1] 

where, T  is the total observation time (40 seconds),  is the time that a detector is 

occupied by the ith vehicle, and  is the number of vehicles detected by the detector. The 

time mean speed,  is defined as the arithmetic mean of the measured speeds of all 

vehicles passing a fixed point during a given interval of time (40 seconds), as specified in 

equation 4-2: 
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1 ,        [4-2] 

where,  is the spot speed of the ith vehicle. iv

To calculate density, , the following formula is used: k

v
qk = .          [4-3] 

 

Although the space mean speed should be used in equation 4-3 for computing density, it 

is the time mean speed obtained from equation 4-2 that is used in this research. The reason 

time mean speed is utilized is that space mean speed is difficult to measure and the difference 

between these two speeds to be very small in this study. According to Wardrop (1952), the 
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time mean speed equals the space mean speed, plus the ratio of variance of the space mean 

speed, over the time mean speed. Since the time mean speeds are collected every 40 seconds, 

it is reasonable to assume that the variance of the space mean speed within 40 seconds is very 

small. Thus, the space mean speed can be approximated to the time mean speed. 

The traffic dataset used in this study was collected from the middle lanes of Interstate 

Highway 35 (I-35) northbound (loop detector station L2-0035N-162.482) between 5:30pm 

and 7:00pm on Monday, July 9, 2001. Both free-flow patterns and congestion patterns are 

included in the data. 

The scattered dots in Figure 4-1 shows the raw data of speed against density. 
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Figure 4-1 A raw data of speed against density 
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For the shock wave simulation, the data collected from I-35 northbound on Tuesday, 

July 10th, 2001 is used. All the data from the three consecutive detector stations 

(0035N-159.998, 0035N-160.504, and 0035N-160.892) are adopted. Each detector station 

contains three traffic detectors monitoring all three lanes along I-35. The data from the three 

lanes are averaged to represent the traffic information at the detector stations. 

4.2 Travel Time Estimation 

In this research, real travel time data is obtained from an experiment conducted on 

Thursday, May 26th, 2005. The location of the experiment is a section of Interstate Highway 

66 (I-66) eastbound in Fairfax County, Virginia in the Washington, D.C. area. 

Both video cameras and an instrumented vehicle are used to measure the real travel time. 

Three video cameras were set up on three bridges overlooking I-66. The first video camera 

(counting from upstream to downstream) was located at the Vienna/Fairfax-GMU Metrorail 

Station. The second was placed at the Dunn Loring-Merrifield Metrorail Station. And the 

third was at the West Falls Church Metrorail Station. The distance between the first and the 

second cameras was 2.38 miles, and the distance between the second and the third was 2.44 

miles. The distances are measured with the on-board odometer in the instrumented vehicle. 

The video record is then digitized using video-capture equipment, with a precision of 1/30 

seconds (i.e., 30 frames per second). An example frame that was retrieved from the video is 

shown in Figure 4-2 below. Each travel time is calculated from video frames by identifying 
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the same vehicle in all three locations. The time that a specific vehicle passes a reference 

point is measured from the time information displayed on the frame. The method for 

calculating the speed of an individual vehicle is similar to the method described in Wei et al. 

(2005), but the dashed pavement marking lines were used as the distance references. The 

average speed of three consecutive vehicles in the same lane is used as the point speed in the 

proposed method. 

 

Figure 4-2 A video frame taken from travel time experiment 

Speeds and travel times of the instrumented vehicle are obtained from the method 

mentioned above as well as from an on-board speed-meter and a watch. In total, nine real 

travel times are obtained using the instrumented vehicle. The relative error of travel times 

using the instrumented vehicle and the video cameras are all less than 5%, suggesting 

consistency between these two experimental methods. 
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4.3 Improved Gipps Car-following Model 

Similar to the travel time data collection, car-following data can be obtained both 

directly and indirectly. The direct method involves using an instrumented vehicle. However, 

it is typically done with a small sample size. The other problem with this method is that 

driver behavior may be biased because drivers may know they are being recorded. The 

indirect method is to record traffic flow with video cameras, whereby vehicle trajectory data 

and car-following data can be retrieved from the video record. The recent availability of 

high-quality video cameras and advanced computers has now made it feasible to retrieve 

more accurate vehicle trajectory data from video records. 

The dataset used in this study is published by Federal Highway Administration (FHWA) 

with its Next Generation SIMulation program (NGSIM). Vehicle trajectory data is collected 

using video cameras and object recognition software. The data is generated at every 0.1 

second, with accuracy of one foot or less in position. The data is collected from several 

freeways and local streets. The one that is adopted in this study is from a section of Interstate 

Highway 80 (I-80) in Emeryville, California (near Oakland). Seven video cameras were 

mounted on the top of a 30-story building, Pacific Park Plaza. The building address is 6363 

Christie Avenue and is adjacent to I-80. The video cameras cover 1,650 feet in length with an 

on-ramp at Powell Street. The off-ramp at Ashby Avenue is just downstream of the study area. 

There are six lanes, including one high-occupancy vehicle (HOV) lane. The dataset contains 
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over 15 minutes of vehicle trajectories, from 3:58:55 p.m. to 4:15:37 p.m., on Wednesday, 

April 13, 2005. Both low and high speed vehicles are included. The automated vehicle 

tracking system was developed by the University of California at Berkeley. The system 

automatically detects and tracks approximately 75 percent of the vehicles. In general, 

tracking accuracy is higher than detection accuracy. When vehicles are not automatically 

detected, they can be manually detected and automatically tracked (Alexiadis, V., et al, 2004). 

Table 4-1 below summarizes the NGSIM data dictionary. 

Table 4-1 NGSIM trajectory data dictionary (FHWA) 

Name Unit Description 
Vehicle ID Number Vehicle identification number (ascending by time of 

entry into section) 
Frame ID 0.1 second Frame identification number (ascending by start time) 

Total Frames 0.1 second Total number of frames in which the vehicle appears 
in this dataset 

Global Time Milliseconds Elapsed time since January 1, 1970 
Local X Feet Lateral (X) coordinate of the front center of the 

vehicle with respect to the left-most edge of the 
section in the direction of travel 

Local Y Feet Longitudinal (Y) coordinate of the front center of the 
vehicle with respect to the entry edge of the section in 
the direction of travel 

Global X Feet X coordinate of the front center of the vehicle based 
on California State Plane III in NAD83  

Global Y Feet Y coordinate of the front center of the vehicle based 
on California State Plane III in NAD83 

Vehicle 
Length 

Feet Length of vehicle 

Vehicle Width Feet Width of vehicle 
Vehicle Class Text Vehicle type: 1 – motorcycle, 2 – auto, 3 – truck 
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Table 4-1 (Continued) NGSIM trajectory data dictionary (FHWA) 

Name Unit Description 
Vehicle 
Velocity 

Feet/Second Instantaneous velocity of vehicle 

Vehicle 
Acceleration 

Feet/Second 
Square 

Instantaneous acceleration of vehicle 

Lane 
Identification 

Number Current lane position of vehicle. Lane 1 is the farthest 
left lane; lane 6 is the farthest right lane. Lane 7 is the 
on-ramp at Powell Street, and Lane 9 is the shoulder 
on the right-side. 

Preceding 
Vehicle 

Number Vehicle ID of the lead vehicle in the same lane. A 
value of '0' represents no preceding vehicle - occurs at 
the end of the study section and off-ramp due to the 
fact that only complete trajectories were recorded by 
this data collection effort (vehicles already in the 
section at the start of the study period were not 
recorded). 

Following 
Vehicle 

Number Vehicle Id of the vehicle following the subject vehicle 
in the same lane. A value of '0' represents no following 
vehicle - occurs at the beginning of the study section 
and on-ramp due to the fact that only complete 
trajectories were recorded by this data collection effort 
(vehicle that did not traverse the downstream 
boundaries of the section by the end of the study 
period were not recorded). 

Spacing Feet Spacing provides the distance between the front-center 
of a vehicle to the front-center of the preceding 
vehicle. 

Headway Seconds Headway provides the time to travel from the 
front-center of a vehicle (at the speed of the vehicle) to 
the front-center of the preceding vehicle. A headway 
value of 9999.99 means that the vehicle is traveling at 
zero speed (congested conditions). 

To use the NGSIM dataset for the microscopic traffic modeling, a computer program is 

developed with Visual Basic programming language (VB) to process the original published 
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dataset. In the original dataset, each file contains one vehicle’s information. That one file 

might have more than one car-following event because the car in front may be changed. The 

program is used first to restructure the original dataset into car-following files instead of 

vehicle files by identifying each car-following scenario. The program can also be used to 

retrieve additional information from the original dataset, so that more factors can be tested 

(e.g. density, second leading vehicles, and vehicles on the adjacent lanes). 

In total, there are 2,052 vehicles that entered the roadway section during this time. The 

number of car-following scenarios is 5,284. In this study, 36 car-following scenarios are 

randomly chosen for the model fitting. Among the 36 files, time range of car-following 

behaviors is from 9.5 seconds to 60.7 seconds, with the average time at 23.7 seconds. 



Chapter 5 Experimental Results 

 

This chapter presents the results for the proposed methodologies using the data 

described in chapter four. The testing and verification methods are also introduced. The 

comparisons of the results with those from the existing methods are discussed. 

5.1 Traffic-Stream Model 

Since a traffic-stream model involves only two arguments (i.e. speed and density), the 

fitting becomes a univariate regression. Commonly used approaches include a global 

parametric method and a nonparametric method. 

Global parametric regression (GPR) assumes one parametric function and model 

parameters are often obtained by least squares estimates or maximum likelihood estimates. 

This type of model is the called single-regime model and has been reviewed in Chapter 2. 

The nonparametric method is further comprised of three related paradigms: local 

parametric regression (LPR), roughness penalty regression (RPR), and piecewise parametric 

regression (PPR) (Friedman 1991; Hastie et al. 2001). 

LPR differs from GPR in that the parameter values in the former are generally different 

at each evaluation point, , and are obtained by locally weighted least square fitting k

67 
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w

(Friedman 1991; Hastie et al. 2001). The weight function,  is chosen to place the 

dominant mass on point, , close to . The properties of the approximation are determined 

mostly by the choice of  and to a lesser extent by the particular local parametric function 

used. Although it is shown that, asymptotically, higher-order polynomials (e.g., local linear 

fitting, local quadratic fitting) can have superior convergence rates when used with simple 

weight functions (Stone 1977; Cleveland 1979; Cleveland and Devlin 1988), the most 

commonly studied local parametric function is the simple constant (Parzen 1962; Friedman 

1991). The most common choice of weight function takes the form of (Hastie et al. 2001): 

)',( kkw

'k k

))(/'()',( kbkkKkkw K −= ,       [5-1] 

where, 'kk −  is a possibly weighed distance between  and ,  is a scale factor 

(bandwidth), and  is a kernel function of a single argument. The kernel is usually chosen 

so that its absolute value decreases with the increasing value of its argument. Commonly 

used scale functions are a constant, 
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where,  is a penalty function that increases with increasing roughness of the function, 

. The minimization is performed over all  for which  is defined. The 
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parameter, λ , regulates the tradeoff between the roughness of,  and its fidelity to the 

data. The properties of RPR are similar to those of LPR. The popular cubic smoothing spline 

for one-dimensional inputs use the integrated squared Laplacian as the roughness function 

(Hastie et al. 2001): 

eu

dkkuuR ee
2)]('[)( ∫= .       [5-3] 

The penalty, R , corresponds to a log-prior, ),(ˆ λkue , to the log-posterior distribution, 

and minimizing, ),(ˆ λkue  amounts to finding the posterior mode (Hastie et al. 2001). 

For model simplicity, the number of regimes of a multi-regime model should be limited. 

As a result, LPR and RPR are not good choices because model parameters developed using 

these methods vary at every point of density, . Finally, PPR is chosen for developing 

traffic-stream models. PPR is used to approximate the function, , by several simple 

parametric functions (usually low-order polynomials). PPR contains GPR as a special case in 

which a single parametric model covers the entire region of interest. The most popular 

piecewise polynomial fitting procedures are based on splines, where the parametric functions 

are taken to be polynomials of degree,  and derivatives of order  are required to be 

continuous. For instance, Sun and Zhou (2005a) used quadratic functions ( ), the most 

popular choice in the practice of spline regression to develop multi-regime traffic-stream 

models. 
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Unknown knots plus model coefficients in equation 3-3 are parameters to be estimated. 

In many cases the calculation of the estimated parameters is possible with a mathematically 

derived formula, such as in linear regression. However, in many interesting instances this is 

not possible. Parameter estimation of a single-regime model using the least square error can 

be implemented by solving a nonlinear programming problem. Classical gradient-based 

nonlinear optimization methods such as the steepest-ascent algorithm is difficult to apply 

directly, because parameter estimation of two-regime or three-regime models (using the least 

square error as the criterion) involves the estimation of knot position, which is discontinuous 

for taking the derivative. Furthermore, a new derivation of the solution is necessary every 

time the model is varied to change the knot positions. Genetic Algorithm (GA) can be a good 

approach for these complex applications. 

For the sake of computational efficiency and ease of implementation, model coefficients 

and knots are estimated respectively in two phases. In the first phase, the knots are estimated 

using GA; and, in the second phase, model coefficients are estimated using the 

steepest-ascent algorithm. That is, the adaptive regression iteratively searches for the 

locations of knots while minimizing the global optimization objective function through the 

following steps: (1) applying cluster analysis to obtain an initial estimate of knot positions for 

a specified number of sub-regimes; (2) for a combination of basis functions for different 

sub-regimes, the GA and steepest ascent method are used respectively for estimating optimal 
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knots and model coefficients; and (3) all candidate models are compared using the 

goodness-of-fit criterion, and the best one is automatically selected for representing the 

traffic-stream model. The advantage of this hybrid approach is that GA can conveniently deal 

with discontinuous functions like equation 3-5 and does not require gradient information to 

be known in order to search the best estimate of knots, while the classical gradient-based 

optimization algorithm is very efficient in terms of finding the optimal solution when 

gradients of the objective function can be analytically formulated and easily evaluated. 

