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This work focuses on the study of X-ray illuminated accretion disks around black

holes by modeling their structure and reprocessed emission. The calculation of new

models for the reflected spectra consider the effects of incident X-rays on the surface of

an accretion disk by solving simultaneously the equations of radiative transfer, energy

balance and ionization equilibrium over a large range of column densities. Plane-

parallel geometry and azimuthal symmetry are assumed, such that each calculation

corresponds to a ring at a given distance from the central object. The radiation

transfer equations are solved by using the Feautrier scheme. Ionization and thermal

balance are solved by using the photoionization code xstar, including the most recent

and complete atomic data for K-shell of the isonuclear sequences of iron, oxygen, and

nitrogen. The redistribution of photons due to Compton scattering is included using

a Gaussian approximation for the Compton kernel. The atomic data for nitrogen

ions, namely, level energies, wavelengths, gf-values, radiative widths, total and partial

Auger widths, and total and partial photoionization cross sections are computed with

a portfolio of publicly available atomic physics codes: autostructure, hfr, and

bprm.

The shape of the Fe K-line is perhaps one of the most important features in the X-

ray spectrum of accreting sources. Therefore, the effect of fluorescent Kα line emission

and absorption in the emitted spectrum is explored, as well as the dependence of the



spectrum on the strength of the incident X-rays and other input parameters and the

importance of Comptonization on the emitted spectrum. These calculations predict

under which conditions the line is formed, providing information about the ionization

stage of the emitting gas. The width of this line is often related to relativistic effects

(i.e. gravitational redshift), since the emitting gas may be located in regions close to

the black hole. However, these models suggest that the energy redistribution of the

photons due to Compton scattering also affects the line profile and it is responsible

for an important fraction of the broadening.
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The most exciting phrase to

hear in science, the one that

heralds new discoveries, is

not ’Eureka!’ (I found it!)

but ’That’s funny ...’

Isaac Asimov (1920 - 1992)

1
Introduction

1.1 Historical Background

The beginning of the 20th century was marked with the development of two of the

greatest achievements in modern physics, the relativity theory and the quantum me-

chanics. Interestingly, German physicist Albert Einstein played a fundamental role

in both fields, being the author of the former and a major contributor to the lat-

ter. In the spring of 1905, Einstein submitted a paper entitled “On a Heuristic View

concerning the Production and Transformation of Light” (Einstein, 1905a), where he

suggested that light should be considered as a collection of independent particles of

energy, using Max Planck’s postulate of the quantum as the fundamental unit of light.

He explained the photoelectric effect, which holds that for each electron emitted a

specific amount of energy is absorbed. This theory formed the basis for the quantum

mechanics. In a second paper entitled “On the Electrodynamics of Moving Bodies”

(Einstein, 1905b), he presented a theoretical essay that came to be known as the

special theory of relativity, radically changing our understanding of energy, mass and

time. Ten years later, his general theory of relativity (Einstein, 1915) changed our

understanding of space and time and how gravity affects the universe.

Among the many extraordinary predictions of the general relativity theory is the

possibility that stars could collapse under their own gravity, and that the space, or in

1



2

fact the spacetime around them became so curved that they would be disconnected

from the rest of the Universe. Shortly after the theory of general relativity was

published, Karl Schwarzschild used Einstein’s field equations to predict that under

such situations the gravitational force in the region around the collapsed star will be

so great that no particle will be able to escape from it, not even a photon. These dead

stars known as black holes, are probably the most mysterious objects in the Universe,

and they constitute one of the few cases in which a great prediction was made solely

on the basis of thought, decades before any observational evidence could be found.

The detection of a black hole is not trivial a matter. One could imagine looking at

the sky for a moving dark spot which occults the light of the stars behind it. However,

black holes are compact objects located at very large distances. For instance, the

apparent size of a black hole with 50 kilometers diameter located at 4 light-years

distance (the distance to the closest of all stars, Alpha Centauri), will be equivalent to

the apparent size of a human hair located at the moon. This would require telescopes

millions of times more powerful than the current ones to detect it. Thus, black holes

can only be observed indirectly through the influence they exert on their environment.

This was understood by Yakov Zel’dovich at the beginning of the 1960’s (Thorne,

1994), who started working on finding a way to indirectly detect black holes. He,

together with Edwin Salpeter and Igor Novikov, realized the following scenario: some

stars are known for blowing strong winds of gas off their surfaces. If a black hole

and one of these stars happened to be orbiting each other (a binary system), then the

black hole will capture some of the wind material (mostly hydrogen and helium), heat

it in a shock front, and produce radiation. They estimated that the temperature of

the shocked gas should be of the order of several millions of degrees. Thus, instead of

emitting visible light, this gas should shine bright with X-rays. The problem is that

the earth’s atmosphere is opaque to X-rays, and for the decade of the 1960’s X-ray

telescopes were extremely primitive (Thorne, 1994).

During the same decade, the cold war was the driving force for many scientific

experiments. Both the Soviet Union and the United States were testing nuclear

weapons, and the U.S. Air Force was interested in developing flying X-ray detectors
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to monitor future Soviet bomb tests. A team lead by Riccardo Giacconi started

designing, building and testing a variety of weapons-blast monitoring instruments.

However, in June of 1962 the team took its first astronomical step, flying an X-ray

detector on an Aerobee rocket above the atmosphere in search of X-rays from the

moon. Instead, they found a signal 5000 times brighter than expected that was

coming from the Scorpius constellation. After months of reviewing the data, they

announced the discovery of the first X-ray star detected (Giacconi et al., 1962), with

the name Sco X-1 (Sco for the Scorpius constellation, X for X-ray source, and 1

for being the brightest). This and other teams continued in the improvement of

the detectors. In 1970 the Giacconi team launched Uhuru, the first X-ray satellite,

which discovered and cataloged 339 X-ray sources (Giacconi et al., 1974), marking

the beginning of X-ray astronomy on a large scale.

1.2 Compact Objects and Accreting Sources

Compact objects are the end products of stellar evolution; they are born when normal

stars die. There are three types of compact objects, white dwarfs, neutron stars

and black holes. The primary factor determining whether a star ends up as any

of these three objects is its mass. White dwarfs originate from small stars with

masses M . 4M⊙ (where M⊙ ∼ 2 × 1030 Kg is the mass of the Sun). According

to numerical calculations, white dwarfs cannot exceed 1.4M⊙ (Chandrasekhar, 1931).

The progenitor star of a white dwarf probably undergoes a relatively gentle mass

ejection at the end of its evolutionary lifetime, perhaps forming a planetary nebula.

Neutron stars and black holes originate from more massive stars, although the lines

that separate stars that become black holes or neutron stars is uncertain since the

final stages of the evolution of massive stars is poorly understood. Neutron stars have

a maximum mass which ranges 1.4 − 3M⊙ (Bombaci, 1996).

These three types of compact objects differ from a normal star in two fundamental

properties. First, they do not burn nuclear fuel in their interior, and therefore they are

not able to sustain themselves against gravitational collapse by means of internally
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generated energy. Instead, white dwarfs and neutron stars are supported by the

pressure exerted by degenerate electrons and degenerate neutrons, respectively. On

the other hand, black holes are completely collapsed objects, meaning that there is

no other force to balance gravity and they have collapsed into a singularity. The

second fundamental difference between compact objects and normal stars is their

size. Although they can have comparable mass, compact objects have much smaller

radii and thus, much stronger surface gravity.

White dwarfs are very dense stars with a mass comparable to that of the Sun,

but with a volume comparable to that of the earth. They radiate away the thermal

energy left over from their collapse, which is characterized by a effective temperature

of around 7000-10000 Kelvin, and thus a radiation that looks white to the naked eye.

Neutron stars are almost exclusively made of neutrons (hence their name), due to the

elimination of electrons and protons via inverse β-decay. No light, or anything else

for that matter, can escape from a black hole.

There are alternative scenarios under which a black hole can be formed other than

the total gravitational collapse. For instance, either a white dwarf or a neutron star

can increase its mass if it is bound to a normal star on a binary system, by accreting

material. Because there is a maximum mass that they can have, this process can

eventually lead to the formation of a black hole. Contrary to white dwarfs and neutron

stars, there is not restriction in the total mass of a black hole, it can range from the

stellar regime with masses of M ∼ 10M⊙, up to supermassive black holes with masses

of M ∼ 106 − 109M⊙. Supermassive black holes are believed to exist in the nuclei of

galaxies (including our own Milky Way), which has been confirmed by measurements

of the orbital speeds of the stars close to the nucleus (Kormendy & Richstone, 1995;

Genzel & Eckart, 1998; Ghez et al., 2008). The luminosities of the accreting compact

objects, such as X-ray binaries, that populate the Milky Way are known to be as

high as ∼ 105L⊙, while in many galaxies harboring a supermassive black hole in their

center the luminosity can exceed that by seven to even nine orders of magnitude.

These are usually referred to as active galactic nuclei (AGN). Supermassive black

holes are also proposed to explain the violent activity observed in the most luminous
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time-steady objects in the universe, quasars.

Following the Salpeter-Zel’dovich idea that gas streams falling to a black hole

should collide and produce radiation, Donald Lynden-Bell devised a more complete

and realistic description of how supermassive black holes might power quasars and

galactic nuclei (Lynden-Bell, 1969). He argued that after the gas streams collide,

they will join together, and the centrifugal forces will make them spiral around the

black hole many times before reaching it. In order to obey conservation of angular

momentum, the falling gas should form a disk, similar to the rings around Saturn.

He called this an accretion disk, since the gas is continuously accreting towards the

black hole. In the accretion disk, adjacent gas streams will run against each other,

and the friction produced will heat the disk to high temperatures.

We now know that the extraction of gravitational potential energy from material

through accretion is likely the most efficient and powerful mechanism for the pro-

duction of high-energy radiation. This can be shown by simple order-of-magnitude

estimates. For a body of M and radius R, the gravitational potential energy released

by accretion of a particle of mass m onto its surface is

∆Eacc = GMm/R,
�

�

�

�1.1

where G is the gravitation constant. In the case of nuclear fusion reactions, which

occur at the interior of a star (the burning of hydrogen), no more than 1% of the rest

mass will be emitted as energy, or

∆Enuc = 0.01mc2,
�

�

�

�1.2

where c is the speed of light. Assuming that the compact object has a radius of

R ∼ 10 km and a mass M ∼ M⊙, which are typical values of a neutron star, one

obtains ∆Eacc/∆Enuc ∼ 20. In fact, more detailed estimates predict that up to 40%

of the rest mass of the accreted material can be emitted as radiation (McClintock &

Remillard, 2006).
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1.3 Early X-ray observations

The first observations of X-ray sources using rockets and balloon type detectors flown

during the 1960’s discovered not only sources within the Milky Way but also much

farther away, such as the extra-galactic sources, 3C 273 and Centaurus A (Bowyer

et al., 1970). The Uhuru satellite confirmed the detection of several sources previously

identified as active galactic nuclei (AGN) (Giacconi et al., 1974). The Ariel-V obser-

vatory later showed that X-ray emission is a common property of AGN and found

sources in which the X-ray flux varied significantly on time scales shorter than one

day (Elvis et al., 1978). The Ariel V data, in combination with Uhuru, OSO-8 and

HEAO-1 established that in the 2-10 keV regime AGN spectra could be parametrized

by power-law continua E−Γ with a mean slope (photon index) for the sample of

Γ ∼ 1.7 (e.g. Tucker et al., 1973; Mushotzky, 1976, 1984).

In 1978 the Einstein observatory was launched. It provided focusing X-ray optics

and high sensitivity which increased the number of AGN detections by an order of

magnitude. It revealed a soft-band (0.1-2 keV) complexity (Wilkes & Elvis, 1987),

that led to suggestions that the gas only covers a fraction of the line-of-sight. Einstein

observations of variations in absorption for the quasar MR 2251-178 led Halpern

(1984) to the first suggested detection of a partially ionized absorber in AGN, dubbed

warm absorber.

The European X-ray Observing satellite EXOSAT had a 3 year mission (1983-

1986), providing great contributions such as the detailed study of rapid variability in

AGN (Green et al., 1993). Its broad bandpass was also key in the detection of an

excess of soft-band X-ray flux (the so called soft excess), seen in about 50% of AGN

(Turner & Pounds, 1989). Additionally, EXOSAT also detected iron emission in some

of the brightest sources (Leighly et al., 1989; Ghosh et al., 1992), also confirmed by

OSO-8 data (Mushotzky et al., 1978), and the Japanese satellite Tenma (Miyoshi

et al., 1986). Holt et al. (1980) suggested that Fe emission lines found in Einstein

spectra originate from the same gas resposable for the partial covering absorption.

Japan launched Ginga in 1987, which provided a large area proportional counter
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yielding good spectra over the 2-30 keV energy band, whose data established Fe Kα

fluorescence emission to be a common property of many Seyfert galaxies (Pounds

et al., 1989, 1990; Matsuoka et al., 1990; Nandra & Pounds, 1994) The detection of

a deep Fe K edge was consistent with originating in a neutral gas and supported the

picture of a strong contribution from a reprocessed X-ray component. Ginga spectra

also showed absorption edges from ionized species of iron (Fe xxiv-xxvi), in about

50% of Seyfert spectra (Nandra & Pounds, 1994), indicating a significant column

density (NH ∼ 1023 cm−2) of highly ionized material exist in these nuclei.

The German satellite ROSAT was launched in 1990 carrying instruments to cover

the soft X-ray band. Individual absorption features were found in several objects

in the 0.1-2 keV energy range, including the detection of an absorption feature at

0.8 keV in MCG–6-30-15 (Nandra & Pounds, 1992). Several other bright Seyfert

galaxies had sufficiently strong individual features that distinct zones of ionized gas

could be isolated (Nandra et al., 1993; Turner et al., 1993a,b; Pounds et al., 1994).

Further AGN ROSAT observations confirmed the relevance of ionized gas in Seyfert

galaxies (Mihara et al., 1994; Ptak et al., 1994; Weaver et al., 1994; Yaqoob et al.,

1994; Guainazzi et al., 1994).

The launch of the Japanese Advanced Satellite for Cosmology and Astrophysics,

ASCA (Tanaka et al., 1994) in 1993 offered a significant improvement in spectral

resolution with the first flight of CCDs on an X-ray observatory. Of particular interest

was the possibility of measuring strong distortions (blurring) of the Fe K emission

line contributions produced in regions very close to the black hole, provided the line

was strong and not confused with other spectral signatures. Indeed, a strong spectral

curvature around 6 keV was observed in many Seyfert galaxies and an interpretation

made as an Fe K emission line, heavily broadened and redshifted by relativistic effects

close to the event horizon (Tanaka et al., 1995; Nandra et al., 1997; Fabian et al.,

2000).
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1.4 X-ray reflected spectra

All accreting black holes emit a significant fraction of their bolometric luminosity

as X-rays. For example, it is thought that AGN radiate about 10 − 20% of the

total energy output above 2 keV. Because X-rays are only produced in very hot

environments, it is likely that they originate from the inner regions of the accretion

disc. Thus, X-ray observations are needed to fully understand the physics of these

systems. The X-ray continuum spectra vary from source to source, and can vary in

time as well, but for our purposes it is adequate to think of accreting black holes

as exhibiting power-law continua that extend up to hard X-ray energies (∼ 105 eV).

The first spectral observations of AGN had poor energy resolution, but determined

that the continuum is characterized by a power-law with photon-index Γ that in most

cases is about ∼ 2.

If an optically thick accretion disc surrounds the compact object, and if the X-ray

continuum flux irradiates the disc, then the spectral signatures of the interaction of

the continuum and the disc are expected to imprint themselves on the overall spec-

trum (Basko, 1978; Guilbert & Rees, 1988). This impression is known as reflection.

In both AGN and X-ray binaries, it is thought that the material responsible for the

reflection is the accretion disk and that the source of X-rays lies above it in a hot

corona. The Figure 1.1 shows a cartoon picture of this situation. Photons from the

disk with ultraviolet (UV) energies interact with the hot electrons via inverse Comp-

ton scattering and gain energy, producing the observed power-law X-ray continuum

emission. However, this power-law spectrum also illuminates the accretion disk, which

reprocesses the radiation, emitting a reflection spectrum. This is a new observable

component which carries information about the state of the material in the accretion

disk, such as elemental abundances, temperature and density structure, velocity and

ionization state of the gas.

When an X-ray photon enters the relatively cold gas of the accretion disk, it is

subject to a number of possible interactions. An incident photon is either absorbed

by photoionizing an ion in the disk or scattered back by Compton scattering. Ioniza-



9

Figure 1.1 Schematic diagram of the reflection problem. The source of illuminating

X-ray photons is located above the accretion disk. Both the direct power-law and the

reprocessed components are detected by the observations.

tion can be followed by Auger de-excitation (emission of electrons), or by radiative

decay with the emission of a fluorescent line photon which eventually escapes the

slab. Therefore, in addition to the power-law continuum, the reflection component is

responsible for several atomic emission and absorption features. The Ginga observa-

tory discovered that almost all Seyfert galaxies have a strong iron Kα emission line

at 6.4 keV (Pounds et al., 1990; Nandra & Pounds, 1994). Gottwald et al. (1995)

also stressed the ubiquity of iron lines from compact sources, analyzing more than

430 EXOSAT X-ray binary spectra. In Figure (1.2) we show an histogram for the

distribution of the iron line energies contained in Table 2 of Gottwald et al. (1995).

Most of the line energies are between 6.4 - 6.8 keV.

The fluorescent iron line is produced when one of the two K-shell (n = 1) electrons

of an iron atom is ejected following the photoelectric absorption of an X-ray. Following

the photoelectric event, the resulting ion in the excited state can decay in one of the

two ways. One of the electrons in the L-shell (n = 2) needs to fill the hole left in the
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Figure 1.2 Distribution of the Kα emission line energies for 205 spectra. Data taken

from Gottwald et al. (1995).

K-shell, for which it needs to lose a certain amount of energy, specifically 6.4 keV.

The ion can either emit a photon (34% of probability), or it can release an Auger

electron (66% probability).

The hard X-ray spectrum of an accretion disc also shows deviations from a power-

law due to the Compton scattering of photons by cold electrons in the gas, which

hardens the spectrum between 8 and 20 keV (Rybicki & Lightman, 1979). Since

the material in the accretion disc moves toward the center losing energy and angular

momentum as a consequence of the viscosity, the excess of energy increases the tem-

perature of the gas and produces black body radiation. The peak of the Planckian is

detectable at energies typically below ∼ 1 keV.
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These are the main processes that affect the shape and profile of the reflected

spectra from accretion discs around black holes. Each one must be treated carefully,

and many theoretical and numerical problems arise if one hopes to work from first

principles. Such calculations are non-trivial since they involve the calculation of

both the thermal and ionization balance in a relatively large column of irradiated

gas. Additionally, the material in an accretion disk is optically thick and full of

electrons, and thus Compton scattering, which redistributes photon energies, will

play an important role in the radiation transfer. Finally, the added atomic physics

complexities in predicting spectral lines and other atomic features results in very

detailed calculations.

Much theoretical effort has gone into studies of X-ray illuminated disks over the

past few decades. Most of such models commonly assumed that the gas density is

constant with depth (Lightman & White, 1988; George & Fabian, 1991; Matt et al.,

1993; Zycki et al., 1994). Although constant density models may be appropriate for

radiation-pressure dominated disks, recent studies have shown significant differences

when the gas density is properly solved via hydrostatic equilibrium (Nayakshin et al.,

2000; Nayakshin & Kallman, 2001; Ballantyne et al., 2001). However, all past models

have included only primitive treatments of the atomic processes affecting the exci-

tation and emission from different elements, namely nitrogen, oxygen, calcium, and

iron.

1.5 This Dissertation

This thesis focuses on the study of X-ray illuminated accretion disks around black

holes by modeling their structure and reprocessed spectra. Implementation of a self-

consistent approach combined with the most updated atomic data provides a sig-

nificant improvement in the understanding of X-ray observations of these systems.

Comparison of observations and theoretical models present the opportunity to learn

about the accretion disk structure. This can be done by analyzing atomic lines, ab-

sorption edges, recombination continua and the Compton bump, among other features
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in the spectrum.

The effects of incident X-rays on the surface of an accretion disk are studied

by solving simultaneously the equations of radiative transfer, pressure balance and

ionization equilibrium over a large range of column densities. Plane-parallel geometry

and azimuthal symmetry can be assumed, such that each calculation corresponds to

an annular ring at a given distance from the black hole. The radiation transfer

equations are solved by using the Feautrier scheme (Mihalas, 1978). Ionization and

thermal balance are solved by using the photoionization code xstar (Kallman &

Bautista, 2001), including the most recent and complete atomic data for the K-shell

of the isonuclear sequences of iron (Kallman et al., 2004), oxygen (Garćıa et al., 2005),

and the recently published sequences for Ne, Mg, Si, S, Ar, Ca (Palmeri et al., 2008a),

and Ni (Palmeri et al., 2008b). Redistribution of photons due to Compton scattering

is included using a Gaussian approximation for the Compton kernel.

Other relevant ions are also included in the models, since new atomic data have

recently become available. However, there are no reliable atomic data for X-ray

transitions from nitrogen ions. Therefore, this thesis also includes the calculation of

the atomic structure and inner-shell photoabsorption cross sections for the nitrogen

iso-nuclear sequence (i.e., N, N+, N2+,...,N6+).

For the calculation of the atomic data for nitrogen ions, namely, level energies,

wavelengths, gf-values, radiative widths, total and partial Auger widths, and total

and partial photoionization cross sections; we have used a portfolio of publicly avail-

able atomic physics codes: autostructure (Badnell, 1997), hfr (Cowan, 1981),

and bprm (Seaton, 1987). The inclusion of these data in the accretion disk models

provide insight into the physical conditions of the systems where nitrogen lines can

be observed.

This dissertation is presented in the following way. In Chapter 2 the basic the-

ory concerning reflection of X-ray from accretion disks is discussed. In particular,

Section (2.1) briefly describes the basic concepts regarding the accretion power onto

black holes, the Shakura & Sunyaev standard model, and the equations of hydrostatic

equilibrium required to determine the temperature and pressure profiles in the ver-
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tical direction, perpendicular to the disc plane. Section (2.2) contains the discussion

on the Comptonization of hard X-rays by a cold media, comparing the Gaussian ap-

proximation with the Green’s function method. Perhaps the most important part of

Chapter 2 is the radiation transfer section, in particular the discussion of the accuracy

of the Feautrier method versus the formal solution and the Chandrasekhar approach,

which are outlined in Section (2.3).

In Chapter 3 the main results of this dissertation are presented. Section 3.2 de-

scribes the theory and numerical methods concerning the radiation transfer, ionization

and energy equilibrium, and the atomic data used in the calculation of the models of

the X-ray reflected spectra from accretion disks. In Section 3.3 a set of models for

constant density atmospheres is presented, covering different degrees of ionization,

viewing and incidence angles, as well as the effect of the abundance on the reflected

spectrum. The main conclusions of these results are summarized in Section 3.4.

Chapter 4 is a short review of the theory of the atomic structure, and describes the

general aspects of the codes used in the calculation of both atomic structure and the

photoionization problem (Section 4.2). A few concepts associated with the emission

of the iron K-lines are mentioned in Section (4.3).

Chapter 5 contains a report on calculations of energy level structure and bound-

bound and bound-free transition probabilities for the K-shell of nitrogen ions. The

numerical methods are briefly described in Section 5.2 while an analysis of the results

based on comparisons with previous experimental and theoretical values is carried

out in Section 5.3. Some conclusions for this Chapter are discussed in Section 5.4.
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Theory of Accretion and Radiative Transfer

2.1 Accretion onto Black Holes

Before discussing the models for the origins of the observed X-ray spectral features in

compact objects, it will be useful to review some of the basic results from accretion

disc theory. A complete treatment of the theory of accretion discs can be found in

Shakura & Sunyaev (1973), hereafter SS73, and Novikov & Thorne (1973).

The two most important quantities to describe an accretion disk around a black

hole are the mass M of the black hole, and the rate at which mass from the accretion

disk is falling into the black hole, Ṁ . The total mass determines the size scale of

the system trough the Schwarzschild radius, the radius of the event horizon in a

non-spinning black hole:

Rs =
2GM

c2

�

�

�

�2.1

where G is the Newtonian gravitation constant and c is the speed of light, or the

gravitational radius,

Rg =
GM

c2
=
Rs

2

�

�

�

�2.2

This radius can be really small compared with other stellar objects. For example,

for a black hole of 108 solar masses (M = 108M⊙), and with M⊙ ∼ 2 × 1030 Kg,

G ≃ 6.67 × 10−11 m3 Kg−1 s−2, c ∼ 3 × 108 m s−1; we obtain Rs ≃ 2.6 Km, and

Rg ≃ 1.3 Km, much smaller than the radius of the moon!.

14
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On the other hand, the accretion rate defines the total luminosity of the system

L = ηṀc2
�

�

�

�2.3

Here η is the efficiency of converting the rest mass energy of the infalling material

into radiation. This equation shows that one observer will see the system brighter if

a larger amount of material is accreted into the black hole. The outgoing radiation

would scatter off the gas at larger radii and exert an outward force in the radial

direction. It is clear then that there exist some critical accretion rate at which the

radiation pressure stops the accretion of material. This situation is known as the

Eddington limit. Assuming spherical accretion of a hydrogen gas onto a compact

object of mass M , if the gravitational attraction at a radius r is balanced with the

radiation pressure:
GMmp

R2
=

LσT

4πR2c

�

�

�

�2.4

where mp is the mass of the proton (much larger than the electron mass), and σT =

8πe4/3m2
ec

4 is the Thomson cross section for electron scattering, then the Eddington

Luminosity is

LEdd =
4πGMmpc

σT

≃ 1.26 × 1046

(

M

108M⊙

)

erg s−1
�

�

�

�2.5

This luminosity also implies a critical accretion rate given by

ṀEdd =
LEdd

ηc2
≃ 2.78

(

M

108M⊙

) (

0.08

η

)

M⊙ yr−1
�

�

�

�2.6

The efficiency of accretion can be estimated by comparing the binding energy of a

particle at the innermost stable orbit with its rest mass energy E = mc2. For a non-

spinning black hole the minimum radius in the disc at which stable circular orbits

are possible is called radius of marginal stability, Rms = 3Rs = 6Rg (Kaplan, 1949).

From (2.2) we see that Rms = 6GM/c2, and using the Newtonian expression for the

binding energy

Eb =
GMm

2Rms

=
mc2

12

�

�

�

�2.7
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then

η =
1

12
= 0.08

�

�

�

�2.8

A more detailed calculation taking into account the space curvature close to the black

hole reduces the binding energy and gives a different value, η = 0.057 (Salpeter, 1964).

2.1.1 Sakura & Sunyaev standard model

The standard theory developed by SS73 considers a geometrically thin accretion disc

(i.e. H ≪ R, where H is the scale height at R), such that the gas particles follow

Keplerian orbits at each radius and the inward radial speed is much smaller than

the rotation velocity. The internal viscosity of the gas produces a loss of energy and

angular momentum of the particles. The excess of energy will be used to heat the

gas and is ultimately radiated away. The emerging flux at each radius, assuming the

same accretion rate over the disc, is given by

Fd(R) =
3GMṀ

8πR3

[

1 −

(

Rms

R

)1/2
]

�

�

�

�2.9

or

Fd(R) =
3GMṀ

8πR3

[

1 −

(

3Rs

R

)1/2
]

�

�

�

�2.10

Using the Stefan-Boltzmann relation F = σT 4; then the effective temperature at that

radius is

Teff (R) =

[

Fd(R)

σ

]1/4 �

�

�

�2.11

or

Teff (R) =

{

3GMṀ

8πσR3

[

1 −

(

3Rs

R

)1/2
]}1/4

�

�

�

�2.12

where σ ≃ 5.67× 10−5 erg cm−2 s−1 K−4, is Stefan’s constant. Therefore, we see that

R, M and Ṁ determines the structure of the disc in the standard model. Also, SS73

found that for fixed values of M and Ṁ , the disc can be divided into three regions

depending on R: the outer region at a large R, in which gas pressure dominates radi-

ation pressure and the opacity is controlled by free-free absorption; the middle region
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at smaller R, in which gas pressure is dominated by radiation pressure but opacity

is mainly due to electron scattering; and the inner region at very small R, where

radiation pressure dominates over the gas pressure, but still scattering dominates the

absorption opacity. For some values of the accretion rate, the middle region may not

exist.

Since we are interested in the inner region, we only summarize the important

equations of SS73 for the radiation dominated case. Those are:

the half-thickness

z0 =
3

8π

σTṀ

c

(

1 − r−1/2
)

�

�

�

�2.13

the temperature

T = 2.3 × 107 (αm)−1/4 r−3/8
�

�

�

�2.14

the optical depth

τ = 8.4 × 10−5α−17/16m−1/16ṁ−2r−93/32
�

�

�

�2.15

Where we used the dimensionless parameters definitions

m ≡
M

M⊙

ṁ ≡
Ṁ

ṀEdd

r ≡
R

3Rs

�

�

�

�2.16

Then we also can calculate the scale height H = z0/r, and the density with

n =
u0

2mpz0

, with u0 : surface density
�

�

�

�2.17

So we also can have an estimate of the pressure of the gas. The α-parameter that

appears in Equations (2.14) and (2.15) comes from the prescription that the viscosity

ν in the gas is given by

ν = αcsH,
�

�

�

�2.18

where cs is the sound speed.
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2.2 Comptonization of X-rays by cold electrons

Comptonization is the process by which photons can gain or lose energy by scattering

off thermal electrons. The process has proven to be significant for the generation of

X-rays emitted from gas accreting onto compact objects, because hot electrons (∼ 109

K) are cooled by giving some of their energy to UV photons which are then scattered

to X-ray energies (Shapiro et al., 1976).

The opposite situation occurs when the temperature of the electrons is small com-

pared with the energy of the photons (kT ≪ hν), especially when the incident photons

are in the X-ray band (0.1 ≤ hν ≤ 106 eV). In this case each photon delivers part

of its energy to the electrons in the gas, after each scattering (Shapiro & Teukolsky,

1986).

2.2.1 Green’s function method

In order to solve the problem of Comptonization of X-rays, Lightman et al. (1981)

(hereafter LLR) derive the Green’s functions for scattering of photons by cold elec-

trons in plane-parallel, semi-infinite geometry, with the photon source located at an

arbitrary depth in the medium.

In a non-relativistic approximation, LLR adopted a formalism for computing the

emergent photon number spectrum G(y), from an initial monochromatic spectrum at

wavelength y0, using the expression

G(y, y0) =
∞

∑

n=0

Pnψn(y, y0)
�

�

�

�2.19

where y ≡ λ/λc, and λc = h/mec is the Compton wavelength. In this equation,

Pn is the probability of photon escape from a finite medium after n scatterings, and

ψn is the wavelength distribution of photons scattered n times in a infinite medium.

Lightman & Rybicki (1980) developed a technique to calculate directly the probability

Pn without solving the time-dependent problem. In particular at the surface

Pn =
(2n)!