The steepest ascent method for model coefficient estimation can be found in many 

standard references of nonlinear optimization (Winston 1993; Hillier and Lieberman 2005), 

and therefore is not outlined in detail here. This method requires the gradient of the objective 

function to be evaluated. Using basis functions in equation 3-3, the gradients of the objective 

function in equation 3-7 for each regime can be very complicated because they are composed 

of gradients of sum-of-squared error and sum-of-squared differences at discrete knots. Since 

basis functions used for two adjacent regimes might differ from each other, the total number 

of combination of gradients for the entire regime in adaptive regression can be large. Hence, 

the detailed gradient information is not presented in this dissertation. However, the basic 

components consisting of these gradients are dependent upon the specific type of basis 

functions used in the multi-regime traffic-stream model (see Appendix I). 
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Starting values of knots are necessary for initiating the GA program. Since good starting 

values can save unnecessary GA iterations, a wise strategy has to be used to initialize the 

knot positions. In multivariate adaptive regression spline (Friedman 1991), the regression 

process is implemented by optimally and recursively partitioning the regime using the 

goodness-of-fit criterion, and generating an increasing number of knots. The resulting 

sub-regimes are then recombined in a reverse manner until an optimal set is achieved, based 

on a criterion that penalize both the lack-of-fit and the increased number of regimes (Breiman, 

et al. 1984; Friedman 1991). 

In this study, a different strategy is used. Specifically, cluster analysis, an unsupervised 

learning technique, is applied in order to split data into M regimes (classes). The breakpoints 

between two consecutive regimes are adopted as starting knots. The grouping of the patterns 

is accomplished through clustering by defining and quantifying dissimilarities between the 

individual data points or patterns. The patterns that are similar to the highest extent are 

assigned to the same cluster. The K-means algorithm, one of the most popular cluster 

analysis methods, is used here to segment datasets. A detailed description of the application 

of cluster analysis can be found in Sun and Zhou (2005a). 

A gene in GA is a string of bits representing a possible solution. In this study, a 

population of 50 genes is initially created in a random manner. Decision variables are first 

multiplied by, , where n is the number of comma-places (or the desired precision). Then, n10
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the amplified decision variables are converted to binary form. The desired bit strings are 

binary representations of these amplified decision variables. The length of the bit string 

depends on the problem to be solved. In this study, 36 bits are used for each gene. For 

indicating the sign of a decision variable, one can either add the lowest allowed value to the 

variable and transform the variables to positive ones, or reserve one bit per variable for the 

sign. 

GA consists of three processes: selection, mating and crossover, and mutation (Goldberg 

1989). Selection is used to extract a subset of genes from a predecessor population of genes, 

according to a defined fitness. The fitness function used in this study is sum of squared error 

(SSE) value as defined in equation 3-7. Genes producing smallest SSE values have a higher 

likelihood of being chosen for the next generation. The next steps in creating a new 

population of genes are mating and crossover. The following mating and crossover strategy is 

used here: first, 30 percent of a new population of genes (after selection) will be randomly 

mated in pairs; secondly, a crossover point (Figure 3-1) will be randomly chosen for each 

pair; and finally, the information after the crossover-point will be exchanged between the two 

genes of each pair. Mutation means that each bit in the resulting gene has a defined 

probability (10% in this study) of getting inverted. 
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(a) 

Mating and crossover 

(b) 

 

Mutation 

Figure 5-1 Mating and crossover as well as mutation in GA: (a) mating and crossover; (b) 

mutation. 

After the mutation step, convert the bit string of each gene back to a decimal 

representation of the decision variable and the test SSE values. If SSE is small enough, then 

terminate the iteration. Otherwise, restart the algorithm and go through all three processes 

until a minimum SSE is achieved. 

GA can be slow, particularly, for problems involving a large number of decision 

variables. In this study, because there are only very few decision variables (e.g. positions of 

knots) that need to be estimated using GA and other model parameters are estimated using 

the steepest ascent method, the proposed two-phase algorithm is very efficient. By trial and 
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error, it is observed that variations after 30 generations is very small and can be ignored and, 

therefore, 30 is the number of generations that will be used in this research. The above 

procedure for parameter estimation and knot selection has been programmed into a computer 

program using Visual Basic programming language (VB). The program can provide an 

estimate of all parameters almost instantaneously. 

While developing single-regime models, the steepest-ascent algorithm is used for 

estimating parameters in basis functions, ,…, , while a genetic algorithm is used to 

calibrate parameters in basis function, . Figure 4-1 shows single-regime traffic-stream 

models using seven basis functions, respectively. The symbols 1,…,7 in this figure represents 

basis functions, ,…, . Table 5-1 gives estimated parameters and model error in terms 

of mean residual squares, which is the sum of differences between predicted and observed 

speed, divided by the number of total observations. From this table it can be seen that basis 

function, , has the least mean residual square of 46.13. The last model in Table 5-1 

represents the best-fitting, single-regime traffic-stream model, with the least mean residual 

square of 46.13. 

1B 6B

7B

1B 7B

7B

 



76 

Table 5-1 Single-regime traffic-stream models 

Basis Function One-regime Stream Methods Mean Residual Square 
1 ρ19.153.73 −=eu  73.58 
2 )/73.170ln(29.21 ρ=eu  88.90 
3 )25.34/exp(33.83 ρ=eu  64.73 
4 )/64.23exp(44.69 2ρ=eu  54.54 
5 92.1960.1 ])51.229/(1[08.72 ρ−=eu  55.68 
6 201.097.101.81 ρρ +−=eu  60.62 

7 1)74.1
96.64

45.909.0( −+
−

+= e
e

u
u

ρ 46.13 

While developing two-regime and three-regime traffic-stream models, the dataset was 

first sorted by density in ascending order. The dataset is then partitioned into two or three 

sub-datasets using GA. For each regime, the four basis functions are applied to fit the 

speed-density relation using the steepest-ascend algorithm, while the genetic algorithm is 

simultaneously used for searching the optimal knots (i.e. breakpoints). 

Continuity conditions can be imposed at knots for two-regime or three-regime 

traffic-stream models. For illustration purposes, models with and without continuity are 

considered in this case study. Figures 5-2 and 5-3 present two-regime traffic-stream models 

with and without continuity. The symbols, for example, “1+4” used in these figures mean 

that basis function,  and  are used for fitting the first and the second regimes, 

respectively. 

1B 4B
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Figure 5-2a Two-regime traffic-stream models without continuity (using B1 for the first 

regime) 
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Figure 5-2b Two-regime traffic-stream models without continuity (using B2 for the first 

regime) 
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Figure 5-2c Two-regime traffic-stream models without continuity (using B3 for the first 

regime) 
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Figure 5-2d Two-regime traffic-stream models without continuity (using B4 for the first 

regime) 
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Figure 5-3a Two-regime traffic-steam models with continuity (using B1 for the first regime) 
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Figure 5-3b Two-regime traffic-steam models with continuity (using B2 for the first regime) 
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Figure 5-3c Two-regime traffic-steam models with continuity (using B3 for the first regime) 
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Figure 5-3d Two-regime traffic-steam models with continuity (using B4 for the first regime) 

Table 5-2 shows the mean residual squares of adaptive regression of two-regime models, 

with and without continuity. The minimum least mean residual square of two-regime models 

without continuity is 43.22. This model is specified in equation 5-4, which consists of basis 

function,  for the first regime, and  for the second regime. The minimum least mean 

residual square of two-regime models with continuity is 47.18. This model is specified in 

equation 5-5, and consists of basis function  for the first regime and  for the second 

regime. 

1B 3B

4B 3B
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3.801for                     )96.21/exp(80.118
80.13for                     )/95.97exp(27.64 2

.    [5-5] 

Table 5-2 Mean residual squares of two-regime traffic-stream models 

Basis Function of the Second Regime Mean Residual Square (models 
without continuity) 1 2 3 4 

1 46.00 46.02 43.22 49.75 
2 68.98 63.86 55.80 55.15 
3 51.60 46.29 43.57 

 

48.39 
Basis Function of  
the First Regime 

4 47.44 47.47 45.31 47.89 
Basis Function of the Second Regime Mean Residual Square (models with 

continuity) 1 2 3 4 
1 73.32 56.96 48.88 52.78 
2 76.35 89.22 68.62 56.51 
3 73.25 62.93 47.54 52.67 

Basis Function of 
the First Regime 

4 73.62 50.04 47.18 50.67 

For three-regime model, the combination of basis functions can be large ( 64444 =×× ). 

Therefore, the detailed plot and tabular information is not presented, and data is limited to a 

list of the optimal three-regime traffic-stream models. The minimum least mean residue 

square of three-regime models without continuity is 40.82 and given by equation 5-6, which 

consists of basis function, , , and  for the first, second, and third regimes, 

respectively. The minimum least mean residue square of three-regime models with continuity 

is 48.71 and is given by equation 5-7, which consists of basis function, , , and  for 

the first, second, and third regimes, respectively. 

1B 4B 3B

1B 4B 3B
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2 .    [5-7] 

5.2 Shock Wave Based Traffic Flow Modeling and Prediction 

To estimate the traffic status between two traffic detector stations, the shock wave 

simulation program with two traffic detector stations is performed. In this study, the 

estimation point is set to the location of traffic detector 2, so that the estimation results can be 

compared to the data measured by traffic detector 2. The results are shown in Figure 5-4 to 

Figure 5-6. To make it clearer, only data between 16:55 to 18:07 are shown in the figures 

because both congestion and non-congestion situations are included in this period of time. 

For the dataset used in this study, the estimated speed is 1.7 miles per hour less than the 

average of measured speed; the estimated volume is 36 vehicles per hour less than the 

average of measured volume; the estimated density is 0.4 vehicles per mile less than the 

average of density from measured occupancy calculated. The results suggest that the shock 

wave simulation method is capable of estimating traffic information with acceptable error. 
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Figure 5-4 Speed estimation results 
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Figure 5-5 Traffic volume estimation results 
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Figure 5-6 Density estimation results 

Figure 5-7 shows the speed estimation between traffic detector 1 and 3 at 10:23 p.m. It 

is clear that using shock wave simulation, more information can be derived from the 

locations where traffic detector stations are absent. 
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Figure 5-7 Comparison of shock wave simulation and linear interpolation 

To test the prediction function with shock wave simulation, 28 points of time are used as 

reference times for which the prediction is made. Two-, ten-, and sixty-minute prediction 

errors of shock wave simulation and Auto-Regressive Integrated Moving Average (ARIMA) 

methods are calculated. The shock wave simulation is done by the proposed computer 

program with three traffic detector stations (see Appendix II) and the ARIMA method is 

performed using the SAS program. These 28 points are 50 intervals between consecutive 

points, or 33 minutes and 20 seconds apart because of 40-second intervals each. 
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The results are shown in Figure 5-8 to 5-10. It can be seen that the ARIMA model 

method and shock wave simulation method have similar prediction errors. No statistical 

difference is found between the prediction errors by the two methods. 
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Figure 5-8 Two minutes speed prediction results 
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Figure 5-9 Ten minutes speed prediction results 
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Figure 5-10 Sixty minutes speed prediction results 
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The ability to predict traffic congestion is very important for traffic management. 

However, there is no effective method available, especially for the congestion caused by 

unpredicted incidents such as traffic accidents. Thus, the time that a system spends in 

reflecting the congestion is very important. Figure 5-11 shows the 16-minute prediction of 

congestion around 5:30 p.m. Congestion can be predicted faster with shock wave simulation 

than with the ARIMA model. 
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Figure 5-11 Congestion prediction 
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5.3 Travel Time Estimation Based on Piecewise Truncated Quadratic Speed Trajectory 

In this section, travel time is estimated using piecewise truncated quadratic sample paths 

of speeds compared with collected travel time data and travel time estimated from three other 

trajectory-based approaches, namely: piecewise conservative constant (equation 3-17a); 

piecewise aggregative constant (equation 3-17b); and piecewise linear interpolations. An 

efficient computer program suitable for online, real-time travel time estimation is developed 

using VB (see Appendix IV). 

The method for setting speed bound explained in section 3.3.3 cannot be used here 

because there are no historical speed observations available for the test site. Instead, the 

upper speed bound is directly set at 80 mph, a value between the speed limit and the design 

speed of the roadway. The lower speed bound is set at ten mph because 95% of observed 

speeds at three locations during the experiment are above this value. Figure 5-12 shows the 

actual and estimated travel time. Figure 5-13 shows the relative error calculated using the 

following: 

%100
1

%Re ×
−

=
TimeTravelActual

TimeTravelEstimatedErrorlative . [5-8] 
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Figure 5-12 Comparison of real travel time and estimated travel time using four methods 
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Figure 5-13 Relative errors of travel time estimated using linear and truncated quadratic 

speed trajectories 

Table 5-3 lists 27 experimental observations and estimated travel times using different 

methods. Table 5-4 provides paired t-test statistics of the relative error derived from using, 

linear, aggressive and conservative speed trajectory methods, and that of the proposed 

piecewise, truncated, quadratic speed trajectory. It can be observed that linear, aggressive and 

truncated quadratic speed trajectories have similar variance of relative error, while the 

conservative speed trajectory generates a large variance of relative error (15.4%). In addition, 

the truncated speed trajectory produces the smallest mean relative error. The p-values 

( , , and ) of the paired t-tests indicate that all other 81081.1 −× 91091.1 −× 31011.3 −×
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three-speed trajectories yield a significantly larger mean relative error than the truncated 

speed trajectory. 
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Table 5-3 Comparison between estimated travel times and real travel times 

Speed (mph) Estimated Travel Time (minute) 

ID
 

R
ecord Tim

e 

D
etector 1 

D
etector 2 

D
etector 3 

R
eal Travel Tim

e 
(m

inutes) 

Linear 

A
ggressive 

C
onservative 

Truncated 
Q

uadratic 

1 8:54:17 10.00 32.27 69.77 16.77 9.63 6.52 18.82 14.58 
2 8:57:54 8.41 11.44 64.43 18.15 18.25 14.76 29.78 20.98 
3 8:59:25 11.36 17.35 69.43 17.43 13.32 10.34 21.01 17.65 
4 9:00:00 10.76 11.74 69.32 17.80 16.31 14.27 25.74 18.05 
5 9:02:51 6.82 30.45 63.64 16.67 10.77 6.99 25.75 19.05 
6 9:03:56 11.36 29.32 69.32 16.33 9.99 6.98 17.56 15.42 
7 9:09:16 5.68 32.05 64.55 13.42 10.60 6.72 29.70 20.85 
8 9:14:02 15.38 20.68 67.95 14.53 11.22 9.06 16.36 17.02 
9 9:14:06 14.70 21.14 67.95 14.58 11.26 8.91 16.64 16.98 
10 9:19:23 13.11 21.44 67.39 11.80 11.56 8.83 17.72 16.98 
11 9:18:45 8.64 21.82 68.86 16.92 12.61 8.67 23.24 19.02 
12 9:20:13 17.50 19.55 68.41 19.28 11.04 9.45 15.65 16.98 
13 9:25:24 15.68 25.23 59.32 18.77 10.44 8.13 14.91 15.82 
14 9:27:37 22.73 14.77 50.23 19.40 12.12 9.20 19.58 17.42 
15 9:34:49 7.73 28.18 64.32 18.08 11.12 7.34 23.67 18.58 
16 9:47:22 15.23 23.86 70.23 19.90 10.42 8.07 15.51 16.42 
17 9:50:01 20.68 19.09 65.68 20.78 10.63 9.13 15.15 16.85 
18 9:53:05 19.77 30.45 69.55 20.17 8.61 6.79 12.03 14.32 
19 9:48:36 12.95 24.55 64.09 27.58 10.92 8.10 16.99 16.45 
20 9:50:32 13.64 19.09 63.41 26.87 12.28 9.79 18.14 17.38 
21 9:48:51 28.64 22.05 65.23 29.20 8.99 7.23 13.12 15.15 
22 9:50:35 33.18 17.50 69.09 29.73 9.02 6.42 16.53 15.42 
23 15:04:51 58.30 53.41 67.95 5.11 4.97 4.60 5.41 5.12 
24 15:13:13 67.59 58.86 64.32 5.38 4.64 4.39 4.91 4.73 
25 15:28:39 59.20 68.86 64.20 4.81 4.43 4.20 4.35 4.35 
26 15:44:06 50.23 56.93 70.00 4.89 4.97 4.60 5.41 5.03 
27 16:05:47 62.25 63.52 66.70 4.62 4.52 4.44 4.60 4.53 
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Table 5-4. t-test: paired two sample means 

Statistics Linear Aggressive Conservative Quadratic 
Mean -31.0% -44.3% 6.3% -5.0% 

Variance 4.8% 5.0% 15.4% 5.9% 
Observations 27 27 27 27 

Pearson Correlation 0.72 0.49 0.91 N/A 
Hypothesized Mean 

Difference 0 0 0 N/A 

df 26 26 26 N/A 
t Statistic -7.70 -8.67 2.98 N/A 

N/A P(T<=t) one-tail 81081.1 −×  91091.1 −×  31011.3 −×  

t Critical one-tail 1.71 1.71 1.71 N/A 

Several observations can be made based on Table 5-3, Figure 5-12 and 5-13. First, when 

traffic is operating at free flow condition, as indicated by high speed flows shown in 

observations ID 23~27 in Table 5-3, the travel time estimates obtained from using four 

different methods are very similar and are consistent with actual travel time. The relative 

error of estimated travel time is on the order of 10%. 

Second, for transition flow or congestion conditions as suggested by lower speeds 

detected, the conservative speed trajectory tends to overestimate travel time for most of the 

observations, while aggressive speed trajectory and linear speed trajectory underestimate 

travel time. The estimated travel time using a linear speed trajectory lies between those of 

conservative and aggressive speed trajectories, and is more close to the actual travel time 

than the other two. 
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Third, the truncated quadratic speed trajectory seems to overestimate travel time for 

observations when speeds measured at three adjacent detectors follow the patterns in cases 

two, five, and nine (Table 3-1), while it seems to underestimate travel time for observations 

when speeds measured at three adjacent detectors follow the patterns in cases six, seven and 

eight (Table 3-1). From Figure 5-13 it can be seen that, in terms of the accuracy of travel time 

estimation, the performance of truncated, quadratic speed trajectory is better than that of the 

linear speed trajectory, particularly when speeds at three adjacent detectors fall into cases six, 

seven and eight (Table 3-1). 

In conventional speed trajectory methods, the hypothetical speed trajectory can never 

exceed the speed range set by observed speeds at adjacent detectors, which can be unrealistic 

during transition flow and congestion conditions. The proposed piecewise, truncated 

quadratic speed trajectory method allows vehicle speed to go above or below the observed 

speeds at detectors (but still within some speed range based on physical constraints). 

Moreover, it allows a vehicle to stay at a relatively low speed for a certain amount of time , 

thus providing a more plausible representation of the unknown speed trajectory that a vehicle 

might experience while traversing the link, and resulting in an improved accuracy of travel 

time estimation over other trajectory approaches. 
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5.4 Improved Gipps Car-following Model 

To estimate the Gipps category car-following models, suppose there are n observations, 

  with a known functional relationship such that: ),( ii yx ni ..., ,2 ,1=

)..., ,2 ,1(             ),( * nixfy iii =+= εθ ,     [5-9] 

where, 0)( =iE ε ,  is a  vector, and  is a vector of parameters. The nonlinear 

least squares estimate of  minimizes the error sum of squares, 

ix 1×k *θ

*θ

∑
=

−=
n

i
ii xfySSE

1

2* )],([)( θθ .       [5-10] 

Note that the nonlinear least squares may have several relative minima in addition to the 

absolute minimum. If the joint distribution of the iε ’s in the model is assumed known, the 

maximum-likelihood estimate is obtained by maximizing the likelihood function: 

∏
=

=
n

i
ixfL

1

),()( θθ .        [5-11] 

According to Jennrich (1969), the least squares estimate is not only the 

maximum-likelihood estimate but also, under appropriate regularity conditions, is 

asymptotically efficient, i.e. θa′  is an asymptotically minimum-variance for every a. 

It is assumed that errors follow a normal distribution, i.e. the iε ’s are independent and 

identically distributed with . Seber and Wild (1989) point out that under this 

assumption both MLE and nonlinear least squares estimators are equivalent. 

),0( 2σN
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The coefficient of determination, 2R , is defined as the ratio of the sum of squares 

explained by a regression model and the total sum of squares around the mean, i.e., 

 where  and SSTSSER /12 −= ∑
=

−=
n

i
ii yySSE

1

2)ˆ( ∑
=

−=
n

i
i yySST

1

2)( . 

The adjusted 2R , labeled as , is a rescaling of 2
adjR 2R  by degrees of freedom so that it 

involves a ratio of mean squares rather than the sums of squares, . 

While 

MSTMSERadj /12 −=

2R  will never increase when a predictor is dropped from a regression equation, the 

 may be larger. Specifically, if the t-ratio for a predictor is less than one, dropping that 

predictor from the model will increase the . Sometimes researchers keep everything with 

a t larger than 1 in the model. The motivation for doing this is to obtain as large an  as 

possible.  removes the impact of the degrees of freedom and gives a quantity that is 

more comparable than 

2
adjR

2
adjR

2
adjR

2
adjR

2R  over models involving different numbers of parameters. Unlike 

2R ,  does not always increase as variables are added to the model. The value of  

will tend to stabilize around some upper limit as variables are added. The simplest model 

with  near this upper limit is chosen as the “best” model. 

2
adjR 2

adjR

2
adjR

The following table presents the average estimation results for the existing Gipps 

category car-following models and the proposed model. Totally, there are five out of 36 

car-following scenarios have imaginary number problem for Hamdar and Mahmassani model. 

These cases are not included in the Table 5-5. The table shows that the proposed model 
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provides a higher  and lower MSE, which suggests a better fit. The numbers in the table 

are the average of results. 

2
adjR

Table 5-5 Average estimation results of Gipps category car-following models 

Model 2
adjR  MSE τn

(sec)
bn

(ft/sec2)
bn-1

(ft/sec2)
BBn

(ft2/sec3) 
BBn-1

(ft2/sec3) 
Dn

(ft.) 
Gipps 0.57 2.52 1.2 -4.1 -6.6 N/A N/A N/A

Hamdar and 
Mahmassani 0.62 2.50 1.3 -4.6 -9.1 N/A N/A 24.9

Proposed 0.64 2.55 1.5 N/A N/A 195.0 554.1 23.7

To verify the proposed car-following model, simulation is used to compare the 

performance of the proposed model with the existing models. It represents the model validity 

in the traffic simulation applications. The velocity information of the subject vehicle is 

simulated based on the car-following models. The simulation steps are represented in 

equations 5-12 to 5-18. The simulation starts at time, 1+nτ . The observed leading vehicle 

data is used in the model, while only the observed subject vehicle data is adopted within time, 

1+nτ  to time, nτ2 . The estimated velocity is then compared with the observed data. 
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( ) ( ) ( )1ˆ −−= tvtvta nnn
) , 1+= nt τ ;      [5-14] 

( ) ( ) ( )1ˆ −−= tvtvta nnn
)) , 1+> nt τ ;       [5-15] 
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( ) ( ) ( ) ( ) ttattvtxtx nnnn Δ+Δ+=+ ˆ
2
11) , 1+= nt τ ;     [5-16] 

( ) ( ) ( ) ( ) ttattvtxtx nnnn Δ+Δ+=+ ))))

2
11 , 1+> nt τ ;     [5-17] 

( ) ( ) ( )txtxtx nnnn
)−=Δ −− 1,1 ˆˆ , nt τ2> .      [5-18] 

Figure 5-16 below shows eight randomly chosen examples of the estimated and 

observed velocities from the 36 car-following files. There are no simulated data from 

Hamdar and Mahmassani model in Figure 5-16e and 5-16f because of imaginary number 

problem. 
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Figure 5-14a Performance example 1 of the Gipps category car-following models 
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Figure 5-14b Performance example 2 of the Gipps category car-following models 
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Figure 5-14c Performance example 3 of the Gipps category car-following models 
 



106 

0

20

40

60

80

1 21 41 61 81 101 121 141
Time (0.1 second)

V
el

oc
ity

 (m
ile

/h
ou

r)

Observed Gipps Hamdar and Mahmassani Proposed  

Figure 5-14d Performance example 4 of the Gipps category car-following models 
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Figure 5-14e Performance example 5 of the Gipps category car-following models 
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Figure 5-14f Performance example 6 of the Gipps category car-following models 
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Figure 5-14g Performance example 7 of the Gipps category car-following models 
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Figure 5-14h Performance example 8 of the Gipps category car-following models 

The mean square errors (MSE) are reported in Table 5-6. It shows that the proposed 

model has similar performance in simulation with the existing Gipps category car-following 

models. 

Table 5-6 Simulation results of the Gipps category car-following models 

MSE Gipps Model Hamdar and 
Mahmassani 

Model 

Proposed Model 

Minimum 2.19 1.66 1.02 
Mean 8.11 7.23 8.24 

Median 6.55 6.55 6.47 
Maximum 17.80 17.33 21.29 

 

 



Chapter 6 Conclusions and Future Research 

 

This dissertation presents the development of new methods to model highway traffic. 

The first part is a data mining-based adaptive regression method for developing a 

traffic-stream model. The second part proposes a shock wave simulation method for traffic 

estimation and prediction. Travel time estimation is then studied with a new method based on 

piecewise, truncated quadratic speed trajectories. Finally, an improved Gipps car-following 

model is developed. 
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The originality and contribution of the data mining based adaptive regression method is 

that the best traffic-stream model can be automatically and efficiently screened and selected 

from candidate models. A computer program is developed with Visual Basic programming 

language (VB). It uses raw speed and density data as well as a user-specified maximum 

number of regimes ( M ) and continuity requirement as input, and the output is an optimal 

traffic-stream model with parameters and function forms for each regime. This method holds 

several practical advantages. First, the need for calibrating site-specific, equilibrium 

speed-density relations is precluded, because the adaptive regression automatically identifies 

an optimal traffic-stream model from candidate models that fits the best to the actual data. 

Second, the method is flexible because users may choose the degree of continuity and add 

new basis functions. Third, the determination of knots is done optimally and the estimation of 
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parameters is done simultaneously, avoiding subjective judgment of breakpoints between 

different regimes (for instance, free-flow or congestion), and eliminating the ad hoc nature of 

two-step parameter estimation for multi-regime traffic-stream modeling. Finally, the program 

has a high computational efficiency and can be used to perform on-line parameter estimates 

and updates of traffic-stream models, given real-time observations. 

In order to estimate and predict traffic information between traffic detectors, a new 

method using shock wave simulation is proposed. The method is easy to apply and can be 

used to estimate and predict the traffic information in practice and nonlinear way. Tested with 

the real traffic data from San Antonio, Texas, the general prediction precision of the proposed 

method is similar to the prediction precision using time series models such as the 

Auto-Regressive Integrated Moving Average (ARIMA) model. However, the prediction 

precision for traffic congestion using the proposed method is even better than the ARIMA 

model. 