(2n− 1)(2nn!)2
(τ = 0)

�

�

�

�2.20



19

and for many scatterings (n ≫ 1); Pn ∼ 2n−3/2. On the other hand, Illarionov et al.

(1979) calculated the exact spectral distribution of photons ψn after n scatterings.

This work both corrects the error of the Kompaneets equation (Kompaneets, 1957)

in the limit of low temperature, and allows the scattering to be treated as a discrete

process, which is important for small numbers of scatterings. In the non-relativistic

limit, they found

ψn(∆y) =

∫

dξψn−1(ξ)Θ(1 − |∆y − ξ − 1|)
3

8

[

1 + (∆y − ξ − 1)2
]

�

�

�

�2.21

where ∆y ≡ y − y0, and Θ(x) is the Heaviside function (i.e. Θ(x) = 1 for x > 0, and

zero otherwise). For n larger than 3 or 4, ψn is well approximated by a Gaussian

ψn(∆y) ≃

(

5

4πn

)1/2

exp

[

−5(∆y − n)2

4n

]

�

�

�

�2.22

We show the results for the first four scatterings in Figure (2.1), using the integral

(2.21) for n = 1, 2; and the Gaussian approximation (2.22) for n = 3, 4.

For an input spectrum I(y), the emergent radiation is the convolution

S(y) =

∫ y

0

G(y − ξ)I(ξ)dξ
�

�

�

�2.23

Integration over all y gives
∫ ∞

0

S(y)dy =

∫ ∞

0

dy

∫ y

0

G(y − ξ)I(ξ)dξ =

∫ y

0

I(ξ)dξ

∫ ∞

0

G(y − ξ)dy
�

�

�

�2.24

but G satisfies the normalization
∫ ∞

0

G(y, y0)dy = 1
�

�

�

�2.25

so
∫ ∞

0

S(y)dy =

∫ ∞

0

I(y)dy
�

�

�

�2.26

Therefore the normalization of G yields conservation of the number of photons. As

an example, LLR solve the case where the source spectrum is a black body,

Ibb(x) = x3

[

exp

(

x
mc2

kT

)

− 1

]−1 �

�

�

�2.27
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Figure 2.1 Redistribution function ψn(∆y) for n = 1, 2, 3 and 4.

where x ≡ E/mec
2 = 1/y. The temperature of the black body was set to kT/mc2 =

0.02, and the results for two different optical depths are shown in the Figure (2.2).

The LLR results show the shape of the emergent spectra after many scatterings, and

how the low-energy shape follows the x1/2 power law in both cases, as the result of the

asymptotic n−3/2 law for the probability of a photon to emerge from the semi-infinite

medium.

2.2.2 Gaussian approximation

The Compton scattering can be also treated as an approximation similar to (2.22), in

which the scattered photons are assumed to be distributed according to a Gaussian
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Figure 2.2 Emergent energy spectra (solid lines) for a black body source (dashed lines)

originating at depth τ0. Note that the effect of the down-scattering in the spectrum

is enhanced for larger depths. Taken from Lightman et al. (1981).

profile normalized to unity (Nayakshin et al., 2000; Ross & Fabian, 1993),

P (Ec, Es) =
1

σπ1/2
exp

[

−(Es − Ec)
2

σ2

]

�

�

�

�2.28

centered at

Ec = E0 (1 + 4θ − ǫ0)
�

�

�

�2.29

where θ ≡ kT/mec
2 is the dimensionless electron temperature, E0 is the initial photon

energy, Es is the scattered photon energy and ǫ0 ≡ E0/mec
2. The energy dispersion
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of this Gaussian is given by

σ = ǫ0

[

2θ +
2

5
ǫ20

]1/2 �

�

�

�2.30

As shown by Ross & Fabian (1993), this treatment describes adequately the down-

scattering of photons of energy less than ∼ 200 keV. This approximation is also

discussed by Ross et al. (1978).

Therefore, the mean intensity after one scattering is found with the convolution

of the unscattered intensity J(E ′)

J ′(E) =
1

σkn(E)

∫

dE ′J(E ′)P (E ′, E)
�

�

�

�2.31

where

σkn(E) = σT
3

4

[

1 + x

x3

{

2x(1 + x)

1 + 2x
− ln(1 + 2x)

}

+
1

2x
ln(1 + 2x) −

1 + 3x

(1 + 2x)2

]

�

�

�

�2.32

(with x ≡ E/mec
2), is the Klein-Nishina cross-section, which represents the reduction

of the classical value (Thomson), as the photon energy becomes large (Rybicki &

Lightman, 1979).

We compute the Comptonized spectrum following this approximation, taking the

same black body source function used in LLR (at θ = 0.02), in order to compare the

behavior of both solutions. In Figure (2.3) we plot the emergent spectrum after 50,

500 and 5000 scatterings, compared with the original spectrum Ibb(x). We can see

that the photons at large x (high energies) are scattered in a similar way to the LLR

result. However, using the Gaussian approximation it is very difficult to reproduce

the power law x1/2 at low energies. Only after 5000 iterations (scatterings), does this

part of the resulting spectrum show Comptonization. It is clear that many iterations

are necessary to reproduce the LLR results with the Gaussian approximation. This

is expected, because the fractional energy change after n scatterings, for θ ≪ 1, is

about
E

E0
≃ (1 − ǫ0)

n
�

�

�

�2.33
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and therefore n ≃ ln(∆E/E)/ǫ0. If ln(∆E/E) is of the order of unity, then the

number of scatterings is of the order of the inverse of energy, i.e., n ∼ ǫ−1
0 (note

ǫ0 = x). Then we see that for x ≃ 1, the number of scatterings is of the order of 1;

but for low energies, if x ≃ 0.001 then n ∼ 103, as can be observed in Figure (2.3).

However, since we are interested in the effect of the Comptonization at high energies,

especially in the region close to the Kα iron lines (≃ 6.4 keV), we see that for about

∼ 50 scatterings this technique provides a reasonably accurate solution.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e-05  1e-04  0.001  0.01  0.1  1

x*
J(

x)

x

Ibb(x)
n=50
n=500
n=5000
x1/2

Figure 2.3 Emergent spectra after 50, 500 and 5000 scatterings. The black body Ibb(x)

(in red) is assumed to be the same that LLR. We also show the power law x1/2 for

low energies.
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2.3 Radiative Transfer

In this section we discuss some of the basic ideas regarding the transport of radia-

tion in a gaseous medium. In particular, we will follow the formalism known as the

Feautrier method, described in Mihalas (1978), which describes how the equations

must be discretized to perform numerical solutions and the application of boundary

conditions to describe the physics of a particular problem. We also discuss the treat-

ment developed by Chandrasekhar (1960) for isotropic scattering in the conservative

case, which emphasizes the formal nature and solution of the transport equations.

We also show comparisons of numerical and analytic solutions in some special cases.

2.3.1 The interaction of radiation with matter

If a beam of radiation passes through matter, energy may be added or subtracted

from it by emission or absorption, and the intensity will not, in general, remain

constant. Scattering of photons into and out of the beam can also affect the intensity.

Therefore, if we are interested studying the interaction of radiation with matter, we

need to distinguish between scattering and true absorption-emission processes.

Scattering processes

The scattering processes occur when a photon interacts with a scattering center (per-

haps with a change in the internal excitation state), and emerges from the interaction

with a slightly altered energy. This process depends mostly on the radiation field and

has a weak connection with the local physics of the material.

Examples of scattering of photons by a free electron are: Thomson scattering,

which is the result of a free charge oscillating in the electromagnetic field of the

radiation; and the Compton scattering, given by a collision of the photon with the

free particle (electron). Similarly, atoms are centers of the Rayleigh scattering, which

can be viewed as a resonance of a permitted oscillation of the bound system with the

field.
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Absorption-Emission processes

The absorption processes occur when the photon is destroyed by conversion of its

energy into thermal energy of the gas, i.e., the photon is thermalized. Since the

photon energy goes directly into the thermal kinetic energy of the gas, absorption is

coupled with the local thermodynamics of the material.

Conversely, the thermal emission transfers energy from the thermal pool of the

gas directly to the radiation field. Therefore, combination of thermal absorption

and emission produces a local equilibrium between the radiation and the material,

while the scattering processes allow photons to move from one part to another in

the atmosphere independently of the local conditions, introducing alterations to the

equilibrium gas-radiation.

Thermal absorption and emission are inverse processes, for which corresponding

examples are: Bound-free absorption or photoionization (electron escapes), with ra-

diative recombination (electron is captured); free-free absorption (electron kinetic

energy is altered), with the emission of a photon (bremsstrahlung); bound-bound ab-

sorption or photoexcitation (electron goes to a higher state), with spontaneous decay

or stimulated de-excitation; collisional excitation, with collisional de-excitation; and

collisional ionization (of the excited atom into the continuum), with the inverse given

by three-body collisional recombination.

Extinction coefficient

An element of material, of cross-section dS and length ds, removes from a beam of

radiation with specific intensity I(r,n, ν, t), incident in the normal n to dS, at a

position r, and propagating into a solid angle dω, an amount of energy

δE = χ(r,n, ν, t)I(r,n, ν, t)dSdsdωdνdt
�

�

�

�2.34

within a frequency band dν in a time t. The quantity χ(r,n, ν, t) is called the extinc-

tion coefficient, or opacity, and has units of inverse length. Its inverse gives a measure

of the distance that the photon can propagate before being removed from the beam
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(photon mean-free path).

In local thermodynamic equilibrium (LTE) and static atmospheres, the total ex-

tinction is assumed to be linear in the form

χ(r, ν, t) = κ(r, ν, t) + σ(r, ν, t)
�

�

�

�2.35

where the two volume coefficients κ(r, ν, t) and σ(r, ν, t) describe the rate at which

energy is removed from the beam by true absorption and scattering, respectively.

Emission coefficient

The amount of energy released from an element of material of cross-section dS and

length ds, into a solid angle dω, within a frequency band dν, in a normal direction n

in a time interval dt, is

δE = η(r,n, ν, t)dSdsdωdνdt
�

�

�

�2.36

where η(r,n, ν, t) is called the emission coefficient, in units of erg cm−3 sr−1 Hz−1 s−1.

In a steady-state and thermal equilibrium, the material is at constant temperature

and the radiation field is homogeneous and isotropic. Therefore there is no net gain

or loss of energy by the matter, and the emission coefficient is given by

η(ν) = κ(ν)I(n, ν)
�

�

�

�2.37

which is known as the Kirchhoff’s law. For a gas in strict thermal equilibrium at a

temperature T , the intensity I is given by the Planck function, so we get the Planck-

Kirchhoff relation:

η∗(ν) = κ(ν)Bν(T )
�

�

�

�2.38

2.3.2 Derivation of the Transfer Equation

Consider a parcel of gas located at r with size ∆r and its effect on incident radiation.

The difference between the amount of energy that emerges at a position r + ∆r at
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r+  r∆ ∆ν

I(  ,n,   ,t) r ν

I(       ,n,   ,t+  t) 

dϖ

dϖ

dS
ds

Figure 2.4 Element of absorbing and emitting material considered in derivation of

transfer equation.

time t + ∆t, and the incident at r and t; must be equal to the amount of energy

created by the material in the volume minus the amount absorbed (see Figure 2.4):

[I(r + ∆r,n, ν, t+ ∆t) − I(r,n, ν, t)] dSdωdνdt

= [η(r,n, ν, t) − χ(r,n, ν, t)I(r,n, ν, t)] dsdSdωdνdt
�

�

�

�2.39

Denoting s as the path-length, then ∆t = ∆s/c. Also, the final radiation field after

∆r and ∆t is equal to the initial one plus its differential along the path-length

I(r + ∆r,n, ν, t+ ∆t) = I(r,n, ν, t) + d [I(r,n, ν, t)]
�

�

�

�2.40

The total differential must be taken assuming that the independent variable is t,

which depends on s, thus

d [I(r,n, ν, t)] =
∂I

∂t
∆t+

∂I

∂s
∆s

�

�

�

�2.41

However, ∆t = ∆s
c

, then

d [I(r,n, ν, t)] =
∂I

∂t

ds

c
+
∂I

∂s
∆s

�

�

�

�2.42
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and we get,

I(r + ∆r,n, ν, t+ ∆t) = I(r,n, ν, t) +

[

1

c

∂I

∂t
+
∂I

∂s

]

ds
�

�

�

�2.43

Combining equation (2.39) with (2.43), we obtain the transfer equation:

[

1

c

∂

∂t
+

∂

∂s

]

I(r,n, ν, t) = η(r,n, ν, t) − χ(r,n, ν, t)I(r,n, ν, t)
�

�

�

�2.44

Writing the derivative on s in Cartesian coordinates,

∂I

∂s
=

(

∂x

∂s

) (

∂I

∂x

)

+

(

∂y

∂s

) (

∂I

∂y

)

+

(

∂z

∂s

) (

∂I

∂z

)

�

�

�

�2.45

or
∂I

∂s
= nx

(

∂I

∂x

)

+ ny

(

∂I

∂y

)

+ nz

(

∂I

∂z

)

�

�

�

�2.46

where nx, ny and nz are the components of n, the equation (2.44) becomes

[

1

c

∂

∂t
+ n · ∇

]

I(r,n, ν, t) = η(r,n, ν, t) − χ(r,n, ν, t)I(r,n, ν, t)
�

�

�

�2.47

For the one-dimensional case, choosing the z-direction, and with nz = dz
ds

= cos θ ≡ µ,

the time-independent form is given by

µ
∂

∂z
I(z,n, ν) = η(z,n, ν) − χ(z,n, ν)I(z,n, ν)

�

�

�

�2.48

This is the standard radiation transfer equation for plane-parallel atmospheres.

2.3.3 Optical Depth and the Source function

Considering the planar, time-independent transfer equation, if we introduce dτ ≡

−χ(z, ν)dz, we can define an optical depth, which is the integrated opacity of the

material along the line of sight:

τ(z, ν) =

∫ zmax

z

χ(z′, ν)dz′
�

�

�

�2.49

Because of the negative sign τ increases inward into the atmosphere, from τ = 0 at

the surface where z = zmax. Then it provides an idea of how deeply the observer can
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see into the material. Further, since χ−1 is the photon mean-path, this implies that

τ gives the number of photon mean-free-paths at a frequency ν in the line of sight,

from zmax to z.

Finally, we define the source function S(z, ν), given by the ratio of the emissivity

to the opacity of the gas,

S(z, ν) =
η(z, ν)

χ(z, ν)

�

�

�

�2.50

which we introduce in (2.48) to get

µ
∂Iν
∂τν

= Iν − Sν

�

�

�

�2.51

Where we suppress the explicit dependence on z and µ, and the frequency is

included as a subscript. This basic equation expresses the fact that photons do not

decay spontaneously, so that the intensity of the beam does not change unless photons

are added or taken out from it. Therefore, without these processes, the intensity is

invariant along the rays.

2.3.4 Moments of Transfer equation

The first three moments of the intensity are defined by:

J ≡
1

2

∫ +1

−1

Idµ
�

�

�

�2.52

H ≡
1

2

∫ +1

−1

µIdµ
�

�

�

�2.53

K ≡
1

2

∫ +1

−1

µ2Idµ
�

�

�

�2.54

where J is the mean intensity, since is just an average of the intensity over all angles;

while H and K are proportional to the flux and radiation pressure, respectively.
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2.3.5 Formal solution in plane parallel geometry

If in equation (2.51) the source function is known, we see directly that we need to

solve a linear first-order differential equation with constant coefficients. It is easy to

show the integration factor to be exp(−τν/µ), so

∂

∂τν

[

Iνe
−τν/µ

]

=
1

µ
Sνe

−τν/µ
�

�

�

�2.55

Integration from τ1 to τ2 gives:

Iν(τ1) = Iν(τ2)e
−(τ2−τ1)/µ +

1

µ

∫ τ2

τ1

Sν(t)e
−(t−τ1)/µdt

�

�

�

�2.56

In plane-parallel geometry, defining I+
ν and I−ν as the outgoing and incoming radiation

fields, respectively; we can write the solution in each case:

- For µ ≥ 0: set τ1 = τν , and τ2 = τmax;

I+
ν (τν) = I+

ν (τmax)e
−(τmax−τν)/µ +

1

µ

∫ τmax

τν

Sν(t)e
−(t−τν)/µdt

�

�

�

�2.57

- For µ ≤ 0: set τ1 = τν , and τ2 = 0;

I−ν (τν) = I−ν (0)eτν/µ +
1

µ

∫ τν

0

Sν(t)e
−(τν−t)/µdt

�

�

�

�2.58

The first term in each one of the solutions (2.57) and (2.58) is provided by the

boundary conditions. We are especially interested in the case where the atmosphere

is illuminated by a source from outside, in which case I−ν (0) = Iinc, i.e., the incom-

ing radiation at the top is just the incident field. The second boundary condition is

specified at τmax, where the outgoing radiation can be assumed to be zero in gen-

eral (I+
ν = 0), neglecting intrinsic emission; or we set I+

ν = Bν(T ), for a thermal

black body field produced by the gas at a temperature T . In Figure (2.5) we show

a schematic view of a plane-parallel atmosphere with the two beams of radiation,

depending of the angle with respect to the normal.

2.3.6 Limitng expressions for the Source function

The transfer equation (2.51) is a standard form to be used in any problem regarding

interaction of radiation with matter. The only constrain so far is the geometry, i.e.,
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Z

θ

θ=π/2, µ=0

µ= Cos θ

τ=0

τ=τmax

I
+

I
−

θ=0, µ=1

θ=3π/2, µ=0

θ=π, µ=−1

Figure 2.5 Plane-parallel slab with the incoming and outgoing radiation fields.

we write the transfer equation for the one dimensional problem in plane-parallel atmo-

spheres, where the coordinate of importance is chosen to be in the vertical direction

perpendicular to the slab.

However, the physical conditions that characterize a particular problem are intro-

duced in two ways. First, the global properties of the desired problem are specified

through the boundary conditions, in particular, to define whether the gas is illumi-

nated from outside at the surface (τ = 0), and if there is or is not emission at the

inner boundary (τ = τmax). This could be thermal emission due the viscosity of the

gas, or radiation due a central source in the case of stellar atmospheres.

On the other hand, the physical conditions that describe the gas composing the

atmosphere are introduced via the source function (2.50), and consequently by the

definitions of the extinction and emission coefficients. Besides the Planck-Kirchhoff

relation (2.38), there is an emission coefficient due to scattering in the gas. If scat-
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tering is assumed coherent and isotropic, the emission coefficient can be written as

ηs
ν = σνJν

�

�

�

�2.59

Then the total emission coefficient is ην = η∗ν + ηs
ν , and with (2.35) into (2.50) we

obtain

Sν =
κνBν + σνJν

κν + σν

�

�

�

�2.60

It is customary to express the source function in this form when there is contri-

bution from thermal absorption and emission plus a contribution from a coherent,

isotropic, continuum scattering term, for example, from Thomson scattering by free

electrons or from Rayleigh scattering.

If we suppose we have strict local thermodynamic equilibrium (LTE), and the

scattering processes are neglected, (σν = 0), we get

Sν = Bν

�

�

�

�2.61

Conversely, if pure isotropic scattering is assumed without intrinsic emission from

the gas (κν = 0), the source function results to be

Sν = Jν

�

�

�

�2.62

equal to the mean intensity.

It must be stressed that these forms for the source function are only illustrative,

because they are based on very simple approximations of the physical properties of

the material; nevertheless, they provide a useful way to describe the methods to solve

the problem of radiation transfer under the approaches discussed in the next sections.

In general, the main difficulty in the solution of real physical problems is the existence

of scattering terms, which decouple the radiation field from local sources and sinks,

and involve global transport of photons over large distances in the atmosphere. In

particular, the expression for the emission coefficient due to scattering (2.59) is not

valid in many cases since it actually depends on a redistribution function, which gives

the joint probability that a photon will be scattered from a particular direction and
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frequency. This expression is inadequate in most of the real problems where the

scattering is non-isotropic and the angular dependence of ηs
ν plays an important role.

We can also see a challenge in equations (2.60) and (2.62), where the source

function depends explicitly on the mean intensity Jν , which requires the intensity to

be known via (2.52). To solve this problem, we need a self-consistent approach where,

starting with a guess for Sν , one is able to calculate an estimate for the intensity and

then Jν . The result is used to recalculate a new source function and repeat the

process until some accuracy is reached (typically we require that the ratio between

the source function calculated in the previous iteration and the next one be equal

or less than 10−3). Because this requires defining the source function to describe a

particular problem, the formal solution discussed in the previous sections is useless

and new formalisms are required.

2.3.7 Two-point boundary value problem

Here we will derive the Feautrier approach describe in section 6.3 of Mihalas (1970).

This is a very general and powerful treatment which results from writing the transfer

equation as a second order differential equation plus boundary conditions at two

points.

In the one-dimensional case we can separate, as before, the outgoing and incoming

radiation field for ±µ, and rewrite the equation (2.48) as:

µ
∂

∂z
I(z,+µ, ν) = χ(z, ν) [S(z, ν) − I(z,+µ, ν)]

�

�

�

�2.63

−µ
∂

∂z
I(z,−µ, ν) = χ(z, ν) [S(z, ν) − I(z,−µ, ν)]

�

�

�

�2.64

where now the angular variable is restricted to positive values (0 ≤ µ ≤ 1). Defining

the symmetric and antisymmetric averages,

u(z, µ, ν) ≡
1

2
[I(z, µ, ν) + I(z,−µ, ν)]

�

�

�

�2.65

v(z, µ, ν) ≡
1

2
[I(z, µ, ν) + I(z,−µ, ν)]

�

�

�

�2.66
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or in short form u = 1
2
(I+

ν + I−ν ) and v = 1
2
(I+

ν − I−ν ). Adding (2.63) and (2.64)

µ

[

∂I+

∂z
−
∂I−

∂z

]

= χS − χI+ + χS − χI−
�

�

�

�2.67

µ

[

∂

∂z

(

I+ − I−
)

]

= χ
[

2S −
(

I+ + I−
)]

�

�

�

�2.68

2µ
∂v

∂z
= χ (2S − 2u)

�

�

�

�2.69

Then,

µ
∂

∂z
v(z, µ, ν) = χ(z, ν) [S(z, ν) − u(z, µ, ν)]

�

�

�

�2.70

Now, subtracting (2.63) and (2.64)

µ

[

∂I+

∂z
+
∂I−

∂z

]

= χS − χI+ − χS + χI−
�

�

�

�2.71

µ
∂

∂z

[

I+ + I−
]

= −χ
[

I+ − I−
]

�

�

�

�2.72

Thus,

µ
∂

∂z
u(z, µ, ν) = −χ(z, ν)v(z, µ, ν)

�

�

�

�2.73

Now we can substitute (2.73) into (2.70) to eliminate v

µ
∂

∂z

[

−
µ

χ

∂u

∂z

]

= χ [S − u]
�

�

�

�2.74

As before, we can define dτν ≡ dτ(z, ν) = −χ(z, ν)dz, and we get

µ2∂
2uµν

∂τ 2
ν

= uµν − Sν

�

�

�

�2.75

where we suppress the explicit dependence on τ , while the frequency and angular

dependence are included as subscripts.
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Boundary conditions

The equation (2.75) must be solved taking into account the boundary conditions at

τ = 0 and τ = τmax. For an illuminated atmosphere, we set at τ = 0 the incoming

part to the incident field, I(0,−µ, ν) = Iinc. With this in (2.65) and (2.66):

uµν(0) − vµν(0) = Iinc

�

�

�

�2.76

and from (2.73)

vµν = µ
∂uµν

∂τν

�

�

�

�2.77

Therefore, at the surface,

µ

(

∂uµν

∂τν

)

0

− uµν(0) = Iinc

�

�

�

�2.78

At τ = τmax we specify I(τmax,+µ, ν) = I+, and

µ

(

∂uµν

∂τν

)

τmax

+ uµν(τmax) = I+
�

�

�

�2.79

where we can choose I+ to be a Planck function, if we consider thermal emission by

the gas, or equal to zero.

Discretization of equations

We now replace integrals by sums and derivatives by differences. The equation (2.75)

will be converted into a set of differential equations via the discretization of all vari-

ables.

First, the derivatives can be expressed as (Rutten, 2003),

dτd+1/2 = τd+1 − τd ≡ dτd
�

�

�

�2.80

dτd−1/2 = τd − τd−1 ≡ dτd−1

�

�

�

�2.81

Therefore,
(

du

dτ

)

d+1/2

=
ud+1 − ud

τd+1 − τd
=
ud+1 − ud

dτd

�

�

�

�2.82
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and the second derivative is
(

d2u

dτ 2

)

d

=
(du/dτ)d+1/2 − (du/dτ)d−1/2

1/2
(

dτd+1/2 + dτd−1/2

)

�

�

�

�2.83

or
(

d2u

dτ 2

)

d

=
2

(dτd + dτd−1)

[

ud+1 − ud

dτd
−
ud − ud−1

dτd−1

]

�

�

�

�2.84

(

d2u

dτ 2

)

d

= 2

[

ud+1

dτd (dτd + dτd−1)
−

ud

dτddτd−1

+
ud−1

dτd−1 (dτd + dτd−1)

]

�

�

�

�2.85

With (2.82) and (2.85), the equation (2.75) can be written as

−

[

2µ2

dτd−1 (dτd + dτd−1)

]

ud−1 +

[

2µ2

dτddτd−1
+ 1

]

ud −

[

2µ2

dτd (dτd + dτd−1)

]

ud+1 = Sd

�

�

�

�2.86

or in short form:

−Aud−1 + Bud − Cud+1 = S (d = 1, 2, ..., D − 1)
�

�

�

�2.87

Where A, B, C and S are D × D matrices, which elements are given by the terms

inside the brackets, and D is the total number of grid points in τ . Obviously, the

elements of S are given by the source function evaluated at each τ . At the surface

d = 1, then we can rewrite the boundary condition (2.78), using (2.82) as

µ

(

u2 − u1

dτ1

)

− u1 = Iinc

�

�

�

�2.88

Doing the same, at τmax d = D − 1, then condition (2.79) becomes

µ

(

uD − uD−1

dτD−1

)

− uD = I+
�

�

�

�2.89

Forward-backward solution

The numerical solution in this approach proceeds by a forward elimination plus back-

ward substitution scheme. We start using the boundary condition at the surface to

express u1 in u2. The result is used to insert in the equation between u1, u2 and u3 to
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express u2 in terms of u3. Following in the same way we can express each ud in terms of

ud+1. We finally reach the last point in the grid, and the boundary condition for τmax

delivers uD. Back substitutions then produce uD → uD−1 → uD−2 → · · · → u2 → u1,

so all ud are known.

In figure (2.6) we plot the numerical results for the symmetric average u(0, ν) (at

the surface), using the Feautrier method (in blue), compared with the resulting from

the formal solutions (2.57) and (2.58) into u = 1
2
(I+ + I−) (in red); as a function of

the energy. In both calculations we assume the source function to be constant, so we

set S = Finc, the incident flux.

The boundary conditions include the constant flux Finc ≈ 1015 erg s−1 cm−2 at the

surface (τ = 0), and a thermal black body emission at τ = τmax. The temperature

of the Plack function is set at a typical value of T = 1.21 × 105 K, or kT = 10.4 eV,

where k is the Boltzmann’s constant. This temperature corresponds to an intrinsic

flux from the atmosphere of Fint ≈ 1016 erg s−1 cm−2; however, both incident and

intrinsic fluxes are normalized, so the units in the plot are arbitrary.

Although this example does not represent any real physical problem, we use it

in order to test the algebraic development of the Feautrier method, and it is evident

that both symmetric average solutions are in good agreement (with differences smaller

than 0.1%), which tells us that the discretization assumed before does not reduce the

accuracy of the results.

The same agreement can be seen in Figure (2.7), where we show the mean intensity

J(τ), calculated from the symmetric average as

J(τ) =

∫ 1

0

u(τ, µ)dµ
�

�

�

�2.90

for both Feautrier method and the formal solution.

2.3.8 Eddington factors approach

In some problems the number of frequencies can be large because we must satisfy the

condition for radiative equilibrium, or statistical equilibrium in several transitions;
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Figure 2.6 Comparison between the formal solution and the Feautrier method.

but the angular information is essentially unnecessary because only Jν not uµν enters

these constraints. We therefore eliminate the angular information by introducing

variable Eddington factors fν = Kν/Jν (Auer & Mihalas, 1970).

To do this, we start by integration of the differential equation (2.75) over all angles

µ,
∫ 1

0

µ2∂
2uµν

∂τ 2
ν

dµ =

∫ 1

0

uµνdµ− Sν

∫ 1

0

dµ
�

�

�

�2.91

Since the differentiation is in τ and the integration over µ, we can interchange the

order
∂2

∂τ 2
ν

∫ 1

0

µ2uµνdµ =

∫ 1

0

uµνdµ− Sν

∫ 1

0

dµ
�

�

�

�2.92
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Figure 2.7 First moment J(τ) of the intensity calculated with the Feautrier method

and the formal solution.

From definitions (2.52), (2.54) and (2.65) we see that

∂2Kν

∂τ 2
ν

= Jν − Sν

�

�

�

�2.93

or introducing the Eddington factor with Kν = fνJν :

∂2 (fνJν)

∂τ 2
ν

= Jν − Sν

�

�

�

�2.94

The boundary conditions are found in a similar way. At the surface we use (2.78),

multiply by µ, and integration gives:
[

∂ (fνJν)

∂τν

]

0

− hνJν(0) = Iinc

�

�

�

�2.95
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where hν = Hν(0)/Jν(0). Now, at τmax, doing the same into (2.79)

[

∂ (fνJν)

∂τν

]

τmax

+ h†νJν(τmax) = I+
�

�

�

�2.96

with h†ν = Hν(τmax)/Jν(τmax).

Special case: one angle solution

Since the Feautrier method described in the previous sections involves the discretiza-

tion of the differentials as differences, we are interested in evaluating the accuracy of

the results. A possibility is to compare the results with the analytic solution, which

is exact, if we assume the source function, Sν , is known. We take the case of isotropic

scattering, assuming Sν = Jν , in the limit of just one angle.

In this case,

Jν =

∫ 1

0

uνdµ → Jν = uν

�

�

�

�2.97

Setting Sν = Jν , the transfer equation (2.75) becomes

µ2∂
2uν

∂τ 2
ν

= uν − Jν

�

�

�

�2.98

but because of (2.97)

µ2∂
2uν

∂τ 2
ν

= 0
�

�

�

�2.99

which solution is simply given by

u(τ) = C1 + C2τ
�

�

�

�2.100

where C1 and C2 are the integration constants provided by the boundary conditions.