Based on the observed or estimated traffic information, travel time can be estimated. A 

piecewise truncated quadratic speed trajectory is proposed to mimic the unknown speed 

trajectory between detectors. The basis functions of the proposed trajectory consist of 

quadratic and constant functions of time. The constant functions, corresponding to upper and 

lower speed bounds, are determined using the maximum likelihood estimates (or 85th 

percentile) of the highest and the lowest speeds that have been historically observed within a 
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time interval. Using the actual travel time obtained from the field experiment, the new 

method yields more accurate travel time estimation than other trajectory-based methods. 

Computational implementation of the new trajectory method is tractable and can be done 

efficiently; making it suitable for online, real time travel time estimation. 

This dissertation also presents an improved Gipps car-following model. All the existing 

Gipps category car-following models have square root functions derived from the linear 

braking rate assumption. This study uses a more realistic, nonlinear braking rate, and 

develops a new model with a cube root function. Therefore, it eliminates the imaginary 

number problem when fitting the car-following models with the real traffic data. 

The research framework proposed in this dissertation can be extended in the following 

major directions. First, new equipment and methods are needed to acquire new information 

and more accurate data. The data available today is much more accurate than before, 

however new information like reaction time will contribute to improve the models. Second, 

different types of leading vehicles, the second leading vehicle, and other traffic conditions 

need to be tested to verify their influences. Third, this study assumes drivers do not change 

their driving behaviors. However, driver behaviors always change and it should be 

considered in the future work. Fourth, roadway layout and condition, weather, and other 

factors may have meaningful effects on the traffic modeling and this needs to be further 
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studied. Finally, the proposed methods should be extended to the modeling of traffic at 

intersections, because traffic patterns and driving behaviors are different at intersections. 
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Appendix I Gradients for the Basic Functions in Traffic-Stream Models 

 

Let z be sum of squared error (SSE). Using basis function 1B , the SSE can be expressed 
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With 3B , the SSE can be expressed as ( ) 2
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With 4B , the SSE can be expressed as ( ) 22
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2 )]/exp([∑∑ −=−= iiei uuuz ρββ , whose 

gradient is given by 
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With 6B , the SSE can be expressed as ( ) ( ) 22
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Appendix II Three-detector Shock Wave Simulation VB Program 

 

Option Explicit 

 

Private Const DISTANCE1TO2 As Single = 0.506 * 1.609344 

Private Const DISTANCE2TO3 As Single = 0.388 * 1.609344 

Public RECORD$, LENGTHOFTHERECORD%, POINTER%, SPACE%, 

NUMBEROFRECORD% 

Public ID%, HOUR#, MINUTE%, SECOND% 

Public TIME#, BASETIME#, STOPTIME# 

Private Const PREDICTTIME As Single = 0.66667 

Private Const TIMEINTERAL As Single = 0.66667 

Private TIMEOFRECORD(3000) As Single 

Private SPEED(3, 3000) As Single 

Private VOL(3, 3000) As Single 

Private OCC(3, 3000) As Single 

Private DENSITY(3, 3000) As Single 

Public NUMBEROFSHOCKWAVE%, NUMBEROFSHOCKWAVEATBASETIME% 

Public PREDICT_SPEED!, PREDICT_VOL!, PREDICT_DENSITY! 

Private W(2000) As W 

Private Type W 

 A_SPEED As Single 
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 A_VOL As Single 

 A_DENSITY As Single 

 B_SPEED As Single 

 B_VOL As Single 

 B_DENSITY As Single 

 X_AXIS As Single 

 SPEED As Single 

End Type 

Private WATBASETIME(2000) As WATBASETIME 

Private Type WATBASETIME 

 A_SPEED As Single 

 A_VOL As Single 

 A_DENSITY As Single 

 B_SPEED As Single 

 B_VOL As Single 

 B_DENSITY As Single 

 X_AXIS As Single 

 SPEED As Single 

End Type 

Public I%, J%, MINIMUMTIME! 

 

Private Sub Command2_Click() 
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Open "SHOCK WAVE INPUT.txt" For Input As #1 

Open "SHOCK WAVE OUTPUT1.txt" For Output As #3 

Open "SHOCK WAVE OUTPUT2.txt" For Output As #4 

 

ID = -1 

Do While Not EOF(1) 

    Line Input #1, RECORD: ID = ID + 1 

    If ID >= 1 Then 

        LENGTHOFTHERECORD = Len(RECORD) 

        POINTER = 1: SPACE = InStr(POINTER + 1, RECORD, ":") 

        HOUR = CSng(Left(RECORD, SPACE - 1)) 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, ":") 

        MINUTE = CSng(Mid(RECORD, POINTER, 2)) 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        SECOND = CSng(Mid(RECORD, POINTER, 2)) 

        TIMEOFRECORD(ID) = 60 * HOUR + MINUTE + SECOND / 60 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        SPEED(1, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) * 1.609344 / 

60 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        VOL(1, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) * 60 / 40 
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        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        OCC(1, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        If SPEED(1, ID) <> 0 Then 

            DENSITY(1, ID) = VOL(1, ID) / SPEED(1, ID) 

        Else: DENSITY(1, ID) = 0 

        End If 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        SPEED(2, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) * 1.609344 / 

60 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        VOL(2, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) * 60 / 40 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        OCC(2, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        If SPEED(2, ID) <> 0 Then 

            DENSITY(2, ID) = VOL(2, ID) / SPEED(2, ID) 

        Else: DENSITY(2, ID) = 0 

        End If 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        SPEED(3, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) * 1.609344 / 

60 
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        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        VOL(3, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) * 60 / 40 

        POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

        OCC(3, ID) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

        If SPEED(3, ID) <> 0 Then 

            DENSITY(3, ID) = VOL(3, ID) / SPEED(3, ID) 

        Else: DENSITY(3, ID) = 0 

        End If 

    End If 

Loop 

NUMBEROFRECORD = ID 

Print "DATA INPUT COMPLETED." 

 

ID = 1: TIME = TIMEOFRECORD(ID): BASETIME = TIME: 

NUMBEROFSHOCKWAVE = 0 

Print #4, "ID + PREDICTTIME / TIMEINTERAL", "PREDICT_SPEED", 

"PREDICT_VOL", "PREDICT_DENSITY", "NUMBEROFSHOCKWAVE" 

Do While ID <= NUMBEROFRECORD 

 

    For I = 1 To NUMBEROFSHOCKWAVE 

        If W(I).X_AXIS <= 0 Or W(I).X_AXIS = DISTANCE1TO2 Or W(I).X_AXIS >= 

DISTANCE1TO2 + DISTANCE2TO3 Then 
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            If I < NUMBEROFSHOCKWAVE Then 

                For J = I To NUMBEROFSHOCKWAVE - 1 

                    W(J).A_SPEED = W(J + 1).A_SPEED 

                    W(J).A_VOL = W(J + 1).A_VOL 

                    W(J).A_DENSITY = W(J + 1).A_DENSITY 

                    W(J).B_SPEED = W(J + 1).B_SPEED 

                    W(J).B_VOL = W(J + 1).B_VOL 

                    W(J).B_DENSITY = W(J + 1).B_DENSITY 

                    W(J).SPEED = W(J + 1).SPEED 

                    W(J).X_AXIS = W(J + 1).X_AXIS 

                Next J 

            End If 

            W(NUMBEROFSHOCKWAVE).A_SPEED = 0 

            W(NUMBEROFSHOCKWAVE).A_VOL = 0 

            W(NUMBEROFSHOCKWAVE).A_DENSITY = 0 

            W(NUMBEROFSHOCKWAVE).B_SPEED = 0 

            W(NUMBEROFSHOCKWAVE).B_VOL = 0 

            W(NUMBEROFSHOCKWAVE).B_DENSITY = 0 

            W(NUMBEROFSHOCKWAVE).SPEED = 0 

            W(NUMBEROFSHOCKWAVE).X_AXIS = 0 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE - 1 

        End If 
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    Next I 

     

    If NUMBEROFSHOCKWAVE = 0 Then 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

            W(1).A_SPEED = SPEED(2, ID) 

            W(1).A_VOL = VOL(2, ID) 

            W(1).A_DENSITY = DENSITY(2, ID) 

            W(1).B_SPEED = SPEED(1, ID) 

            W(1).B_VOL = VOL(1, ID) 

            W(1).B_DENSITY = DENSITY(1, ID) 

            W(1).X_AXIS = 0.5 * DISTANCE1TO2 

            If DENSITY(2, ID) <> DENSITY(1, ID) Then 

                W(1).SPEED = (VOL(2, ID) - VOL(1, ID)) / (DENSITY(2, ID) - DENSITY(1, ID)) 

            Else: W(1).SPEED = 0 

            End If 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

            W(2).A_SPEED = SPEED(3, ID) 

            W(2).A_VOL = VOL(3, ID) 

            W(2).A_DENSITY = DENSITY(3, ID) 

            W(2).B_SPEED = SPEED(2, ID) 

            W(2).B_VOL = VOL(2, ID) 

            W(2).B_DENSITY = DENSITY(2, ID) 
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            W(2).X_AXIS = DISTANCE1TO2 + 0.5 * DISTANCE2TO3 

            If DENSITY(3, ID) <> DENSITY(2, ID) Then 

                W(2).SPEED = (VOL(3, ID) - VOL(2, ID)) / (DENSITY(3, ID) - DENSITY(2, ID)) 

            Else: W(2).SPEED = 0 

            End If 

    Else: 

        NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

        For I = NUMBEROFSHOCKWAVE To 2 Step -1 

            W(I).A_SPEED = W(I - 1).A_SPEED 

            W(I).A_VOL = W(I - 1).A_VOL 

            W(I).A_DENSITY = W(I - 1).A_DENSITY 

            W(I).B_SPEED = W(I - 1).B_SPEED 

            W(I).B_VOL = W(I - 1).B_VOL 

            W(I).B_DENSITY = W(I - 1).B_DENSITY 

            W(I).SPEED = W(I - 1).SPEED 

            W(I).X_AXIS = W(I - 1).X_AXIS 

        Next I 

        If W(2).X_AXIS < DISTANCE1TO2 Then 

            W(1).A_SPEED = W(2).B_SPEED 

            W(1).A_VOL = W(2).B_VOL 

            W(1).A_DENSITY = W(2).B_DENSITY 

            W(1).B_SPEED = SPEED(1, ID) 
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            W(1).B_VOL = VOL(1, ID) 

            W(1).B_DENSITY = DENSITY(1, ID) 

            W(1).X_AXIS = W(2).X_AXIS / 2 

            If W(1).A_DENSITY <> W(1).B_DENSITY Then 

                W(1).SPEED = (W(1).A_VOL - W(1).B_VOL) / (W(1).A_DENSITY - 

W(1).B_DENSITY) 

            Else: W(1).SPEED = 0 

            End If 

            For I = 3 To NUMBEROFSHOCKWAVE 

                If W(I).X_AXIS > DISTANCE1TO2 Then 

                    NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

                    For J = NUMBEROFSHOCKWAVE To I + 1 

                        W(J).A_SPEED = W(J - 1).A_SPEED 

                        W(J).A_VOL = W(J - 1).A_VOL 

                        W(J).A_DENSITY = W(J - 1).A_DENSITY 

                        W(J).B_SPEED = W(J - 1).B_SPEED 

                        W(J).B_VOL = W(J - 1).B_VOL 

                        W(J).B_DENSITY = W(J - 1).B_DENSITY 

                        W(J).SPEED = W(J - 1).SPEED 

                        W(J).X_AXIS = W(J - 1).X_AXIS 

                    Next J 

                    W(I).A_SPEED = W(I + 1).B_SPEED 
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                    W(I).A_VOL = W(I + 1).B_VOL 

                    W(I).A_DENSITY = W(I + 1).B_DENSITY 

                    W(I).B_SPEED = SPEED(2, ID) 

                    W(I).B_VOL = VOL(2, ID) 

                    W(I).B_DENSITY = DENSITY(2, ID) 

                    W(I).X_AXIS = DISTANCE1TO2 + (W(I + 1).X_AXIS - DISTANCE1TO2) / 

2 

                    If W(I).A_DENSITY <> W(I).B_DENSITY Then 

                        W(I).SPEED = (W(I).A_VOL - W(I).B_VOL) / (W(I).A_DENSITY - 

W(I).B_DENSITY) 

                    Else: W(I).SPEED = 0 

                    End If 

                    W(I - 1).A_SPEED = W(I).B_SPEED 

                    W(I - 1).A_VOL = W(I).B_VOL 

                    W(I - 1).A_DENSITY = W(I).B_DENSITY 

                    W(I - 1).X_AXIS = DISTANCE1TO2 - (DISTANCE1TO2 - W(I - 1).X_AXIS) 

/ 2 

                    If W(I - 1).A_DENSITY <> W(I - 1).B_DENSITY Then 

                        W(I - 1).SPEED = (W(I - 1).A_VOL - W(I - 1).B_VOL) / (W(I - 

1).A_DENSITY - W(I - 1).B_DENSITY) 

                    Else: W(I - 1).SPEED = 0 

                    End If 
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                    Exit For 

                End If 

            Next I 

        Else: 

            W(1).A_SPEED = SPEED(2, ID) 

            W(1).A_VOL = VOL(2, ID) 

            W(1).A_DENSITY = DENSITY(2, ID) 

            W(1).B_SPEED = SPEED(1, ID) 

            W(1).B_VOL = VOL(1, ID) 

            W(1).B_DENSITY = DENSITY(1, ID) 