First, we note that from the definitions of u and v (equations 2.65 and 2.66):

u− v = I− ; v = µ
∂u

∂τ

�

�

�

�2.101

so

→ u− µ
∂u

∂τ
= I−

�

�

�

�2.102
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Also,

u+ v = I+ → u+ µ
∂u

∂τ
= I+

�

�

�

�2.103

And from the general solution (2.99)

∂u

∂τ
= C2

�

�

�

�2.104

Then, applying the boundary conditions, at τ = 0 → I− = Iinc, and

u(0) − µ

(

∂u

∂τ

)

0

= Iinc

�

�

�

�2.105

but from the solution u(0) = C1; then

C1 − µC2 = Iinc

�

�

�

�2.106

At τ = τmax → I+ = Ibb (black body emission) and

u(τmax) + µ

(

∂u

∂τ

)

τmax

= Ibb
�

�

�

�2.107

Again from the general solution u(τmax) = C1 + C2τmax; then

C1 = Ibb − C2 (τmax + µ)
�

�

�

�2.108

Therefore the constants are

C2 =
Ibb − Iinc

τmax + 2µ

�

�

�

�2.109

C1 = Ibb −

[

(Ibb − Iinc)

(

τmax + µ

τmax + 2µ

)]

�

�

�

�2.110

Thus the final solution is

u(τ) =

(

Ibb − Iinc

τmax + 2µ

)

[τ − (τmax + µ)] + Ibb
�

�

�

�2.111

In Figure (2.8) the plot in red is the solution (2.111) calculated for a constant and

arbitrary incident radiation field illuminating the surface of the slab, and an intrinsic

thermal emission at τmax as a black body. When we perform the same calculation with

the Feautrier method, we assume at the first step that J ∝ Iinc, and the result (in
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blue) is the right-most curve at the bottom. Next, we recalculate the mean intensity

with (2.97). This new J is inserted again into the source function (simply S = J)

to get a new u. This procedure is called lambda iteration. We repeat this procedure

several times until about 30 iterations, where we can see from the plot both solutions

converge. This simple test shows that the Feautrier method can be used in a plane-

parallel problem with the right boundary conditions, and gives an idea of how many

iterations we need to get accurate results.
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Figure 2.8 Exact solution for u(0, µ) at the surface for one angle (red), and with the

Feautrier method (blue), after different number of iterations. The curves are, from

the right-bottom to left-top, the corresponding for 1, 5, 10, 20 and 30 iterations.
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2.3.9 The Chandrasekhar solution

This method is described in Chapter 3 of Chandrasekhar (1960), which presents in

a simple context the possibility to obtain the solutions to the transfer equation, gen-

erally, in the nth approximation; expressing the angular distribution of the emergent

radiation in closed form.

Isotropic scattering. Law of diffuse reflection in the conservative case

Returning to the standard form for the radiation transfer equation for a plane-parallel

geometry

µ
dI(τ, µ)

dτ
= I(τ, µ) − S(τ, µ)

�

�

�

�2.112

In the case of isotropic scattering for an illuminated atmosphere, the source function

can be written as

S(τ, µ) =
1

2
ω0

∫ +1

−1

I(τ, µ′)dµ′ −
1

4
ω0Fe

−τ/µ0

�

�

�

�2.113

where F is the incident flux in the direction −µ0 and ω0 is the fraction of radiation

that is scattered (as opposed to absorbed), and is called the single scattering albedo.

In the conservative case ω0 = 1, thus the equation of transfer is

µ
dI(τ, µ)

dτ
= I(τ, µ) −

1

2

∫ +1

−1

I(τ, µ′)dµ′ −
1

4
Fe−τ/µ0

�

�

�

�2.114

which can be expressed by a system of 2n linear differential equations,

µi
dIi
dτ

= Ii −
1

2

∑

j

ajIj −
1

4
Fe−τ/µ0

�

�

�

�2.115

Here we used the fact that if any function f(µ) is a polynomial of degree 2m−1, then
∫ +1

−1

f(µ)dµ =
m

∑

j=1

ajf(µj)
�

�

�

�2.116

where µ1, . . . , µm are the zeros of the Legendre polynomial Pm, and the aj are the

corresponding Gaussian weights given by

aj =
1

P ′
m(µj)

∫ +1

−1

Pm(µ)

µ− µj

dµ
�

�

�

�2.117
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To solve the system (2.115) first we need to find the solution of the associated

homogeneous equations,

µi
dIi
dτ

= Ii −
1

2

∑

j

ajIj
�

�

�

�2.118

We start with a solution of the form

Ii = gie
−kτ (i = ±1, . . . ,±n)

�

�

�

�2.119

where gi and k are constants to specify. Inserting (2.119) in (2.115)

−µikgi = gi −
1

2

∑

j

ajgj

�

�

�

�2.120

gi (1 + µik) =
1

2

∑

j

ajgj

�

�

�

�2.121

Then,

gi =
1
2

∑

j ajgj

1 + µik
≡

constant

1 + µik

�

�

�

�2.122

We can see that the constant in the numerator is independent of i; then with this

back into (2.121), we found the recursion relation:

1 =
1

2

∑

j

aj

1 + µjk

�

�

�

�2.123

or more explicitly

1 =
1

2

[

a−n

1 + µ−nk
+

a−n+1

1 + µ−n+1k

]

+ . . .

+
1

2

[

a−1

1 + µ−1k
+

a1

1 + µ1k

]

+ . . .

+
1

2

[

an−1

1 + µn−1k
+

an

1 + µnk

]

�

�

�

�2.124

However, a−j = aj and µ−j = −µj, therefore each pair of terms for ±n will result in

a−n

1 + µ−nk
+

an

1 + µnk
=

an

1 − µnk
+

an

1 + µnk
=

2aj

1 − µ2
jk

2

�

�

�

�2.125
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Then the recursion relation becomes

1 =
n

∑

j=1

aj

1 − µ2
jk

2

�

�

�

�2.126

This characteristic equation admits 2n distinct roots, which must occur in pairs

as

±kα (α = 1, . . . , n)
�

�

�

�2.127

and because the Gaussian weights are normalized,
∑n

j=1 aj = 1, then the roots for

one α, say α = n, are zero (k2
n = 0). Therefore the solution for the homogeneous

system is

Ii =
constant

1 ± µikα

e∓kατ (i = ±1, . . . ,±n) and (α = 1, . . . , n)
�

�

�

�2.128

As a boundary condition, we require that none of the Ii’s increase more rapidly than

eτ as τ → ∞, which implies that in the general solution (2.128) we omit the terms in

e+kατ . To complete the general solution of the system, we need to find the particular

integral, for which we set

Ii =
1

4
Fhie

τ/µ0

�

�

�

�2.129

where hi are constants unspecified for the moment. Inserting (2.129) into (2.115)

−
µ

µ0

hi = hi −
1

2

∑

j

ajhj − 1
�

�

�

�2.130

hi

(

µ

µ0
+ 1

)

=
1

2

∑

j

ajhj + 1
�

�

�

�2.131

so

hi =
γ

1 + µi/µ0

�

�

�

�2.132

where γ is a constant independent of the index i. The recursion relation in this case

will be

γ =
1

2
γ

∑

j

aj

1 + µj/µ0
+ 1

�

�

�

�2.133
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Hence, solving for γ and with the same conditions for the sum over the negative

indices

γ =
1

1 −
∑n

j=1 aj/
(

1 − µ2
j/µ

2
0

)

�

�

�

�2.134

Finally, the general solution to the system (2.115) can be expressed as

Ii =
1

4
F

[

n−1
∑

α=1

Lαe
−kατ

1 + µikα

+ Ln +
γe−τ/µ0

1 + µi/µ0

]

(i = ±1, . . . ,±n)
�

�

�

�2.135

Where the constants Lα(α = 1, . . . , n) are to be found from the boundary conditions.

Because the form that we assumed for the source function in (2.113), the boundary

condition at the top (τ = 0) now must be taken as I−i = 0, then

n−1
∑

α=1

Lα

1 − µikα
+ Ln +

γ

1 − µi/µ0
= 0 (i = 1, . . . , n)

�

�

�

�2.136

is the equation we will use to determine the constants of integration. Further, inserting

the solution (2.135) in the source function

S(τ, µ) =
F

8

[

n−1
∑

α=1

Lαe
−kατ

∑

j

aj

1 + µjkα

+ Ln

∑

j

aj

1 + µjkα

+ γe−τ/µ0

∑

j

aj

1 + µj/µ0

]

+
F

4
e−τ/µ0

�

�

�

�2.137

From (2.123) and (2.133) we see that

∑

j

aj

1 + µjkα

= 2 and γ
∑

j

aj

1 + µj/µ0

= 2(γ − 1)
�

�

�

�2.138

Therefore

S(τ, µ) =
F

4

[

n−1
∑

α=1

Lαe
−kατ + Ln + γeτ/µ0

]

�

�

�

�2.139

The formal solution for the outgoing radiation (2.57), in the limit τmax → ∞ is

I(τ,+µ) =
1

µ

∫ ∞

τ

e−(t−τ)/µS(t)dt
�

�

�

�2.140
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with the source function (2.139)

I+(τ) =
F

4µ

[

n−1
∑

α=1

Lαe
τ/µ

∫ ∞

τ

e−t( 1
µ

+kα)dt+ Lne
τ/µ

∫ ∞

τ

e−t/µdt+ γeτ/µ

∫ ∞

τ

e
−t

“

1
µ
+ 1

µ0

”

dt

]

�

�

�

�2.141

which results in

I+(τ) =
F

4

[

n−1
∑

α=1

Lαe
−kατ

1 + µkα

+ Ln +
γe−τ/µ0

1 + µ/µ0

]

�

�

�

�2.142

Doing the same for the incoming radiation (2.58), with the boundary condition

I−(0) = 0

I−(τ) =
1

µ

∫ τ

0

e−(τ−t)/µS(t)dt
�

�

�

�2.143

so we get

I−(τ) =
F

4

[

n−1
∑

α=1

Lα

1 − µkα

(

e−kατ − e−τ/µ
)

+ Ln

(

1 − eτ/µ
)

+
γ

1 − µ/µ0

(

e−τ/µ0 − e−τ/µ
)

]

�

�

�

�2.144

It is of particular interest the form for the outgoing radiation from the surface

of the atmosphere, i.e., the angular distribution of the reflected radiation at τ = 0,

which is given by

I+(0) =
F

4

[

n−1
∑

α=1

Lα

1 + kαµ
+ Ln +

γ

1 + µ/µ0

]

�

�

�

�2.145

Now we introduce without proof the identity

1 − z2

n
∑

j=1

aj

z2 − µ2
j

=
1

H(z)H(−z)

�

�

�

�2.146

where the function H(z) is defined as

H(z) =
1

µ1 . . . µn

∏n
j=1(z + µj)

∏n
α=1(1 + kαz)

�

�

�

�2.147

Setting z = µ0 and with (2.134) we see that

γ = H(µ0)H(−µ0)
�

�

�

�2.148
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Then we can define a function

R(µ) ≡
n−1
∑

α=1

Lα

1 − kαµ
+ Ln +

H(µ0)H(−µ0)

1 − µ/µ0

�

�

�

�2.149

and because the boundary condition in (2.136)

R(µi) = 0 (i = 1, . . . , n)
�

�

�

�2.150

Next we see that

(

1 −
µ

µ0

) n
∏

α=1

(1 − kαµ)R(µ) =
n

∏

α=1

(

1 −
µ

µ0

)

[

n−1
∑

α=1

Lα + (1 − kαµ)Ln

]

+ (1 − kαµ)H(µ0)H(−µ0)
�

�

�

�2.151

is a polynomial of degree n in µ which vanishes for µ = µi, i = 1, . . . , n; and then

exists a relation of the form

R(µ) = K
(−1)n

µ1 . . . µn

∏n
i=1(µ− µi)

∏n
α=1(1 − kαµ)

1

(1 − µ/µ0)

�

�

�

�2.152

where K is a constant. Using (2.147) we can rewrite it as

(

1 −
µ

µ0

)

R(µ) = KH(−µ).
�

�

�

�2.153

In the limit µ→ µ0, the last equation goes toKH(−µ0). However, using the definition

(2.149)

(

1 −
µ

µ0

)

R(µ) =

(

1 −
µ

µ0

)

[

n−1
∑

α=1

Lα

1 − kαµ
+ Ln

]

+H(µ0)H(−µ0)
�

�

�

�2.154

and then

lim
µ→µ0

(

1 −
µ

µ0

)

R(µ) = H(µ0)H(−µ0)
�

�

�

�2.155

Therefore we found the constant to be K = H(µ0), and thus

R(µ) =
H(µ0)H(−µ)

1 − µ/µ0

�

�

�

�2.156
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From (2.145), (2.148) and (2.149)

I+(0) =
F

4
R(−µ)

�

�

�

�2.157

so finally the reflected intensity can be written, with (2.156)

I(0, µ) =
F

4

µ0

µ+ µ0

H(µ)H(µ0)
�

�

�

�2.158

This is the equation for the law of diffuse reflection in the conservative case (i.e., pure

scattering).

The H-function

The function defined in (2.147) describes the intensity of radiation scattered by a

semi-infinite medium of independent scatterers. For isotropic scattering, it can be

expressed by the nonlinear integral form

H(µ) = 1 +
ω0

2
µH(µ)

∫ 1

0

H(µ′)

µ+ µ′
dµ′

�

�

�

�2.159

in the conservative case ω0 = 1, and can rewrite the last equation as

1

H(µ)
=

1

2

∫ 1

0

µ′H(µ′)

µ+ µ′
dµ′

�

�

�

�2.160

The numerical evaluation of this equation is described by Hiroi (1994), using the

extended Simpson’s rule, where the integral takes the form
∫ xN

x0

f(x)dx =
h

3
[f0 + 4f1 + 2f2 + · · · + 2fN−2 + 4fN−1 + fN ] +O(N−4)

�

�

�

�2.161

with xi = x0+ih, fi = f(xi), i = 0, 1, 2, . . . , N . The sampling points (x0, . . . , xN )

for the integral can be chosen at every 0.001 of µ′, with N = 1000, if a precision to

five decimal places is desired in the H function values. The evaluation is performed

iteratively until all values of H converge within a preset tolerance. The initial values

for H can be estimated by the approximation (Hapke, 1981):

H(µ) =

[

1 − µ

{

1 +

(

1

2
− µ

)

ln

(

µ+ 1

µ

)}]−1 �

�

�

�2.162
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Figure 2.9 Evaluation of the H(µ) function using the Simpson’s rule, compared with

the Chandrasekhar (1960) results and the Hapke (1981) approximation, for the con-

servative case (ω0 = 1).

In the figure (2.9) we shown the result for the H function values after 100 iterations

using N = 1000 points, the analytic form given by equation (2.162) and the tabulated

values given in Chandrasekhar (1960). It is clear that is not difficult to achieve a high

accuracy with this procedure. The Hapke (1981) approximation (2.162) behaves well

at small angles, however the differences at angles close to 1 are greater than 10%.

One angle solution

We can compare the result given for the reflected radiation at the surface, with the

exact solution in the case of one angle (Section 2.3.8). First, we note that the H
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function

H(µ) =
1

µ1 . . . µn

∏n
j=1(µ+ µj)

∏n
α=1(1 + kαµ)

�

�

�

�2.163

in the case of one angle (n = 1) becomes

H(µ) =
1

µ1

(µ+ µ1)
�

�

�

�2.164

but if we choose the angle to be µ = µ1 = µ0, and

H(µ) = H(µ0) = 2
�

�

�

�2.165

Therefore the solution (2.158) for one angle is

I(0, µ) = I(0, µ0) =
F

4

(

1

2

)

[H(µ0)]
2

�

�

�

�2.166

I(0, µ0) =
F

2

�

�

�

�2.167

From the exact solution we know that I+ = u+v = u+µC2 or I+ = C1+C2τ+µC2,

but at τ = 0 we have I+ = C1 + µC2. To compare with the Chandrasekhar solution

we set Ibb = 0 (no thermal emission), so the coefficients are now

C1 = Iinc

(

τmax + µ

τmax + 2µ

)

and C2 =
−Iinc

τmax + 2µ

�

�

�

�2.168

Therefore,

I(0, µ0) = Iinc
τmax + µ

τmax + 2µ

�

�

�

�2.169

In the limit τmax → ∞, I(0, µ0) → Iinc, thus

I(0, µ0) =
F

2

�

�

�

�2.170

and both solutions agree, as expected.