            W(1).X_AXIS = DISTANCE1TO2 / 2 

            If W(1).A_DENSITY <> W(1).B_DENSITY Then 

                W(1).SPEED = (W(1).A_VOL - W(1).B_VOL) / (W(1).A_DENSITY - 

W(1).B_DENSITY) 

            Else: W(1).SPEED = 0 

            End If 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

            For I = NUMBEROFSHOCKWAVE To 3 Step -1 

                W(I).A_SPEED = W(I - 1).A_SPEED 

                W(I).A_VOL = W(I - 1).A_VOL 

                W(I).A_DENSITY = W(I - 1).A_DENSITY 

                W(I).B_SPEED = W(I - 1).B_SPEED 
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                W(I).B_VOL = W(I - 1).B_VOL 

                W(I).B_DENSITY = W(I - 1).B_DENSITY 

                W(I).SPEED = W(I - 1).SPEED 

                W(I).X_AXIS = W(I - 1).X_AXIS 

            Next I 

            W(2).A_SPEED = W(3).B_SPEED 

            W(2).A_VOL = W(3).B_VOL 

            W(2).A_DENSITY = W(3).B_DENSITY 

            W(2).B_SPEED = SPEED(2, ID) 

            W(2).B_VOL = VOL(2, ID) 

            W(2).B_DENSITY = DENSITY(2, ID) 

            W(2).X_AXIS = DISTANCE1TO2 + (W(3).X_AXIS - DISTANCE1TO2) / 2 

            If W(2).A_DENSITY <> W(2).B_DENSITY Then 

                W(2).SPEED = (W(2).A_VOL - W(2).B_VOL) / (W(2).A_DENSITY - 

W(2).B_DENSITY) 

            Else: W(2).SPEED = 0 

            End If 

        End If 

        NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

        W(NUMBEROFSHOCKWAVE).A_SPEED = SPEED(3, ID) 

        W(NUMBEROFSHOCKWAVE).A_VOL = VOL(3, ID) 

        W(NUMBEROFSHOCKWAVE).A_DENSITY = DENSITY(3, ID) 
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        W(NUMBEROFSHOCKWAVE).B_SPEED = W(NUMBEROFSHOCKWAVE - 

1).A_SPEED 

        W(NUMBEROFSHOCKWAVE).B_VOL = W(NUMBEROFSHOCKWAVE - 

1).A_VOL 

        W(NUMBEROFSHOCKWAVE).B_DENSITY = W(NUMBEROFSHOCKWAVE - 

1).A_DENSITY 

        W(NUMBEROFSHOCKWAVE).X_AXIS = DISTANCE1TO2 + DISTANCE2TO3 - 

(DISTANCE1TO2 + DISTANCE2TO3 - W(NUMBEROFSHOCKWAVE - 1).X_AXIS) / 2 

        If W(NUMBEROFSHOCKWAVE).A_DENSITY <> 

W(NUMBEROFSHOCKWAVE).B_DENSITY Then 

            W(NUMBEROFSHOCKWAVE).SPEED = 

(W(NUMBEROFSHOCKWAVE).A_VOL - W(NUMBEROFSHOCKWAVE).B_VOL) / 

(W(NUMBEROFSHOCKWAVE).A_DENSITY - 

W(NUMBEROFSHOCKWAVE).B_DENSITY) 

        Else: W(NUMBEROFSHOCKWAVE).SPEED = 0 

        End If 

    End If 

     

    For I = 1 To NUMBEROFSHOCKWAVE - 1 

        If W(I).B_VOL = 0 Then 

            For J = I To NUMBEROFSHOCKWAVE - 1 

                W(J).A_SPEED = W(J + 1).A_SPEED 
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                W(J).A_VOL = W(J + 1).A_VOL 

                W(J).A_DENSITY = W(J + 1).A_DENSITY 

                W(J).B_SPEED = W(J + 1).B_SPEED 

                W(J).B_VOL = W(J + 1).B_VOL 

                W(J).B_DENSITY = W(J + 1).B_DENSITY 

                W(J).SPEED = W(J + 1).SPEED 

                W(J).X_AXIS = W(J + 1).X_AXIS 

            Next J 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE - 1 

        End If 

    Next I 

    If W(NUMBEROFSHOCKWAVE).B_VOL = 0 Then 

        W(NUMBEROFSHOCKWAVE - 1).A_SPEED = 

W(NUMBEROFSHOCKWAVE).A_SPEED 

        W(NUMBEROFSHOCKWAVE - 1).A_VOL = 

W(NUMBEROFSHOCKWAVE).A_VOL 

        W(NUMBEROFSHOCKWAVE - 1).A_DENSITY = 

W(NUMBEROFSHOCKWAVE).A_DENSITY 

    End If 

     

    For I = 1 To NUMBEROFSHOCKWAVE 

        WATBASETIME(I).A_SPEED = W(I).A_SPEED 
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        WATBASETIME(I).A_VOL = W(I).A_VOL 

        WATBASETIME(I).A_DENSITY = W(I).A_DENSITY 

        WATBASETIME(I).B_SPEED = W(I).B_SPEED 

        WATBASETIME(I).B_VOL = W(I).B_VOL 

        WATBASETIME(I).B_DENSITY = W(I).B_DENSITY 

        WATBASETIME(I).SPEED = W(I).SPEED 

        WATBASETIME(I).X_AXIS = W(I).X_AXIS 

    Next I 

    NUMBEROFSHOCKWAVEATBASETIME = NUMBEROFSHOCKWAVE 

     

    BASETIME = TIME: STOPTIME = BASETIME + PREDICTTIME 

    Call Calculation 

    If W(NUMBEROFSHOCKWAVE).X_AXIS < DISTANCE1TO2 Then 

        PREDICT_SPEED = W(NUMBEROFSHOCKWAVE).A_SPEED * 60 / 1.609344 

        PREDICT_VOL = W(NUMBEROFSHOCKWAVE).A_VOL 

        PREDICT_DENSITY = W(NUMBEROFSHOCKWAVE).A_DENSITY 

    ElseIf W(1).X_AXIS > DISTANCE1TO2 Then 

        PREDICT_SPEED = W(1).B_SPEED * 60 / 1.609344 

        PREDICT_VOL = W(1).B_VOL 

        PREDICT_DENSITY = W(1).B_DENSITY 

    Else: 

        For I = 1 To NUMBEROFSHOCKWAVE - 1 
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            If W(I).X_AXIS < DISTANCE1TO2 And W(I + 1).X_AXIS > DISTANCE1TO2 

Then 

                PREDICT_SPEED = W(I).A_SPEED * 60 / 1.609344 

                PREDICT_VOL = W(I).A_VOL 

                PREDICT_DENSITY = W(I).A_DENSITY 

                Exit For 

            ElseIf W(I).X_AXIS = DISTANCE1TO2 Then 

                PREDICT_SPEED = 0.5 * (W(I).A_SPEED + W(I).B_SPEED) * 60 / 1.609344 

                PREDICT_VOL = 0.5 * (W(I).A_VOL + W(I).B_VOL) 

                PREDICT_DENSITY = 0.5 * (W(I).A_DENSITY + W(I).B_DENSITY) 

                Exit For 

            End If 

        Next I 

    End If 

    Print #4, ID + PREDICTTIME / TIMEINTERAL, PREDICT_SPEED, PREDICT_VOL, 

PREDICT_DENSITY, NUMBEROFSHOCKWAVE 

     

    TIME = BASETIME: STOPTIME = TIMEOFRECORD(ID + 1): 

NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVEATBASETIME 

    For I = 1 To NUMBEROFSHOCKWAVE 

        W(I).A_SPEED = WATBASETIME(I).A_SPEED 

        W(I).A_VOL = WATBASETIME(I).A_VOL 
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        W(I).A_DENSITY = WATBASETIME(I).A_DENSITY 

        W(I).B_SPEED = WATBASETIME(I).B_SPEED 

        W(I).B_VOL = WATBASETIME(I).B_VOL 

        W(I).B_DENSITY = WATBASETIME(I).B_DENSITY 

        W(I).SPEED = WATBASETIME(I).SPEED 

        W(I).X_AXIS = WATBASETIME(I).X_AXIS 

    Next I 

     

    Call Calculation 

     

    ID = ID + 1 

Loop 

 

Print "MISSION COMPLETED." 

End Sub 

 

Private Sub Calculation() 

 

Do 

    MINIMUMTIME = -1 

    For I = 1 To NUMBEROFSHOCKWAVE - 1 

        If W(I).SPEED <> W(I + 1).SPEED Then 
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            If (W(I + 1).X_AXIS - W(I).X_AXIS) / (W(I).SPEED - W(I + 1).SPEED) >= 0 Then 

                If MINIMUMTIME = -1 Or (W(I + 1).X_AXIS - W(I).X_AXIS) / (W(I).SPEED - 

W(I + 1).SPEED) < MINIMUMTIME Then MINIMUMTIME = (W(I + 1).X_AXIS - 

W(I).X_AXIS) / (W(I).SPEED - W(I + 1).SPEED) 

            End If 

        End If 

    Next I 

 

    If MINIMUMTIME <> -1 And TIME + MINIMUMTIME <= STOPTIME Then 

        TIME = TIME + MINIMUMTIME 

        For I = 1 To NUMBEROFSHOCKWAVE 

            W(I).X_AXIS = W(I).X_AXIS + W(I).SPEED * MINIMUMTIME 

        Next I 

        For I = 1 To NUMBEROFSHOCKWAVE - 1 

            If Abs(W(I).X_AXIS - W(I + 1).X_AXIS) < 0.0001 Then 

                W(I).A_SPEED = W(I + 1).A_SPEED 

                W(I).A_VOL = W(I + 1).A_VOL 

                W(I).A_DENSITY = W(I + 1).A_DENSITY 

                If W(I).B_DENSITY <> W(I).A_DENSITY Then 

                    W(I).SPEED = (W(I).B_VOL - W(I).A_VOL) / (W(I).B_DENSITY - 

W(I).A_DENSITY) 

                Else: W(I).SPEED = 0 
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                End If 

                W(I).X_AXIS = 0.5 * (W(I).X_AXIS + W(I + 1).X_AXIS) 

                For J = I + 1 To NUMBEROFSHOCKWAVE - 1 

                    W(J).A_SPEED = W(J + 1).A_SPEED 

                    W(J).A_VOL = W(J + 1).A_VOL 

                    W(J).A_DENSITY = W(J + 1).A_DENSITY 

                    W(J).B_SPEED = W(J + 1).B_SPEED 

                    W(J).B_VOL = W(J + 1).B_VOL 

                    W(J).B_DENSITY = W(J + 1).B_DENSITY 

                    W(I).SPEED = W(J + 1).SPEED 

                    W(J).X_AXIS = W(J + 1).X_AXIS 

                Next J 

                W(NUMBEROFSHOCKWAVE).A_SPEED = 0 

                W(NUMBEROFSHOCKWAVE).A_VOL = 0 

                W(NUMBEROFSHOCKWAVE).A_DENSITY = 0 

                W(NUMBEROFSHOCKWAVE).B_SPEED = 0 

                W(NUMBEROFSHOCKWAVE).B_VOL = 0 

                W(NUMBEROFSHOCKWAVE).B_DENSITY = 0 

                W(NUMBEROFSHOCKWAVE).SPEED = 0 

                W(NUMBEROFSHOCKWAVE).X_AXIS = 0 

                NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE - 1 

            End If 
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        Next I 

    Else: 

        For I = 1 To NUMBEROFSHOCKWAVE 

            W(I).X_AXIS = W(I).X_AXIS + W(I).SPEED * (TIMEOFRECORD(ID + 1) - 

TIME) 

        Next I 

        TIME = STOPTIME 

        Exit Do 

    End If 

Loop 

 

End Sub 
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Appendix III Two-detector Shock Wave Simulation VB Program 

 

Option Explicit 

 

Private Const DISTANCE1TO2 As Single = 0.506 

Private Const DISTANCE2TO3 As Single = 0.388 

Public RECORD$, LENGTHOFTHERECORD%, POINTER%, SPACE%, 

NUMBEROFRECORD% 

Public T%, HOUR#, MINUTE%, SECOND% 

Public TIME#, BASETIME#, STOPTIME# 

Private Const PREDICTTIME As Single = 0 

Private Const TIMEINTERAL As Single = 40 / 3600 

Private TIMEOFRECORD(3000) As Single 

Private SPEED(3, 3000) As Single 

Private VOL(3, 3000) As Single 

Private OCC(3, 3000) As Single 

Private DENSITY(3, 3000) As Single 

Public NUMBEROFSHOCKWAVE%, NUMBEROFSHOCKWAVEATBASETIME% 

Public PREDICT_SPEED!, PREDICT_VOL!, PREDICT_DENSITY! 

Private W(2000) As W 

Private Type W 

 A_SPEED As Single 
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 A_VOL As Single 

 A_DENSITY As Single 

 B_SPEED As Single 

 B_VOL As Single 

 B_DENSITY As Single 

 X_AXIS As Single 

 SPEED As Single 

End Type 

Private WATBASETIME(2000) As WATBASETIME 

Private Type WATBASETIME 

 A_SPEED As Single 

 A_VOL As Single 

 A_DENSITY As Single 

 B_SPEED As Single 

 B_VOL As Single 

 B_DENSITY As Single 

 X_AXIS As Single 

 SPEED As Single 

End Type 

Public I%, J%, MINIMUMTIME! 