Many angles

We also compared our solution of the radiative transfer equations with the analytical

approximations of Chandrasekhar in the pure scattering case with many angles. In
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Figure 2.10 Angular distribution of the intensity at τ = 0 calculated with Chan-

drasekhar solution (in red), and with Feautrier’s method (in blue). The blue curves

correspond to iterations 1, 5, 25, 50 and 100, from bottom to top, with τmax = 10.

The incidence angle is µ0 = 0.5.

Figure 2.10 we show the angular distribution of the emergent intensity (at τ = 0),

calculated with equation (2.158) (in red), and the one resulting with our lambda iter-

ative Feautrier routine (in blue) for different numbers of iterations. Both results were

calculated using a grid with 100 angle points. The H-function in the Chandrasekhar

solution was evaluated numerically using the procedure described previously (Hiroi,

1994). For our solution we used the Feautrier method described before, assuming

Sν = Jν , Ibb = 0 and τmax = 10.

The blue curves in the plot are the resulting intensities for 1, 5, 25, 50 and 100

iterations, from bottom to top. Once again we can see our solution converges at τ 2
max

iterations. The small peak present in all our curves is due to an small numerical error



53

that occurs at the angle of the incident radiation, which in this case is µ0 = 0.5.

Although our solution converges as expected, there is a significant discrepancy

with the Chandrasekhar solution. The reason for this difference is because our cal-

culation stops at τmax = 10, while equation 2.158 represents the solution for a semi-

infinite slab. The error on average is ∼ 5 − 10%.

For our purposes we desire to cover the largest optical depth possible for realis-

tic computational times and resources. Since Lambda iteration requires τ 2 loops to

converge, we performed different calculations as in Figure 2.10 changing the value

of τmax. In Figure 2.11 we show the resulting (average) difference between Chan-

drasekhar and our solution, as a function of τmax. It is clear in this Figure that

diminishing improvement is achieved after τmax ∼ 20, taking into account the re-

quired number of iterations. Therefore we limit all our calculations to τmax = 10,

with the understanding that our resulting energy budget may be in error by as much

as 10%.

2.4 Summary

The Compton down-scattering of X-rays by cold electrons can be accurately treated

using a Gaussian profile approximation, which simplifies the procedure and reduces

the computing time. The Feautrier method to solve the problem of radiative trans-

fer has shown to be an excellent formalism, that can be extended to more general

problems. The specific cases we discuss in this Chapter are limited to the isotropic

scattering, assuming a quite simple source function. However, future investigation is

needed in order to evaluate the accuracy of the method in a more realistic problem.

The coupling between Comptonization and Radiative Transfer is crucial in accretion

disc models.

Because the temperature profile over the disc depends on the radiation field at

each point, and the ionization balance required for a realistic definition of the source

function in radiation transfer depends on the temperature of the gas; a self-consistent

approach must be taken into account. Shakura & Sunyaev equations provide a de-
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Figure 2.11 Percentual average difference between Chandrasekhar and Feautrier so-

lutions as a function of the maximum optical depth.

scription of the geometry and a first guess for the state of the gas. Having a first

estimate of the temperature profile, one can calculate the radiation field after many

scatterings using the radiative transfer equations. The new radiation field can be

then used to recalculate a temperature profile. Iterations of the whole process must

be carried out to ensure a convergence of both solutions.



3
X-ray reflected spectra from accretion disk

models

3.1 Introduction

The X-ray spectra from active galactic nuclei (AGN) and X-ray binaries often show

evidence of interaction between radiation emitted near the compact object and the

nearby gas, which leads to signatures imprinted on the observed spectrum. The effects

of this reflection include iron K line emission, in the range 6-8 keV, which is observed

from nearly all accreting compact sources (Gottwald et al., 1995); and the flattening

of the spectrum above 10 keV, usually called the high energy bump or the Compton

hump, since it originates due to the Compton scattering of photons by cold electrons

in the gas.

The profile of the iron K line carries important information about the physics of

the material around the compact object. Since the emission may occur in a relatively

small region close to the center, the line profile can be affected by relativistic effects.

The best-known example is the Seyfert 1 galaxy MCG-6-30-15 (Tanaka et al., 1995;

Iwasawa et al., 1999), for which the iron line appears to be broad and skewed well

beyond the instrumental resolution. Model line profiles for Schwarzschild and Kerr

metrics have been calculated by Fabian et al. (1989) and Laor (1991), respectively.

55
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Brenneman & Reynolds (2006) have used this information to constrain the spin of

the black hole harbored by this AGN.

Observations of other accreting systems such as low mass X-ray binaries (LMXB)

have also revealed the iron K line in emission. Bhattacharyya & Strohmayer (2007)

reported the detection of a broad iron line emission in the XMM Newton spectrum

of the LMXB system Serpens X-1. Using Suzaku observations, Cackett et al. (2008)

confirmed this detection and found similar emission in two other LMXBs (4U 1820-

30 and GX 349+2). Assuming relativistic broadening and applying the same models

used in AGN observations, these authors have derived estimates for the inner radius

of the accretion disk which can be used as an upper limit for the radius of the neutron

star. Similar behavior appears in the millisecond pulsar SAX J1808.4-3658 (Cackett

et al., 2009). Since the temperature of the surface layers of an accretion disk around

a stellar-mass black hole or a neutron star is expected to be much higher than the

temperature in the accretion disk of an AGN (see Equation 3.18), the Compton down

scattering of photons can also modify the emission profile and even contribute to the

broadening of the iron K line (Ross & Fabian, 2007). Reis et al. (2009) found evidence

for such a situation in the Suzaku spectrum of the LMXB 4U 1705-44.

An X-ray emission line propagating in a dense gas has a non-negligible probability

of interacting with an electron, which leads to a down scattering of photons. The

maximum energy shift per scattering of a photon with energy Ec due to the electron

recoil (for backscattered photons at 180◦), has magnitude ∆Emax = 2E2
c /(mec

2+2Ec),

where mec
2 is the electron rest-mass energy. Many scatterings will therefore produce

a discernible “Compton shoulder” between Ec and Ec − ∆Emax (Pozdniakov et al.,

1979; Illarionov et al., 1979; Matt et al., 1991). Although the Compton shoulder and

the iron Kβ emission line are weaker than the iron Kα emission line, both have been

detected in AGN observations, especially those from the X-ray observatory Suzaku

(Markowitz et al., 2007; Reeves et al., 2007; Yaqoob et al., 2007), and at least in one

LMXB, GX 301-2 (Watanabe et al., 2003).

Initial studies of reprocessed radiation by cold matter were due to Lightman &

Rybicki (1980) and Lightman et al. (1981), who derived the Green’s functions for the
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scattering of photons by cold electrons and discussed the implications for AGN obser-

vations (Lightman & White, 1988). George & Fabian (1991) included line production

in their Monte Carlo calculations, while photoionization equilibrium was included by

Zycki et al. (1994). Several authors expanded these studies assuming constant den-

sity along the vertical direction of the disk (Done et al., 1992; Ross & Fabian, 1993;

Matt et al., 1993; Czerny & Zycki, 1994; Krolik et al., 1994; Magdziarz & Zdziarski,

1995; Ross et al., 1996; Matt et al., 1996; Poutanen et al., 1996; Blackman, 1999; Ross

& Fabian, 2005), while hydrostatic calculations have been carried out by Rozanska

& Czerny (1996); Nayakshin et al. (2000); Nayakshin & Kallman (2001); Ballantyne

et al. (2001); Dumont et al. (2002) and Ross & Fabian (2007).

Nevertheless, one of the most significant limitations inherent in current reflection

models is the limited treatment of the physics governing the atomic processes af-

fecting the excitation and emission from the ions in the atmosphere, especially the

iron K-shell structure. In most cases, reflection models implement analytic fits to

the partial Hartree-Dirac-Slater photoionization cross sections of Verner & Yakovlev

(1995), together with the line energies, fluorescence and Auger yields from Kaastra &

Mewe (1993), which has been proven to be over simplified and incomplete (Gorczyca

& McLaughlin, 2005). In some cases, the models lack atomic data for any of the

neutral species (except for H and He).

In this chapter we present new models for illuminated accretion disks and their

structure implementing state-of-the-art atomic data for the isonuclear sequences of

iron (Kallman et al., 2004), and oxygen (Garćıa et al., 2005). In addition, the energy,

spatial and angular resolution of our calculations are greater than previous works.

The ionization balance calculations are performed in detail using the latest version

of the photoionization code xstar. The radiation transfer equation is solved at each

depth, energy and angle using the Feautrier formalism. We assume plane-parallel

geometry and azimuthal symmetry.

This chapter is organized in the following way. In Section 3.2 we describe the

theory and numerical methods used to solve radiation transfer, ionization and energy

equilibrium, and the atomic data. In Section 3.3 we present a set of models for
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constant density atmospheres at different degrees of ionization, viewing and incidence

angles, as well as the effect of the abundance on the reflected spectrum. Finally, the

main conclusions are summarized in Section 3.4.

3.2 Methodology

In this section we describe the theory used in our calculations, in particular, the

numerical methods to solve the radiation transfer equation, the ionization equilibrium,

energy conservation and the new atomic data incorporated in our models.

3.2.1 Radiative Transfer

The standard form of the transfer equation for a one dimensional, plane-parallel

atmosphere is given by

µ
∂I(z, µ,E)

∂z
= η(z, E) − χ(z, E)I(z, µ,E),

�

�

�

�3.1

where µ is the cosine of the angle with respect to the normal, and η(z, E) and χ(z, E)

are the total emissivity and opacity, respectively. It is convenient to write this equa-

tion in terms of the Thomson optical depth, dτ ≡ −αTdz = −σTnedz, where σT is the

Thomson cross section (= 6.65 × 10−25 cm2), and ne is the electron number density,

such that

ω(τ, E)µ
∂I(τ, µ, E)

∂τ
= I(τ, µ, E) −

η(τ, E)

χ(τ, E)

�

�

�

�3.2

where we have defined

ω(τ, E) ≡
αT

χ(τ, E)
.

�

�

�

�3.3

To solve the equation of radiative transfer we use Lambda iteration in the Feautrier

formalism, as described in § 6.3 of Mihalas (1978). By restricting µ to the half-range

0 ≤ µ ≤ 1 to express the radiation field in its incoming and outgoing components,

and using the symmetric and antisymmetric averages:

u(τ, µ, E) =
1

2
[I(τ,+µ,E) + I(τ,−µ,E)]

�

�

�

�3.4
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v(τ, µ, E) =
1

2
[I(τ,+µ,E) − I(τ,−µ,E)],

�

�

�

�3.5

one can rewrite the Equation (3.2) as a second order differential equation

µ2ω2(E)
∂2u(µ,E)

∂τ 2
+ µ2ω(E)

∂ω(E)

∂τ

∂u(µ,E)

∂τ
= u(µ,E) − S(E)

�

�

�

�3.6

where we have omitted the obvious dependence on τ . Notice that the second term on

the left hand side of the equation appears since we are using the energy-independent

Thomson optical depth as length variable, instead of the total optical depth dτ(E) =

−χ(z, E)dz.

The second term in the right-hand side is the source function, which is defined at

each depth and frequency as

S(E) =
η(E)

χ(E)
=
αknJ(E) + j(E)

αkn + αa

�

�

�

�3.7

where

J(E) =

∫ 1

0

u(µ,E)dµ,
�

�

�

�3.8

is the mean intensity (first moment of the intensity), and j(E) is the thermal contin-

uum plus line emissivity calculated at each depth. Here αkn and αa are the scattering

and absorption coefficients, respectively: the former is defined by the product of the

density times the Klein-Nishina cross section, while the latter contains the continuum

cross section due bound-bound, bound-free and free-free absorption. Both j(E) and

αa are obtained from the ionization balance at each point using xstar.

We also consider the redistribution of the photons due to Compton scattering

using a Gaussian kernel convolved with J(E). The Gaussian is centered at

Ec = E0(1 + 4θ − ǫ0),
�

�

�

�3.9

where θ = kT/mec
2 is the dimensionless temperature, E0 is the initial photon energy

and ǫ0 ≡ E0/mec
2. The energy dispersion is given by σ = E0

[

2θ + 2
5
ǫ20

]1/2
.

Therefore the total source function at each depth, as a function of the energy, is

given by:

S(E) =
αkn

χ(E)
Jc(E) +

j(E)

χ(E)

�

�

�

�3.10
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where

Jc(E) =

∫

dE ′J(E ′)P (E ′, E)
�

�

�

�3.11

is the Comptonized mean intensity, for which the kernel function (normalized to

unity), can be written explicitly as

P (Ec, Es) =
1

σπ1/2
exp

[

−(Es − Ec)
2

σ2

]

.
�

�

�

�3.12

As shown by Ross & Fabian (1993), this treatment describes adequately the down

scattering of photons with energies less than ∼ 200 keV. This approximation is also

discussed by Ross et al. (1978) and Nayakshin et al. (2000). There is an important

limitation while using this treatment: if the bin width of a certain energy Ec is greater

than 2 times the dispersion of the Gaussian, then there is a large probability for a

photon to scatter into its own energy bin, producing a numerical pile up of photons

at those energies. We use a logarithmically spaced energy grid, so the resolving power

R = E/∆E is a constant that only depends on the number of grid points. Therefore,

the bin width is ∆E = E/R, and the pile up occurs at a critical energy Ep when

∆E = 2σ(Ep); or

Ep = mec
2

[

5

4R2
−

5kT

mec2

]1/2

.
�

�

�

�3.13

From the last equation it is clear that the pile up appears only at low temperatures,

specifically for temperatures less than Tp = mec
2/4kR2. The lowest resolving power

used here is R = 350, and then Tp ∼ 104 ◦K. We will show later that we consider

no cases for which the gas temperature becomes lower than this value. In fact, in

the extreme limit of T = 0 (and using the same resolving power), the highest pile

up energy would be Ep ∼ 1.6 keV, leaving the high energy part of the spectrum

unaffected.

To complete this solution, two boundary conditions are imposed; one at the top

(τ = 0), and one at the maximum depth (τ = τmax). At the top, the incoming radi-

ation field I(0,−µ,E) is equal to a power law, with photon index and normalization

as free (input) parameters in the calculation. Subtracting Equations (3.4) and (3.5)

u(0, µ, E) − v(0, µ, E) = Iinc

�

�

�

�3.14
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and it is easy to show that

v(τ, µ, E) = ω(τ, E)µ
∂u(τ, µ, E)

∂τ

�

�

�

�3.15

therefore at the surface,

ω(0, E)µ

[

∂u(τ, µ, E)

∂τ

]

0

− u(0, µ, E) = −Iinc.
�

�

�

�3.16

At the lower boundary we specify the outgoing I(τ,+µ,E) radiation field to be equal

to a blackbody with the expected temperature for the disk:

ω(τmax, µ, E)µ

[

∂u(τ, µ, E)

∂τ

]

τmax

+ u(τmax, µ, E) = B(Tdisk)
�

�

�

�3.17

This condition appears since we assume that there is an intrinsic disk radiation due

to the viscosity of the gas (Shakura & Sunyaev, 1973). The disk temperature at the

lower boundary is then given by

Tdisk =

{

3GMṀ

8πσR3

[

1 −

(

R0

R

)1/2
]}1/4

�

�

�

�3.18

where G is the Newtonian gravitation constant, σ is Stefan’s constant, M is the

mass of the central object, Ṁ the mass accretion rate, R is the distance from the

center, and R0 is the smallest radius at which the disk dissipates energy. Shakura

& Sunyaev (1973) predicted that for a non-rotating black hole this occurs at the

innermost stable circular orbit (ISCO), or R0 = 3Rs = 6GM/c2, where Rs is the

Schwarzschild radius. However, recent magneto-hydrodynamics calculations (Noble

et al., 2010), have shown that the electromagnetic stress responsible for the energy

generation rises steadily inward in the region inside the ISCO, falling sharply to zero

just before the event horizon. Therefore, we will assume R0 = Rs, allowing energy

generation in the inner part of the disk. It is clear that the properties of the accretion

disk are introduced in the calculation by means of the lower boundary condition.