 

Private Sub Command2_Click() 
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Open "SHOCK WAVE INPUT.txt" For Input As #1 

Open "SHOCK WAVE OUTPUT1.txt" For Output As #3 

Open "SHOCK WAVE OUTPUT2.txt" For Output As #4 

 

T = 0 

 

Line Input #1, RECORD 

Do While Not EOF(1) 

    T = T + 1 

    Line Input #1, RECORD 

    LENGTHOFTHERECORD = Len(RECORD) 

    POINTER = 1: SPACE = InStr(POINTER + 1, RECORD, ":") 

    HOUR = CSng(Left(RECORD, SPACE - 1)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, ":") 

    MINUTE = CSng(Mid(RECORD, POINTER, 2)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    SECOND = CSng(Mid(RECORD, POINTER, 2)) 

    TIMEOFRECORD(T) = HOUR + MINUTE / 60 + SECOND / 3600 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    SPEED(1, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 
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    VOL(1, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    OCC(1, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    DENSITY(1, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    SPEED(2, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    VOL(2, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    OCC(2, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    DENSITY(2, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    SPEED(3, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    VOL(3, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    POINTER = SPACE + 1: SPACE = InStr(POINTER + 1, RECORD, " ") 

    OCC(3, T) = CSng(Mid(RECORD, POINTER, SPACE - POINTER)) 

    DENSITY(3, T) = CSng(Right(RECORD, LENGTHOFTHERECORD - SPACE)) 

Loop 

NUMBEROFRECORD = T 
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Print "DATA INPUT COMPLETED." 

 

T = 1: TIME = TIMEOFRECORD(T): BASETIME = TIME: NUMBEROFSHOCKWAVE 

= 0 

Print #4, "ID+PREDICTTIME/TIMEINTERAL", "PREDICT_SPEED(MILE/HOUR)", 

"PREDICT_VOL(VEHICLE/HOUR)", "PREDICT_DENSITY(VEHICLE/MILE)", 

"NUMBEROFSHOCKWAVE" 

Do While T <= NUMBEROFRECORD 

 

    For I = 1 To NUMBEROFSHOCKWAVE 

        If W(I).X_AXIS <= 0 Or W(I).X_AXIS >= DISTANCE1TO2 + DISTANCE2TO3 

Then 

            If I < NUMBEROFSHOCKWAVE Then 

                For J = I To NUMBEROFSHOCKWAVE - 1 

                    W(J).A_SPEED = W(J + 1).A_SPEED 

                    W(J).A_VOL = W(J + 1).A_VOL 

                    W(J).A_DENSITY = W(J + 1).A_DENSITY 

                    W(J).B_SPEED = W(J + 1).B_SPEED 

                    W(J).B_VOL = W(J + 1).B_VOL 

                    W(J).B_DENSITY = W(J + 1).B_DENSITY 

                    W(J).SPEED = W(J + 1).SPEED 

                    W(J).X_AXIS = W(J + 1).X_AXIS 
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                Next J 

            End If 

            W(NUMBEROFSHOCKWAVE).A_SPEED = 0 

            W(NUMBEROFSHOCKWAVE).A_VOL = 0 

            W(NUMBEROFSHOCKWAVE).A_DENSITY = 0 

            W(NUMBEROFSHOCKWAVE).B_SPEED = 0 

            W(NUMBEROFSHOCKWAVE).B_VOL = 0 

            W(NUMBEROFSHOCKWAVE).B_DENSITY = 0 

            W(NUMBEROFSHOCKWAVE).SPEED = 0 

            W(NUMBEROFSHOCKWAVE).X_AXIS = 0 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE - 1 

        End If 

    Next I 

     

    If NUMBEROFSHOCKWAVE = 0 Then 

            NUMBEROFSHOCKWAVE = 1 

            W(1).A_SPEED = SPEED(3, T) 

            W(1).A_VOL = VOL(3, T) 

            W(1).A_DENSITY = DENSITY(3, T) 

            W(1).B_SPEED = SPEED(1, T) 

            W(1).B_VOL = VOL(1, T) 

            W(1).B_DENSITY = DENSITY(1, T) 
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            W(1).X_AXIS = 0.5 * (DISTANCE1TO2 + DISTANCE2TO3) 

            If DENSITY(3, T) <> DENSITY(1, T) Then 

                W(1).SPEED = (VOL(3, T) - VOL(1, T)) / (DENSITY(3, T) - DENSITY(1, T)) 

            Else: W(1).SPEED = 0 

            End If 

    Else: 

        NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

        For I = NUMBEROFSHOCKWAVE To 2 Step -1 

            W(I).A_SPEED = W(I - 1).A_SPEED 

            W(I).A_VOL = W(I - 1).A_VOL 

            W(I).A_DENSITY = W(I - 1).A_DENSITY 

            W(I).B_SPEED = W(I - 1).B_SPEED 

            W(I).B_VOL = W(I - 1).B_VOL 

            W(I).B_DENSITY = W(I - 1).B_DENSITY 

            W(I).SPEED = W(I - 1).SPEED 

            W(I).X_AXIS = W(I - 1).X_AXIS 

        Next I 

        W(1).A_SPEED = W(2).B_SPEED 

        W(1).A_VOL = W(2).B_VOL 

        W(1).A_DENSITY = W(2).B_DENSITY 

        W(1).B_SPEED = SPEED(1, T) 

        W(1).B_VOL = VOL(1, T) 
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        W(1).B_DENSITY = DENSITY(1, T) 

        W(1).X_AXIS = W(2).X_AXIS / 2 

        If W(1).A_DENSITY <> W(1).B_DENSITY Then 

            W(1).SPEED = (W(1).A_VOL - W(1).B_VOL) / (W(1).A_DENSITY - 

W(1).B_DENSITY) 

        Else: W(1).SPEED = 0 

        End If 

        NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE + 1 

        W(NUMBEROFSHOCKWAVE).A_SPEED = SPEED(3, T) 

        W(NUMBEROFSHOCKWAVE).A_VOL = VOL(3, T) 

        W(NUMBEROFSHOCKWAVE).A_DENSITY = DENSITY(3, T) 

        W(NUMBEROFSHOCKWAVE).B_SPEED = W(NUMBEROFSHOCKWAVE - 

1).A_SPEED 

        W(NUMBEROFSHOCKWAVE).B_VOL = W(NUMBEROFSHOCKWAVE - 

1).A_VOL 

        W(NUMBEROFSHOCKWAVE).B_DENSITY = W(NUMBEROFSHOCKWAVE - 

1).A_DENSITY 

        W(NUMBEROFSHOCKWAVE).X_AXIS = DISTANCE1TO2 + DISTANCE2TO3 - 

(DISTANCE1TO2 + DISTANCE2TO3 - W(NUMBEROFSHOCKWAVE - 1).X_AXIS) / 2 

        If W(NUMBEROFSHOCKWAVE).A_DENSITY <> 

W(NUMBEROFSHOCKWAVE).B_DENSITY Then 
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            W(NUMBEROFSHOCKWAVE).SPEED = 

(W(NUMBEROFSHOCKWAVE).A_VOL - W(NUMBEROFSHOCKWAVE).B_VOL) / 

(W(NUMBEROFSHOCKWAVE).A_DENSITY - 

W(NUMBEROFSHOCKWAVE).B_DENSITY) 

        Else: W(NUMBEROFSHOCKWAVE).SPEED = 0 

        End If 

    End If 

     

    For I = 1 To NUMBEROFSHOCKWAVE - 1 

        If W(I).B_VOL = 0 Then 

            For J = I To NUMBEROFSHOCKWAVE - 1 

                W(J).A_SPEED = W(J + 1).A_SPEED 

                W(J).A_VOL = W(J + 1).A_VOL 

                W(J).A_DENSITY = W(J + 1).A_DENSITY 

                W(J).B_SPEED = W(J + 1).B_SPEED 

                W(J).B_VOL = W(J + 1).B_VOL 

                W(J).B_DENSITY = W(J + 1).B_DENSITY 

                W(J).SPEED = W(J + 1).SPEED 

                W(J).X_AXIS = W(J + 1).X_AXIS 

            Next J 

            NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE - 1 

        End If 
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    Next I 

    If W(NUMBEROFSHOCKWAVE).B_VOL = 0 Then 

        W(NUMBEROFSHOCKWAVE - 1).A_SPEED = 

W(NUMBEROFSHOCKWAVE).A_SPEED 

        W(NUMBEROFSHOCKWAVE - 1).A_VOL = 

W(NUMBEROFSHOCKWAVE).A_VOL 

        W(NUMBEROFSHOCKWAVE - 1).A_DENSITY = 

W(NUMBEROFSHOCKWAVE).A_DENSITY 

    End If 

     

    For I = 1 To NUMBEROFSHOCKWAVE 

        WATBASETIME(I).A_SPEED = W(I).A_SPEED 

        WATBASETIME(I).A_VOL = W(I).A_VOL 

        WATBASETIME(I).A_DENSITY = W(I).A_DENSITY 

        WATBASETIME(I).B_SPEED = W(I).B_SPEED 

        WATBASETIME(I).B_VOL = W(I).B_VOL 

        WATBASETIME(I).B_DENSITY = W(I).B_DENSITY 

        WATBASETIME(I).SPEED = W(I).SPEED 

        WATBASETIME(I).X_AXIS = W(I).X_AXIS 

    Next I 

    NUMBEROFSHOCKWAVEATBASETIME = NUMBEROFSHOCKWAVE 
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    BASETIME = TIME: STOPTIME = BASETIME + PREDICTTIME 

    Call Calculation 

    If W(NUMBEROFSHOCKWAVE).X_AXIS < DISTANCE1TO2 Then 

        PREDICT_SPEED = W(NUMBEROFSHOCKWAVE).A_SPEED 

        PREDICT_VOL = W(NUMBEROFSHOCKWAVE).A_VOL 

        PREDICT_DENSITY = W(NUMBEROFSHOCKWAVE).A_DENSITY 

    ElseIf W(1).X_AXIS > DISTANCE1TO2 Then 

        PREDICT_SPEED = W(1).B_SPEED 

        PREDICT_VOL = W(1).B_VOL 

        PREDICT_DENSITY = W(1).B_DENSITY 

    Else: 

        For I = 1 To NUMBEROFSHOCKWAVE - 1 

            If W(I).X_AXIS < DISTANCE1TO2 And W(I + 1).X_AXIS > DISTANCE1TO2 

Then 

                PREDICT_SPEED = W(I).A_SPEED 

                PREDICT_VOL = W(I).A_VOL 

                PREDICT_DENSITY = W(I).A_DENSITY 

                Exit For 

            ElseIf W(I).X_AXIS = DISTANCE1TO2 Then 

                PREDICT_SPEED = 0.5 * (W(I).A_SPEED + W(I).B_SPEED) 

                PREDICT_VOL = 0.5 * (W(I).A_VOL + W(I).B_VOL) 

                PREDICT_DENSITY = 0.5 * (W(I).A_DENSITY + W(I).B_DENSITY) 
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                Exit For 

            End If 

        Next I 

    End If 

    Print #4, T + PREDICTTIME / TIMEINTERAL, PREDICT_SPEED, PREDICT_VOL, 

PREDICT_DENSITY, NUMBEROFSHOCKWAVE 

     

    TIME = BASETIME: STOPTIME = TIMEOFRECORD(T + 1): 

NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVEATBASETIME 

    For I = 1 To NUMBEROFSHOCKWAVE 

        W(I).A_SPEED = WATBASETIME(I).A_SPEED 

        W(I).A_VOL = WATBASETIME(I).A_VOL 

        W(I).A_DENSITY = WATBASETIME(I).A_DENSITY 

        W(I).B_SPEED = WATBASETIME(I).B_SPEED 

        W(I).B_VOL = WATBASETIME(I).B_VOL 

        W(I).B_DENSITY = WATBASETIME(I).B_DENSITY 

        W(I).SPEED = WATBASETIME(I).SPEED 

        W(I).X_AXIS = WATBASETIME(I).X_AXIS 

    Next I 

     

    If NUMBEROFSHOCKWAVE > 1 Then Call Calculation 
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    T = T + 1 

Loop 

 

Print "MISSION COMPLETED." 

End Sub 

 

Private Sub Calculation() 

 

If T = 1578 Then 

Print 

End If 

 

Do 

    MINIMUMTIME = -1 

    For I = 1 To NUMBEROFSHOCKWAVE - 1 

        If W(I).SPEED <> W(I + 1).SPEED Then 

            If (W(I + 1).X_AXIS - W(I).X_AXIS) / (W(I).SPEED - W(I + 1).SPEED) >= 0 Then 

                If MINIMUMTIME = -1 Or (W(I + 1).X_AXIS - W(I).X_AXIS) / (W(I).SPEED - 

W(I + 1).SPEED) < MINIMUMTIME Then 

                    MINIMUMTIME = (W(I + 1).X_AXIS - W(I).X_AXIS) / (W(I).SPEED - W(I + 

1).SPEED) 

                End If 
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            End If 

        End If 

    Next I 

 

    If MINIMUMTIME <> -1 And TIME + MINIMUMTIME <= STOPTIME Then 

        TIME = TIME + MINIMUMTIME 

        For I = 1 To NUMBEROFSHOCKWAVE 

            W(I).X_AXIS = W(I).X_AXIS + W(I).SPEED * MINIMUMTIME 

        Next I 

        For I = 1 To NUMBEROFSHOCKWAVE - 1 

            If Abs(W(I).X_AXIS - W(I + 1).X_AXIS) < 0.00001 Then 

                W(I).A_SPEED = W(I + 1).A_SPEED 

                W(I).A_VOL = W(I + 1).A_VOL 

                W(I).A_DENSITY = W(I + 1).A_DENSITY 

                If W(I).B_DENSITY <> W(I).A_DENSITY Then 

                    W(I).SPEED = (W(I).B_VOL - W(I).A_VOL) / (W(I).B_DENSITY - 

W(I).A_DENSITY) 

                Else: W(I).SPEED = 0 

                End If 

                W(I).X_AXIS = 0.5 * (W(I).X_AXIS + W(I + 1).X_AXIS) 

                For J = I + 1 To NUMBEROFSHOCKWAVE - 1 

                    W(J).A_SPEED = W(J + 1).A_SPEED 
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                    W(J).A_VOL = W(J + 1).A_VOL 

                    W(J).A_DENSITY = W(J + 1).A_DENSITY 

                    W(J).B_SPEED = W(J + 1).B_SPEED 

                    W(J).B_VOL = W(J + 1).B_VOL 

                    W(J).B_DENSITY = W(J + 1).B_DENSITY 

                    W(I).SPEED = W(J + 1).SPEED 

                    W(J).X_AXIS = W(J + 1).X_AXIS 

                Next J 

                W(NUMBEROFSHOCKWAVE).A_SPEED = 0 

                W(NUMBEROFSHOCKWAVE).A_VOL = 0 

                W(NUMBEROFSHOCKWAVE).A_DENSITY = 0 

                W(NUMBEROFSHOCKWAVE).B_SPEED = 0 

                W(NUMBEROFSHOCKWAVE).B_VOL = 0 

                W(NUMBEROFSHOCKWAVE).B_DENSITY = 0 

                W(NUMBEROFSHOCKWAVE).SPEED = 0 

                W(NUMBEROFSHOCKWAVE).X_AXIS = 0 

                NUMBEROFSHOCKWAVE = NUMBEROFSHOCKWAVE - 1 

            End If 

        Next I 

    Else: 

        For I = 1 To NUMBEROFSHOCKWAVE 

            W(I).X_AXIS = W(I).X_AXIS + W(I).SPEED * (TIMEOFRECORD(T + 1) - TIME) 
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        Next I 

        TIME = STOPTIME 

        Exit Do 

    End If 

Loop 

 

End Sub 
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Appendix IV Travel Time Estimation VB Program 

 

Option Explicit 

 

Dim TIME$, RECORDOFTHETIME$, E$ 

Dim POINTER%, SPEEDSTART%, SPEEDEND%, LENGTHOFTHERECORD% 

Private SPEED(5) As Single 

Private DISTANCE(4) As Long 

Private TRAVELTIME(4, 20) As Single 

Private CALCULATEDDISTANCE(4, 20) As Single 

Private ATS2(20) As Double 

Private ATS3(20) As Double 

Dim TT1!, TT2! 

Dim AT2#, AT3# 

Dim SENSOR%, DATENUMBER%, MINIMUMSPEEDOFTHETIME! 

Dim TIMEUPPERLIMIT1!, TIMELOWERLIMIT1!, TIMEUPPERLIMIT2!, 

TIMELOWERLIMIT2! 

Dim CALCULATEDDISTANCE1!, CALCULATEDDISTANCE2!, MC1!, MC2! 

Dim MINIMUMVARIANCE! 

Dim S1%, S2%, S3%, D1%, D2%, T1%, T2% 

Dim A#, B#, C#, A1#, B1#, C1#, A2#, B2#, C2# 

Dim DELTA#, DELTA1#, DELTA2# 
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Dim P%, I%, K%, N%, J#, FRONT#, REAR# 

Dim BASICSP#, SP# 

Dim ROOT1#, ROOT2#, R0!, R1!, R2!, R3!, R4! 

Dim M%, NUMBEROFANSWERS1%, NUMBEROFANSWERS2% 

Dim TROUBLE As Boolean 

Dim SP2! 

Dim FAT2J# 

Dim ATS2J!, ATS3J! 

 

Private Sub Start_Click() 

DISTANCE(1) = 636: DISTANCE(2) = 417: DISTANCE(3) = 522: DISTANCE(4) = 475 

 

Open "Speed Data.txt" For Input As #1 

Open "Travel Time.txt" For Output As #3 

 

Do While Not EOF(1) 

    Line Input #1, RECORDOFTHETIME 

    LENGTHOFTHERECORD = Len(RECORDOFTHETIME) 

    TIME = Left(RECORDOFTHETIME, 10) 

    POINTER = 11 

    For DATENUMBER = 1 To 19 
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        Status.Cls: Status.Print "The computer is calculating the data of time "; TIME; " and 

date August "; DATENUMBER; "." 

        For SENSOR = 1 To 5 

            If DATENUMBER = 19 And SENSOR = 5 Then 

                SPEED(SENSOR) = CSng(Right(RECORDOFTHETIME, 

LENGTHOFTHERECORD - POINTER)) * 1609 / 3600 

            Else: 

                SPEEDSTART = POINTER 

                SPEEDEND = InStr(POINTER + 1, RECORDOFTHETIME, " ") 

                SPEED(SENSOR) = CSng(Mid(RECORDOFTHETIME, SPEEDSTART + 1, 

SPEEDEND - SPEEDSTART - 1)) * 1609 / 3600 

                POINTER = SPEEDEND 

            End If 

        Next SENSOR 

        Print #3, TIME; " Date"; DATENUMBER, Int((SPEED(1) * 3600 / 1609) * 10 + 0.5) / 

10; " "; Int((SPEED(2) * 3600 / 1609) * 10 + 0.5) / 10; " "; 

        Print #3, Int((SPEED(3) * 3600 / 1609) * 10 + 0.5) / 10; " "; Int((SPEED(4) * 3600 / 

1609) * 10 + 0.5) / 10; " "; Int((SPEED(5) * 3600 / 1609) * 10 + 0.5) / 10, 

        For P = 1 To 2 

            If P = 1 Then 

                S1 = 1: S2 = 2: S3 = 3: D1 = 1: D2 = 2: T1 = 1: T2 = 2: NUMBEROFANSWERS1 

= 0 
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            Else: 

                S1 = 3: S2 = 4: S3 = 5: D1 = 3: D2 = 4: T1 = 3: T2 = 4: NUMBEROFANSWERS2 

= 0 

            End If 

            M = 0 

             

            Call CALCULATEAT2AT3 

             

            For I = 1 To M 

                A = (SPEED(S3) * ATS2(I) - SPEED(S2) * ATS3(I) + SPEED(S1) * ATS3(I) - 

SPEED(S1) * ATS2(I)) / (ATS2(I) * ATS3(I) * (ATS3(I) - ATS2(I))) 

                B = (SPEED(S2) - SPEED(S1) - A * ATS2(I) * ATS2(I)) / ATS2(I) 

                C = SPEED(S1) 

                If A = 0 Then 

                    CALCULATEDDISTANCE1 = (SPEED(S1) + SPEED(S2)) * ATS2(I) / 2 

                    CALCULATEDDISTANCE2 = (SPEED(S2) + SPEED(S3)) * (ATS3(I) - 

ATS2(I)) / 2 

                    If Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + Abs(DISTANCE(D2) 

- CALCULATEDDISTANCE2) > 100 Then Call TROUBLECASE 

                    Call SAVEANSWERS 

                ElseIf A > 0 And B * B / (4 * A) - B * B / (2 * A) + C < 1 * (1609 / 3600) Then 
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                    If ((-1) * B + Sqr(B * B - 4 * A * (C - 1 * (1609 / 3600)))) / (2 * A) <= 0 Or ((-1) 

* B - Sqr(B * B - 4 * A * (C - 1 * (1609 / 3600)))) / (2 * A) >= ATS3(I) Then 

                        TT1 = ATS2(I): TT2 = ATS3(I) - ATS2(I) 

                        CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * 

TT1 * TT1 + C * TT1 

                        CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * 

(TT1 + TT2) + (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

                        If Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + 

Abs(DISTANCE(D2) - CALCULATEDDISTANCE2) > 100 Then Call TROUBLECASE 

                        Call SAVEANSWERS 

                    Else: 

                        Call TROUBLECASE 

                        Call SAVEANSWERS 

                    End If 

                ElseIf A < 0 And B * B / (4 * A) - B * B / (2 * A) + C > 135 * (1609 / 3600) Then 

                    If ((-1) * B + Sqr(B * B - 4 * A * (C - 135 * (1609 / 3600)))) / (2 * A) <= 0 Or 

((-1) * B - Sqr(B * B - 4 * A * (C - 135 * (1609 / 3600)))) / (2 * A) >= ATS3(I) Then 

                        TT1 = ATS2(I): TT2 = ATS3(I) - ATS2(I) 

                        CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * 

TT1 * TT1 + C * TT1 
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                        CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * 

(TT1 + TT2) + (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

                        If Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + 

Abs(DISTANCE(D2) - CALCULATEDDISTANCE2) > 100 Then Call TROUBLECASE 

                        Call SAVEANSWERS 

                    Else: 

                        Call TROUBLECASE 

                        Call SAVEANSWERS 

                    End If 

                Else: 

                    TT1 = ATS2(I): TT2 = ATS3(I) - ATS2(I) 

                    CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * 

TT1 * TT1 + C * TT1 

                    CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * 

(TT1 + TT2) + (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

                    If Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + Abs(DISTANCE(D2) 

- CALCULATEDDISTANCE2) > 100 Then Call TROUBLECASE 

                    Call SAVEANSWERS 

                End If 

            Next I 
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        Next P 

        Call PRINTOUTPUT 

        Print #3, 

    Next DATENUMBER 

    Print #3, 

Loop 

Status.Cls: Status.Print "Calculating completed." 

     

Close #1: Close #3 

 

End Sub 

 

Private Sub CALCULATEAT2AT3() 

 

MINIMUMVARIANCE = -1 

If SPEED(S1) = SPEED(S2) And SPEED(S2) = SPEED(S3) Then 

    M = M + 1 

    ATS2(M) = DISTANCE(D1) / SPEED(S1): ATS3(M) = DISTANCE(D2) / SPEED(S2) + 

ATS2(M) 

Else: 

    A2 = SPEED(S1) * SPEED(S1) + SPEED(S1) * SPEED(S2) + SPEED(S2) * SPEED(S2) 

+ 3 * SPEED(S1) * SPEED(S3) + 3 * SPEED(S2) * SPEED(S3) 
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    B2 = (-6) * DISTANCE(D1) * (SPEED(S1) + SPEED(S2) + SPEED(S3)) 

    C2 = 9 * DISTANCE(D1) * DISTANCE(D1) 

    SP = 4 

    Do 

        For N = -1 To 1 Step 2 

            J = 10 

            Do While J <= DISTANCE(D1) / (1 * (1609 / 3600)) 

                Call SEARCHROOTS 

                J = J + SP 

            Loop 

        Next N 

        SP = SP / 4 

    Loop Until M > 0 Or SP < 1 / 128 

End If 

 

If M < 1 And ATS2J > 0 And ATS3J > 0 Then 

    M = 1: ATS2(M) = ATS2J: ATS3(M) = ATS3J 

End If 

 

End Sub 

 

Private Sub SEARCHROOTS() 
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TROUBLE = False: FAT2J = FAT2(J, S1, S2, S3, D1, D2) 

If SP < 1 / 8 And SP >= 1 / 32 And AT3 >= J + 5 And AT3 - J <= DISTANCE(D2) / (1 * 

(1609 / 3600)) Then 

    TT1 = J: TT2 = AT3 - TT1 

    Call JIFEN 

    If MINIMUMVARIANCE = -1 And TROUBLE = False Then 

        MINIMUMVARIANCE = Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + 

Abs(DISTANCE(D2) - CALCULATEDDISTANCE2) 

        ATS2J = TT1: ATS3J = TT1 + TT2 

    ElseIf Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + Abs(DISTANCE(D2) - 

CALCULATEDDISTANCE2) < MINIMUMVARIANCE And TROUBLE = False Then 

        MINIMUMVARIANCE = Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + 

Abs(DISTANCE(D2) - CALCULATEDDISTANCE2) 

        ATS2J = TT1: ATS3J = TT1 + TT2 

    End If 

End If 

 

If Abs(FAT2J) <= 1 And TROUBLE = False Then 

    M = M + 1: ATS2(M) = J 

    J = J + 2 

    ATS3(M) = ((-1) * B1 + N * Sqr(B1 * B1 - 4 * A1 * C1)) / (2 * A1) 
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    If ATS3(M) <= ATS2(M) + 5 Or ATS3(M) - ATS2(M) > DISTANCE(D2) / (1 * (1609 / 

3600)) Then 

        M = M - 1: J = J - 1 

    End If 

ElseIf Abs(FAT2J) > 1 And FAT2J * FAT2(J + SP, S1, S2, S3, D1, D2) < 0 And TROUBLE 

= False Then 

    FRONT = J: REAR = J + SP 

    Do 

        If FAT2(FRONT, S1, S2, S3, D1, D2) * FAT2((FRONT + REAR) / 2, S1, S2, S3, D1, 

D2) < 0 And TROUBLE = False Then 

            REAR = (FRONT + REAR) / 2 

        ElseIf TROUBLE = False Then 

            FRONT = (FRONT + REAR) / 2 

        End If 

    Loop Until REAR - FRONT < 0.001 Or TROUBLE = True 

    If TROUBLE = False Then 

        M = M + 1: ATS2(M) = FRONT 

        A1 = 6 * DISTANCE(D1) - 3 * SPEED(S1) * ATS2(M) - 3 * SPEED(S2) * ATS2(M) 

        B1 = 4 * SPEED(S1) * ATS2(M) * ATS2(M) - 6 * DISTANCE(D1) * ATS2(M) + 2 * 

SPEED(S2) * ATS2(M) * ATS2(M) 

        C1 = (SPEED(S3) - SPEED(S1)) * ATS2(M) * ATS2(M) * ATS2(M) 

        J = J + 1 
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        ATS3(M) = ((-1) * B1 + N * Sqr(B1 * B1 - 4 * A1 * C1)) / (2 * A1) 

        If ATS3(M) <= ATS2(M) + 5 Or ATS3(M) - ATS2(M) > DISTANCE(D2) / (1 * (1609 

/ 3600)) Then 

            M = M - 1: J = J - 1 

        End If 

    End If 

End If 

 