Further, since we assume constant density for the gas along the vertical direction,

it is customary to parametrize each model by the ratio of the net flux incident at
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the surface over the density, using the common definition of the ionization parameter

(Tarter et al., 1969):

ξ =
4πFx

ne
,

�

�

�

�3.19

where Fx is the flux of the illuminating radiation in the 1-1000 Ry energy band.

Finally, Equations (3.6),(3.10),(3.16) and (3.17) are converted to a set of difference

equations by discretization of depths, energies and angles. The solution of the system

is found by forward elimination and back substitution. A full transfer solution requires

the Feautrier solution to be iteratively repeated, in order to self-consistently treat the

scattering process. This procedure requires ∼ τ 2
max iterations (lambda iterations) for

convergence.

3.2.2 Structure of the gas

Given the solution for the radiation field at each point in the atmosphere, we use the

photoionization code xstar (Kallman & Bautista, 2001) to determine the state of

the gas for a given value of the number density. The state of the gas is defined by

its temperature and the level populations of the ions. The relative abundances of the

ions of a given element and the level populations are found by solving the ionization

equilibrium equations under the assumption of local balance, subject to the constrain

of particle number conservation for each element. Schematically, for each level

Rate in = Rate out.
�

�

�

�3.20

The processes include spontaneous decay, photoionization, charge transfer, electron

collisions, radiative and dielectronic recombination. Similarly, the temperature of the

gas is found by solving the equation of thermal equilibrium, which may be written

schematically as

Heating = Cooling.
�

�

�

�3.21

The heating term includes photoionization heating (including the Auger effect), Comp-

ton heating, charge transfer and collisional de-excitation. The cooling term includes
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radiative and dielectronic recombination, bremsstrahlung, collisional ionization, col-

lisional excitation of bound levels and charge transfer. All processes include their

respective inverses so that the populations approach to local thermodynamic equilib-

rium (LTE) values under the appropriate conditions (i.e., high density or Planckian

radiation field).

3.2.3 Radiative equilibrium

xstar calculates level populations, temperature, opacity and emissivity of the gas

assuming that all the physical processes mentioned in the previous section are in

steady state. Radiative equilibrium is achieved by calculating the integral over the

net emitted and absorbed energies in the radiation field (Ec and Eh, respectively);

and varying the gas temperature until the integrals satisfy the criterion

Eh − Ec

Eh + Ec

≤ 10−4.
�

�

�

�3.22

The radiative equilibrium condition must be ensured also while solving the transfer

equation. According to equation (2-83b) in Mihalas (1978):
∫ ∞

0

χ(E) [J(E) − S(E)] dE = 0,
�

�

�

�3.23

i.e., the total energy absorbed by a volume of material must be equal to the total

energy emitted (note that, as in § 3.2.1, we have omitted the explicit dependence on τ

in the equations). By using the definitions of the flux and radiation pressure (second

and third moments of the radiation field):

H(E) =

∫ 1

0

v(µ,E)µdµ
�

�

�

�3.24

and

K(E) =

∫ 1

0

u(µ,E)µ2dµ,
�

�

�

�3.25

one can rewrite Equation (3.15) as

H(E) = ω(E)
∂K(E)

∂τ
.

�

�

�

�3.26
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Taking the derivative with respect to τ and multiplying by ω(E)

ω(E)
∂H(E)

∂τ
= ω2(E)

∂2K(E)

∂τ 2
+ ω(E)

∂ω(E)

∂τ

∂K(E)

∂τ
,

�

�

�

�3.27

and comparing with the transfer Equation (3.6) integrated over µ,

ω(E)
∂H(E)

∂τ
= J(E) − S(E).

�

�

�

�3.28

From here it is clear that the radiative equilibrium condition (3.23) is equivalent to

∂

∂τ

∫ ∞

0

H(E)dE = 0,
�

�

�

�3.29

i.e., the net flux must be conserved for any optical depth. Further, inserting the

source function (3.10) in the right-hand side of (3.28):

∂

∂τ

∫ ∞

0

H(E)dE =
1

αT

∫ ∞

0

{αkn [J(E) − Jc(E)] + αaJ(E) − j(E)} dE.
�

�

�

�3.30

If the gas temperature is high enough (T & 106 ◦K), the Compton scattering is the

dominant process, while both the opacity and the emissivity of the gas are negligible

and only the first term in the right-hand side of Equation (3.30) is important. For

lower temperatures the inverse occurs: J(E) ≈ Jc(E), which cancels out the first

term. Thus, using (3.29)

1

αT

∫ ∞

0

[αaJ(E) − j(E)] dE = 0.
�

�

�

�3.31

The conservation of the flux through the atmosphere is formally equivalent to the

thermal equilibrium condition (3.21), but its accuracy will depend on the error as-

sociated with the evaluation of the left-hand side of Equation (3.31). Although we

limit the error in the calculation of the emissivities j(E) and opacities αa by impos-

ing the condition (3.22), the numerical conservation of the flux is a difficult task due

to the fact that small errors accumulate over the large column densities covered in

the calculation. It can be seen from Equation (3.31) that the error required in the

calculation of emissivities and opacities must be of the order of α−1
T . Assuming that

typical values for the density are ne ∼ 1010−1016 cm−3, then 108 . α−1
T . 1014, much
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greater than the value required in (3.22). Therefore, we also apply a renormalization

of the emissivities calculated by xstar before the solution of the transfer equation,

such that:

jnew(E) = j(E)

∫ ∞

0
αaJ(E)dE

∫ ∞

0
j(E)dE

,
�

�

�

�3.32

at each depth. By implementing this correction in our models, we have found that

the net flux (and therefore the energy) is conserved better than 1% for intermediate

to large values of the ionization parameter (log ξ > 3), but the maximum error can

be ∼ 7% for low-ionization calculations (log ξ < 3). These errors are estimated by

comparing the total fluxes incident on the gas (i.e., Fx+Fdisk), with the total emergent

flux.

3.2.4 Atomic data

The xstar atomic database collects recent data from many sources including CHI-

ANTI (Landi & Phillips, 2006), ADAS (Summers, 2004), NIST (Ralchenko et al.,

2008), TOPbase (Cunto et al., 1993) and the IRON project (Hummer et al., 1993).

The database is described in detail by Bautista & Kallman (2001). Additionally, the

atomic data associated with the K-shell of the Fe ions incorporated in the current

version of xstar has been recently calculated and represents the most accurate and

complete set available to the present. Energy levels and transition probabilities for

first row ions Fe xviii-Fe xxiii were reported by Palmeri et al. (2003a); for second

row ions Fe x-Fe xvii were reported by Mendoza et al. (2004); and for the third row

ions Fe ii-Fe ix by Palmeri et al. (2003b). The impact of the damping by specta-

tor Auger resonances on the photoionization cross sections was discussed by Palmeri

et al. (2002). Photoionization and electron impact cross sections were presented for

second row ions by Bautista et al. (2004). Energy levels, transition probabilities and

photoionization cross sections for Fe xxiv were calculated by Bautista et al. (2003).

A compilation of these results and a careful study of their impact on the photoion-

ization models can be found in Kallman et al. (2004). Moreover, xstar also includes

the atomic data relevant to the photoabsorption near the K edge of all oxygen ions
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calculated by Garćıa et al. (2005).

The approach used by these authors for the computation of the atomic parame-

ters of iron and oxygen was based on the implementation and comparison of results

obtained from different atomic codes of public domain, namely autostructure

(Badnell, 1997), hfr (Cowan, 1981), and the Breit-Pauli R-Matrix package (bprm,

Seaton, 1987; Berrington et al., 1987).

3.2.5 Iteration procedure

Starting at the top of the disk, the vertical structure of the gas is found by solving

ionization and thermal balance at each spatial zone using xstar, as described in

§ 3.2.2. Since the radiation field is unknown the first time this is done, it is set to

be equal to the incident power law at each depth. Once the last zone is reached, the

temperature and density profiles are known, as well as the emissivities and opacities

for each depth and energy. With this information the radiative transfer Equation (3.6)

is solved as described in § 3.2.1 until the solution converges, which requires ∼ τ 2
max

Lambda iterations. This provides a new and more accurate radiation field, that

can be used to recalculate the structure of the gas. Because the emissivities and

opacities are updated when the structure of the gas is recalculated, the radiative

transfer calculations must be also repeated. We then continue with this process until

all quantities stop changing within a small fraction. Typically, this requires ∼ 20 gas

structure calculations, times τ 2
max Lambda iterations.

For our purposes, we desire to cover the largest optical depth possible for realistic

computational times and resources. Since Lambda iteration requires τ 2
max loops to

converge, we performed different numerical experiments, changing the value of τmax.

Comparisons with the semi-analytic solution by Chandrasekhar (1960) showed that

the error behaves, in general, as ∼ 1/τmax, corresponding to a leakage of energy

through a scattering dominated slab. The comparison also showed that diminish-

ing improvement is achieved after τmax ∼ 10 − 20, taking into account the required

number of iterations. Therefore we limit all our calculations to τmax = 10, with the
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understanding that our resulting global energy budget may be in error by as much

as 10%. Finally, our calculations consider high resolution spectra with an energy

grid of at least 5 × 103 points (R = E/∆E ∼ 350), 200 spatial zones, and 50 angles

to account for anisotropy of the radiation field. Typically, each one of these models

can be calculated in few hours in a last generation PC, which means that a grid of

20-30 models can be produced in one or two weeks, depending on the computational

resources available, and the specific parameters to represent the models (e.g., lower

ionization models tend to run slower than high ionization cases). This is relevant

since xspec model tables can be easily generated and used in the interpretation of

astronomical observations. Higher resolution can be achieved, although computa-

tional time increases (at least) with the square of the number of energy grid points,

quickly imposing limits on the sizes of the grids.

3.3 Results

In this section we show the results obtained with our model for constant density

atmospheres. We present a total of 20 reflection models, calculated for various repre-

sentative conditions. These models and input parameters used to produce them are

summarized in Table 3.1. The first column of the Table contains an identification

number assigned to each model and it will be used for reference through the rest of

this Chapter. The next columns contain the input parameters that have been varied

for each model, namely: the flux Fx of the ionizing radiation (in the 1-1000 Ry energy

range), the resulting logarithm of the ionization parameter ξ (see Equation 3.19), the

spectral energy resolution or resolving power R = E/∆E (determined by the number

of energy grid-points used), the cosine of the incidence angle of the illuminating radi-

ation with respect to the normal of the disk µ0, and the abundance of iron normalized

to its solar value AFe. Other input parameters not listed in the Table since they are

constant and common to all the models are: density ne = 1015 cm−3, photon index of

the incident radiation Γ = 2, mass of the central object M = 108 M⊙, distance from

the central object R = 7Rs, and the mass accretion rate Ṁ = 1.6× 10−3ṀEdd, where
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Rs = 2GM/c2 is the Schwarzschild radius and ṀEdd is the accretion rate at the Ed-

dington limit. We have chosen these parameters such that the numbers are similar to

those typically used by previous authors. However, note that these parameters only

affect the present models by changing the effective temperature of the disk (equivalent

to changing the intrinsic disk flux), to be used as the inner boundary condition (3.17)

in the radiation transfer problem. Specifically, by using Equation (3.18) this set of

parameters correspond to an intrinsic disk flux of Fdisk = 3.6× 1013 erg/cm2/s, or an

effective temperature of Tdisk = 2.8× 104 ◦K, which represents a cold disk when com-

pared to the temperatures typically produced by the illuminating fluxes used here.

This is convenient since it allows us to analyze the reprocessed spectrum as a direct

consequence of the incident power law without significant modifications due to the

black body of the disk.

3.3.1 Temperature profiles

The Figure 3.1 shows the temperature profile as a function of the Thomson optical

depth resulting from constant density models for ten different ionization parameters

(models 1-10 in Table 3.1). In the Figure, the lower left curve corresponds to the least

ionized case, and each consecutive to a higher value of Fx. The values of log ξ are

included next to the respective curves. Because the τ grid is fixed with logarithmic

spacing, the surface of the disk is in practice chosen to be τtop = 10−2. The optical

depth is measured from the surface towards the interior of the disk. Since the density

is assumed to be constant, all these calculations are carried out along a distance of

∆z = ∆τ/σTne ≈ 1.5 × 1010 cm.

These curves show very similar general behavior; the temperature is higher at

the surface (due to the heating by the incident radiation) and decreases towards the

interior of the disk, reaching a minimum temperature. For the high illumination

cases (large values of ξ, and/or very close to the surface), the dominant mechanism
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Table 3.1. List of reflection models with their respective input parameters

Model Fx
a log ξb R µ0 AFe

1 5 × 1014 0.8 350 0.71 1.0

2 1 × 1015 1.1 350 0.71 1.0

3 2 × 1015 1.5 350 0.71 1.0

4 5 × 1015 1.8 350 0.71 1.0

5 1 × 1016 2.1 350 0.71 1.0

6 2 × 1016 2.5 350 0.71 1.0

7 5 × 1016 2.8 350 0.71 1.0

8 1 × 1017 3.1 350 0.71 1.0

9 2 × 1017 3.5 350 0.71 1.0

10 5 × 1017 3.8 350 0.71 1.0

11 2.5 × 1015 1.5 3500 0.71 1.0

12 2.5 × 1016 2.5 3500 0.71 1.0

13 2.5 × 1017 3.5 3500 0.71 1.0

14 5 × 1016 2.8 350 0.95 1.0

15 5 × 1016 2.8 350 0.50 1.0

16 5 × 1016 2.8 350 0.05 1.0

17 2.5 × 1016 2.5 350 0.71 0.2

18 2.5 × 1016 2.5 350 0.71 2.0

19 2.5 × 1016 2.5 350 0.71 5.0

20 2.5 × 1016 2.5 350 0.71 10.0

aerg/cm2/s (1-1000 Ry)

berg cm/s (See Equation 3.19)
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Figure 3.1 Temperature profiles for different illumination fluxes using constant density

models (n = 1015 cm−3). The value of log ξ is shown next to each corresponding curve

(models 1-10).
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is Compton heating and cooling (Krolik et al., 1981), with a rate given by:

neΓe =
σT

mec2

[
∫

EF (E)dE − 4kT

∫

F (E)dE

]

,
�

�

�

�3.33

in the non relativistic limit. When this process dominates, the temperature ap-

proaches an asymptotic value, the Compton temperature, given by the balance of the

two terms in the previous equation:

TC =
< E >

4k
,

�

�

�

�3.34

where

< E >=

∫

F (E)EdE
∫

F (E)dE
= F−1

tot

∫

F (E)EdE
�

�

�

�3.35

is the mean photon energy. From Equations (3.34) and (3.35) it is clear that TC only

depends on the shape of the spectrum. In particular, for the incident power law used

here (Γ = 2), the Compton temperature of the radiation is TC = 2.8 × 107 ◦K. Note

that the temperature at surface for the case with log ξ = 3.8 (model 10) is indeed

very close to TC.