End Sub 

 

Private Function FAT2(AT2, S1, S2, S3, D1, D2) As Double 

    A1 = 6 * DISTANCE(D1) - 3 * SPEED(S1) * AT2 - 3 * SPEED(S2) * AT2 

    B1 = 4 * SPEED(S1) * AT2 * AT2 - 6 * DISTANCE(D1) * AT2 + 2 * SPEED(S2) * AT2 

* AT2 

    C1 = (SPEED(S3) - SPEED(S1)) * AT2 * AT2 * AT2 

    DELTA1 = B1 * B1 - 4 * A1 * C1 

    If DELTA1 >= 0 Then 

        AT3 = ((-1) * B1 + N * Sqr(DELTA1)) / (2 * A1) 

        FAT2 = (AT3 - AT2) * ((-1) * SPEED(S1) * (AT3 - AT2) * (AT3 - AT2) + SPEED(S2) 

* AT3 * AT3 + 2 * SPEED(S2) * AT2 * AT3 + 2 * SPEED(S3) * AT2 * AT3 + AT2 * AT2 

* SPEED(S3)) - 6 * AT2 * AT3 * DISTANCE(D2) 

    Else: 
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        TROUBLE = True 

    End If 

End Function 

 

Private Sub TROUBLECASE() 

 

MINIMUMVARIANCE = -1 

SP2 = 8 

 

TIMELOWERLIMIT1 = DISTANCE(D1) / (135 * (1609 / 3600)): TIMEUPPERLIMIT1 = 

DISTANCE(D1) / (1 * (1609 / 3600)) 

TIMELOWERLIMIT2 = DISTANCE(D2) / (135 * (1609 / 3600)): TIMEUPPERLIMIT2 = 

DISTANCE(D2) / (1 * (1609 / 3600)) 

 

If Abs(SPEED(S1) - SPEED(S2)) < 10 * (1609 / 3600) And Abs(SPEED(S2) - SPEED(S3)) 

< 10 * (1609 / 3600) And Abs(SPEED(S1) - SPEED(S3)) < 10 * (1609 / 3600) Then 

    TIMELOWERLIMIT1 = DISTANCE(D1) / (((SPEED(S1) + SPEED(S2) + SPEED(S3)) / 

3 + 30) * (1609 / 3600)) 

    TIMEUPPERLIMIT1 = DISTANCE(D1) / (((SPEED(S1) + SPEED(S2) + SPEED(S3)) / 

3 - 30) * (1609 / 3600)) 

    TIMELOWERLIMIT2 = DISTANCE(D2) / (((SPEED(S1) + SPEED(S2) + SPEED(S3)) / 

3 + 30) * (1609 / 3600)) 
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    TIMEUPPERLIMIT2 = DISTANCE(D2) / (((SPEED(S1) + SPEED(S2) + SPEED(S3)) / 

3 - 30) * (1609 / 3600)) 

    If TIMELOWERLIMIT1 < DISTANCE(D1) / (135 * (1609 / 3600)) Then 

TIMELOWERLIMIT1 = DISTANCE(D1) / (135 * (1609 / 3600)) 

    If TIMELOWERLIMIT2 < DISTANCE(D2) / (135 * (1609 / 3600)) Then 

TIMELOWERLIMIT2 = DISTANCE(D2) / (135 * (1609 / 3600)) 

    If TIMEUPPERLIMIT1 < DISTANCE(D1) / (1 * (1609 / 3600)) Then 

TIMEUPPERLIMIT1 = DISTANCE(D1) / (1 * (1609 / 3600)) 

    If TIMEUPPERLIMIT2 < DISTANCE(D2) / (1 * (1609 / 3600)) Then 

TIMEUPPERLIMIT2 = DISTANCE(D2) / (1 * (1609 / 3600)) 

End If 

 

Do 

    For TT1 = TIMELOWERLIMIT1 To TIMEUPPERLIMIT1 Step SP2 

        For TT2 = TIMELOWERLIMIT2 To TIMEUPPERLIMIT2 Step SP2 

            Call JIFEN 

            If MINIMUMVARIANCE = -1 Then 

                MINIMUMVARIANCE = Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) 

+ Abs(DISTANCE(D2) - CALCULATEDDISTANCE2) 

                ATS2(I) = TT1: ATS3(I) = TT2 + TT1: MC1 = CALCULATEDDISTANCE1: 

MC2 = CALCULATEDDISTANCE2 
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            ElseIf Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) + Abs(DISTANCE(D2) 

- CALCULATEDDISTANCE2) < MINIMUMVARIANCE Then 

                MINIMUMVARIANCE = Abs(DISTANCE(D1) - CALCULATEDDISTANCE1) 

+ Abs(DISTANCE(D2) - CALCULATEDDISTANCE2) 

                ATS2(I) = TT1: ATS3(I) = TT2 + TT1: MC1 = CALCULATEDDISTANCE1: 

MC2 = CALCULATEDDISTANCE2 

            End If 

        Next TT2 

        If MINIMUMVARIANCE < 100 Then TT1 = TT1 + 2 

    Next TT1 

    CALCULATEDDISTANCE1 = MC1: CALCULATEDDISTANCE2 = MC2 

    SP2 = SP2 / 4 

Loop Until MINIMUMVARIANCE < 100 Or SP2 <= 0.5 

 

End Sub 

 

Private Sub JIFEN() 

 

A = (SPEED(S3) * TT1 - SPEED(S2) * (TT1 + TT2) + SPEED(S1) * TT2) / (TT1 * (TT1 + 

TT2) * TT2) 

B = (SPEED(S2) - SPEED(S1) - A * TT1 * TT1) / TT1 

C = SPEED(S1) 
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If A > 0 And B * B - 4 * A * (C - 1 * (1609 / 3600)) <= 0 Then 

    CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * TT1 

+ C * TT1 

    CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + TT2) 

+ (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

ElseIf A > 0 And B * B - 4 * A * (C - 1 * (1609 / 3600)) > 0 Then 

    ROOT1 = ((-1) * B - Sqr(B * B - 4 * A * (C - 1 * (1609 / 3600)))) / (2 * A) 

    ROOT2 = ((-1) * B + Sqr(B * B - 4 * A * (C - 1 * (1609 / 3600)))) / (2 * A) 

    If ROOT2 <= 0 Or ROOT1 >= TT1 + TT2 Then 

        CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * 

TT1 + C * TT1 

        CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + 

TT2) + (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

    ElseIf TT1 <= ROOT1 Then 

        R0 = 0 

        R1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * TT1 + C * TT1 

        R2 = (1 / 3) * A * ROOT1 * ROOT1 * ROOT1 + (1 / 2) * B * ROOT1 * ROOT1 + C * 

ROOT1 

        R3 = (1 / 3) * A * ROOT2 * ROOT2 * ROOT2 + (1 / 2) * B * ROOT2 * ROOT2 + C * 

ROOT2 
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        R4 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + TT2) + (1 / 2) * B * (TT1 + 

TT2) * (TT1 + TT2) + C * (TT1 + TT2) 

        CALCULATEDDISTANCE1 = R1 - R0 

        CALCULATEDDISTANCE2 = R2 - R1 + 1 * (1609 / 3600) * (ROOT2 - ROOT1) + 

R4 - R3 

    ElseIf TT1 >= ROOT2 Then 

        R0 = 0 

        R1 = (1 / 3) * A * ROOT1 * ROOT1 * ROOT1 + (1 / 2) * B * ROOT1 * ROOT1 + C * 

ROOT1 

        R2 = (1 / 3) * A * ROOT2 * ROOT2 * ROOT2 + (1 / 2) * B * ROOT2 * ROOT2 + C * 

ROOT2 

        R3 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * TT1 + C * TT1 

        R4 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + TT2) + (1 / 2) * B * (TT1 + 

TT2) * (TT1 + TT2) + C * (TT1 + TT2) 

        CALCULATEDDISTANCE1 = R1 - R0 + 1 * (1609 / 3600) * (ROOT2 - ROOT1) + 

R3 - R2 

        CALCULATEDDISTANCE2 = R4 - R3 

    End If 

ElseIf A = 0 Then 

    CALCULATEDDISTANCE1 = (SPEED(S1) + SPEED(S2)) * TT1 / 2 

    CALCULATEDDISTANCE2 = (SPEED(S2) + SPEED(S3)) * TT2 / 2 

ElseIf A < 0 And B * B - 4 * A * (C - 135 * (1609 / 3600)) <= 0 Then 
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    CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * TT1 

+ C * TT1 

    CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + TT2) 

+ (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

ElseIf A < 0 And B * B - 4 * A * (C - 135 * (1609 / 3600)) > 0 Then 

    ROOT1 = ((-1) * B - Sqr(B * B - 4 * A * (C - 135 * (1609 / 3600)))) / (2 * A) 

    ROOT2 = ((-1) * B + Sqr(B * B - 4 * A * (C - 135 * (1609 / 3600)))) / (2 * A) 

    If ROOT2 <= 0 Or ROOT1 >= TT1 + TT2 Then 

        CALCULATEDDISTANCE1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * 

TT1 + C * TT1 

        CALCULATEDDISTANCE2 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + 

TT2) + (1 / 2) * B * (TT1 + TT2) * (TT1 + TT2) + C * (TT1 + TT2) - 

CALCULATEDDISTANCE1 

    ElseIf TT1 <= ROOT1 Then 

        R0 = 0 

        R1 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * TT1 + C * TT1 

        R2 = (1 / 3) * A * ROOT1 * ROOT1 * ROOT1 + (1 / 2) * B * ROOT1 * ROOT1 + C * 

ROOT1 

        R3 = (1 / 3) * A * ROOT2 * ROOT2 * ROOT2 + (1 / 2) * B * ROOT2 * ROOT2 + C * 

ROOT2 
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        R4 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + TT2) + (1 / 2) * B * (TT1 + 

TT2) * (TT1 + TT2) + C * (TT1 + TT2) 

        CALCULATEDDISTANCE1 = R1 - R0 

        CALCULATEDDISTANCE2 = R2 - R1 + 135 * (1609 / 3600) * (ROOT2 - ROOT1) + 

R4 - R3 

    ElseIf TT1 >= ROOT2 Then 

        R0 = 0 

        R1 = (1 / 3) * A * ROOT1 * ROOT1 * ROOT1 + (1 / 2) * B * ROOT1 * ROOT1 + C * 

ROOT1 

        R2 = (1 / 3) * A * ROOT2 * ROOT2 * ROOT2 + (1 / 2) * B * ROOT2 * ROOT2 + C * 

ROOT2 

        R3 = (1 / 3) * A * TT1 * TT1 * TT1 + (1 / 2) * B * TT1 * TT1 + C * TT1 

        R4 = (1 / 3) * A * (TT1 + TT2) * (TT1 + TT2) * (TT1 + TT2) + (1 / 2) * B * (TT1 + 

TT2) * (TT1 + TT2) + C * (TT1 + TT2) 

        CALCULATEDDISTANCE1 = R1 - R0 + 135 * (1609 / 3600) * (ROOT2 - ROOT1) + 

R3 - R2 

        CALCULATEDDISTANCE2 = R4 - R3 

    End If 

End If 

 

End Sub 
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Private Sub SAVEANSWERS() 

 

If P = 1 Then 

    NUMBEROFANSWERS1 = NUMBEROFANSWERS1 + 1 

    TRAVELTIME(1, NUMBEROFANSWERS1) = ATS2(I): TRAVELTIME(2, 

NUMBEROFANSWERS1) = ATS3(I) - ATS2(I) 

    CALCULATEDDISTANCE(1, NUMBEROFANSWERS1) = 

CALCULATEDDISTANCE1 

    CALCULATEDDISTANCE(2, NUMBEROFANSWERS1) = 

CALCULATEDDISTANCE2 

ElseIf P = 2 Then 

    NUMBEROFANSWERS2 = NUMBEROFANSWERS2 + 1 

    TRAVELTIME(3, NUMBEROFANSWERS2) = ATS2(I): TRAVELTIME(4, 

NUMBEROFANSWERS2) = ATS3(I) - ATS2(I) 

    CALCULATEDDISTANCE(3, NUMBEROFANSWERS2) = 

CALCULATEDDISTANCE1 

    CALCULATEDDISTANCE(4, NUMBEROFANSWERS2) = 

CALCULATEDDISTANCE2 

End If 

 

End Sub 
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Private Sub PRINTOUTPUT() 

 

For I = 1 To NUMBEROFANSWERS1 

For K = 1 To NUMBEROFANSWERS2 

    Print #3, Int(TRAVELTIME(1, I) * 10 + 0.5) / 10, Int(TRAVELTIME(2, I) * 10 + 0.5) / 

10, Int(TRAVELTIME(3, K) * 10 + 0.5) / 10, Int(TRAVELTIME(4, K) * 10 + 0.5) / 10, 

    Print #3, Int(TRAVELTIME(1, I) * 10 + 0.5) / 10 + Int(TRAVELTIME(2, I) * 10 + 0.5) / 

10 + Int(TRAVELTIME(3, K) * 10 + 0.5) / 10 + Int(TRAVELTIME(4, K) * 10 + 0.5) / 10, 

    Print #3, Int((CALCULATEDDISTANCE(1, I) - DISTANCE(1)) * 1 + 0.5) / 1, 

Int((CALCULATEDDISTANCE(2, I) - DISTANCE(2)) * 1 + 0.5) / 1, 

    Print #3, Int((CALCULATEDDISTANCE(3, K) - DISTANCE(3)) * 1 + 0.5) / 1, 

Int((CALCULATEDDISTANCE(4, K) - DISTANCE(4)) * 1 + 0.5) / 1, 

Next K 

Next I 

 

End Sub 
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