In most cases, the gas remains at the high temperature limit throughout the

region where the ionizing radiation field is unchanged from the incident field, thus

forming a hot skin. The temperature gradually decreases in this hot skin as the

bremsstrahlung cooling becomes more important. As photons are removed from the

Lyman continuum energies either by scattering or absorption and re-emission, at

some point hydrogen recombines and the opacity grows rapidly, causing a drop in the

temperature. Eventually the opacity becomes very large so that few photons are left

in the 1-1000 Ry energy range, at which point the radiation field thermalizes to a

nearly constant temperature (T ∼ 104 ◦K).

It is worthwhile to mention that for the models with the two lowest ionization

parameters (models 1 and 2), the opacity of the gas is large compared to the ionizing

flux even at the surface of the disk and therefore the gas reaches the low temperature

limit very rapidly. Conversely, for the two models with log ξ = 2.5 − 3.1 (models

6-8), the illumination is high enough to allow the photons to penetrate much deeper
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into the atmosphere, and the gas remains at high temperature (T ∼ 106 ◦K) even

for large optical depths (τ > 1). In fact, by looking the intermediate cases (models

3-8), one can clearly identify two temperature zones: the hot skin correspond to

T & 106 ◦K, while the cold region occurs for T . 105 ◦K. Note also that although

the transition between the hot and cold regions can be sudden, there is no thermal

instability in these calculations, since in all these cases the constant density restriction

is applied (Krolik et al., 1981). Some of the models show small temperature inversions,

such as the one in the curve corresponding to log ξ = 3.5 (model 9), that can be

seen around τT ≈ 6. This inversion occurs in the place within the slab where the

temperature changes rapidly but also in a zone where the resolution in the optical

depth is reduced due to larger the step size in the grid, which could lead to small

scale thermal instabilities in the solution (Buff & McCray, 1974). Despite this, there

are no large scale thermal instabilities in these calculations, since in all these cases

the constant density restriction is applied (Krolik et al., 1981).

3.3.2 Reflected spectra

Figure 3.2 shows the reflected spectra for each of the models shown in the previous

section (models 1-10 in Table 3.1), in the entire energy range covered in the calcula-

tions (1 eV to 210 keV). The spectra emerging from the top of the slab are plotted

as solid curves, while the intrinsic disk flux is shown in the dotted curve. The dashed

curve represents the X-rays incident at the top of the disk, assumed to be in the form

of a power law with Γ = 2 and an exponential high energy cutoff at 200 keV (to

improve clarity, only the incident power law for the lowest ionization case is shown).

The corresponding values of log ξ are indicated above each curve, starting with the

smaller value at the bottom, and increasing the ionization to the top. The curves are

shifted to improve clarity. From bottom to top, each consecutive curve is rescaled

by a factor increased by one order of magnitude with respect to the previous one

(i.e., 1, 10, 100,...,109). Strong absorption profiles and edges are clearly seen in the

neutral cases for log ξ =0.8, 1.1 and 1.5 (models 1-3), although it is important to



73

mention that some small numerical problems occur in the thermal energy range of

the spectrum for the lower flux case. For a few energy bins the reflected outgoing

flux becomes negative, due to the large opacities for such energies (especially around

100 eV) and numerical errors in calculating the mean intensity. The redistribution

of the photons due to Comptonization is evident above 10 keV (Compton bump),

and in the smearing of the line profiles. For the models with the lowest illumination

(models 1-3), there is a significant modification of the original power law continuum

due to the large values of the photoelectric opacity for energies between 100 eV and

10 keV, where most of the strong absorption occurs. Nevertheless, none of these

models shows a spectrum dominated by absorption. Even in the lowest ionization

case (log ξ = 0.8), there are strong emission lines present through the whole energy

range. This combination of emission and absorption features in the reflected spectra

is a direct consequence of our accurate treatment of radiation transfer and the tem-

perature gradient along the vertical direction of the disk discussed in the previous

section.

The iron K line shows the effects of Compton scattering in models with log ξ ≥ 1.5,

since those are the cases for which a hot skin (T ∼ 106 ◦K) is present for at least

a fraction of the total depth of the disk. By comparing the most ionized models,

in particular those for log ξ = 2.8 and log ξ = 3.1 (models 7 and 8), one can see

a very drastic change from a highly ionized to an almost featureless spectrum, and

even fewer features are seen in the two models for log ξ = 3.5 and 3.8 (models 9 and

10). This is due to the fact that in these cases the gas is always at high temperature

within the range of our calculations. Despite this, emission from highly ionized iron

K lines is still apparent in the reflected spectrum.

Figure 3.3 shows the same results as Figure 3.2, but in the 2-10 keV energy

range. Here it is possible to see the structure of the iron inner shell transitions in

detail. The Compton shoulder is apparent in the first three curves from bottom to

top (least ionized cases). Changes in the Fe Kα emission line are distinguishable as

the ionization parameter increases. The neutral Kβ line is only evident in the three

least ionized cases (models 1-3), as well as the Fe absorption edge at ∼ 7.5 keV. This



74

1010

1012

1014

1016

1018

1020

1022

1024

1026

1028

 1  10  100  1000  10000  100000

E
 F

E
 (

er
g/

cm
2 /s

)

Energy (eV)

0.8

1.1

1.5

1.8

2.1

2.5

2.8

3.1

3.5

3.8

Figure 3.2 Solid curves: Reflected spectra for the models presented in Figure 3.1.

The value of log ξ is shown next to each corresponding curve (models 1-10). The

curves are shifted by arbitrary factors for clarity. These are, from bottom to top: 1,

10, 100,...,109. Dashed curve: incident ionizing spectrum (power law), corresponding

to the lowest ionization case (log ξ = 0.8). Dotted curve: intrinsic disk flux (black

body), common to all the models.
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figure also shows a more complex structure of the iron line in intermediate cases of

ionization: line positions and intensities vary between mostly neutral emission at 6.4

and 7.2 keV for Kα and Kβ, to a very ionized profile with lines around 6.5-7.0 keV

and 7.8-8.2 keV for the same transitions.

We have calculated the equivalent widths for the Fe Kα lines in all these spectra.

Because of the large deviations of the reprocessed continuum from the incident power

law in some of these models (particularly for low ξ), in order to calculate the equivalent

width we define a local continuum by interpolating a straight line between two points

in the region around the line, specifically between 6 and 7 keV. The integration is

performed within this range as well, such that only Kα emission is taken into account.

The resulting equivalent widths for the Fe Kα emission line vary between ∼ 400−

800 eV for the cases with 1 . logξ . 3 (left panel in Figure 3.3). For higher

values of the ionization parameter the equivalent widths decrease very rapidly, to

approximately 40 eV for the most ionized case (log ξ = 3.8, model 10). Since the gas

is more ionized for high illumination, the emission of the line becomes exclusively due

to H- and He-like iron ions, which combined with the extreme Compton scattering of

the photons results in the reduction of the equivalent width of the line. This tendency

resembles the X-ray Baldwin effect (Iwasawa & Taniguchi, 1993), which have been

observed in many active galactic nuclei spectra (e.g., Page et al., 2004).

3.3.3 Spectral features

In order to provide a finer analysis of the reflected spectra, we perform calculations

increasing the energy resolution by an order of magnitude, i.e., using 5 × 104 energy

grid-points (R ∼ 3500). Since these calculations are more expensive in terms of

CPU-time, we only show three representative cases. These calculations are shown in

Figures 3.4-3.6, and correspond to models 11, 12 and 13 in Table 3.1. These spectra

(Figures 3.4-3.6), are plotted in their physical units and without any renormalization

or rescaling, and besides the much higher energy resolution, all the other input param-

eters in the models are the same as the ones used for the models present previously



76

1012

1013

1014

1015

1016

1017

1018

1019

 2  3  4  5  6  7  8  9  10

E
 F

E
 (

er
g/

cm
2 /s

)

Energy (keV)

0.8

1.1

1.5

1.8

2.1

1015

1016

1017

1018

1019

1020

1021

 2  3  4  5  6  7  8  9  10

Energy (keV)

2.5

2.8

3.1

3.5

3.8
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Figure 3.4 Reflected spectra for log ξ = 1.5 while using a resolving power of R ∼ 3500

(model 11). All the other input parameters are the same used before (as in Figures 3.1

and 3.2), although no rescaling is applied. The strongest emission lines are labeled.

in Figures 3.1 and 3.2.

Figure 3.4 shows the reflected spectra corresponding to log ξ = 1.5 (model 11),

in the 0.5-10 keV energy range, while using a resolving power of R ∼ 3500. The

most prominent and relevant emission lines are identified in the Figure. In general,

the spectrum is dominated by many absorption edges plus radiative recombination

continua (RRC). RRCs occur when a free electron is captured by an ion into an

unoccupied orbit; if the electron carries more energy than it needs to be bound to

the ion, the excess will be radiated as a photon. Emission K lines from H- and

He-like nitrogen, oxygen, neon and magnesium are present in the region around and

below 2 keV. At higher energies, there is clear emission from Si xii-xxiv and S xv-
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xvi. The iron Kα and Kβ components are clearly visible at ∼ 6.4 keV and ∼ 7.1

keV, respectively, as expected from mostly neutral emission. Many lines are blended

together in a small region (about 50 eV for each component), but the emission is

mainly due to iron, specifically Fe xiii up to Fe xvi. The Compton shoulder in both

components is also evident, as well as a very marked absorption edge at ∼ 7.5 keV

blended with a complex structure of absorption profiles. These absorption features

correspond to resonances given by transitions from the ground state to the 1s − np

autoionizing states, where n = 3, ..., 30; for our particular atomic data set. These are

K-vacancy states that can decay either radiatively or via Auger spectator channels,

being the latter dominant for n ≥ 3 (Palmeri et al., 2002). The resonance structure

seen in this spectrum covers the 7.1-8. keV energy range, thus it is mainly due to

second row Fe ions, which resemble the opacity curves shown by Palmeri et al. (2002),

as well as the photionized spectra in Kallman et al. (2004), for similar values of the

ionization parameter considered here. The energy position of the absorption edge

indicates that it is likely produced by Fe xiii-xiv, according to the energies presented

in Kallman et al. (2004) (see in particular their Figure 2).

Figure 3.5 shows the resulting spectra when log ξ = 2.5 (model 12), again for a

high resolution energy grid (R ∼ 3500). There is a significant change in the overall

continuum, particularly in the 1-10 keV region, in comparison with the previous case

(log ξ = 1.5). This is because in the lower ionization case the photoelectric opacity

dominates in this energy band and changes the original incident power law shape,

while the continuum spectrum in Figure 3.5 still shows the original slope (Γ = 2).

Lower opacity also allows the efficient propagation of line emission (since photons are

able to escape), especially the emission from heavier elements (Ar xvii, Ca xix and

Ca xx), since the gas is more ionized. In general, this spectrum shows more emission

lines and weaker absorption edges. However, some RRCs can still be identified,

especially around the sulfur and calcium lines. The K lines from nitrogen, oxygen

and neon ions are again the strongest emission features in the low energy part of the

spectrum. The high energy region changes noticeably with respect to the previous

case with lower ionization. The strongest Fe Kα emission in this case is due to Fe xxv
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Figure 3.5 Reflected spectra for log ξ = 2.5 while using a resolving power of R ∼ 3500

(model 12). All the other input parameters are the same used before (as in Figures 3.1

and 3.2), although no rescaling is applied. The strongest emission lines are labeled.
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Figure 3.6 Reflected spectra for log ξ = 3.5 while using a resolving power of R ∼ 3500

(model 13). All the other input parameters are the same used before (as in Figures 3.1

and 3.2), although no rescaling is applied. The strongest emission lines are labeled.

ions at ∼ 6.7 keV. However, there is a rich structure of emission lines with centroid

energies that cover from ∼ 6.4 keV to 6.7 keV produced by ions at lower ionization

stages (Fe xv-xviii). The Fe xxvi Kα emission line is clearly observable at 6.965

keV. All these lines are superimposed on a very broad, Comptonized profile. The

Kβ component is replaced by a few distinguishable emission lines mainly due to H-

and He-like iron. As in the previous case, a rich structure of absorption profiles is

noticeable between 7.2 and 8.2 keV. A small absorption edge can be seen just below

the RRC located at ∼ 9 keV.

It is important to notice that the O viii Kα emission line shows the same kind

of broadening as the Fe K line. In fact, the other oxygen lines also show broadening
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in some degree, as well as those coming from neon. This is somewhat unexpected,

since photons at those energies would need many scatterings in order to produce such

broadening if the gas were cold. However, since the temperature is high (T ∼ 106 ◦K)

even at τ ∼ 1, broadening also takes place through the dependence of the Gaussian

kernel on the temperature (see § 3.2.1). This also means that the H-like oxygen

lines are being produced efficiently over a large range of optical depths, which can be

verified by looking at higher ionization parameters. Figure 3.6 shows the last model

with a resolving power of R ∼ 3500, resulting from a gas at log ξ = 3.5 (model

13). Almost no absorption features can be seen in this spectrum, and the emission

comes mostly from recombination of fully ionized ions. Both iron and oxygen Kα

line profiles are very broad and Comptonized. There are no apparent signs of broad

components in the weaker lines, such as those from neon, although this is likely due

to the fact that the redistribution is so extreme that it completely smears the profile

over the continuum. Therefore, only those photons produced very close to the surface

come out of the slab unscattered. The emission in the iron K region is exclusively due

to H- and He-like ions. There is strong emission from the Rydberg series of Fe xxv,

namely transitions from 1s 4p, 5p and 6p to the ground state 1s2, at 8.62, 8.83 and

8.94 keV, respectively.

3.3.4 Anisotropy: incident and viewing angles

The boundary condition expressed in Equation (3.14) depends, in general, on the

angle with respect to the normal on which the radiation is incident. Isotropic illumi-

nation implies that the source of radiation is extended and very close to the region

where the calculation takes place. On the other hand, locating the source of the

external X-rays at a specific point far away of the accretion disk constrains the angle

at which radiation will penetrate in the atmosphere. To account for such a situation,

the right hand side of Equation (3.14) can be expressed as

Iinc = I0δ(µ− µ0),
�

�

�

�3.36

where µ0 is the cosine of the incidence angle. The lower panel of Figure 3.7 shows the
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Figure 3.7 Temperature profiles (upper panel) and reflected spectra (lower panel),

resulting from a constant density model with log ξ = 2.8 for three different incidence

angles (models 14-16). In the two panels, the red curves corresponds to µ0 = 0.95

(θ ≈ 0o, normal incidence); the green curves to µ0 = 0.5 (or θ = 60o); and the blue to

µ0 = 0.05 (θ ≈ 90o, grazing incidence).
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Figure 3.8 Outgoing intensities in the 2-10 keV energy range for constant density

models from 3 different ionization parameters (models 2, 5 and 8), as viewed at three

different angles with respect to the normal. In all cases, the red curves corresponds

to µ = 0.95, the green curves to µ = 0.5, and the blue curves to µ = 0.05.



84

reflected spectra for a constant density model in which log ξ = 2.8 for three different

incidence angles (models 14-16 in Table 3.1). The red curve corresponds to µ0 = 0.95

(normal incidence), the green curve corresponds to µ0 = 0.5, and the blue curve to

µ0 = 0.05 (grazing incidence). The upper panel of the Figure shows the corresponding

temperature profiles as a function of the Thomson optical depth, obtained for each

case. At the surface of the disk (τ = 0), the temperature increases with the incidence

angle, such that the grazing incidence shows the highest temperature of the three

cases. However, when the illumination occurs at normal incidence, the radiation

ionizes deeper regions in the slab and there is a larger amount of hot material for those

cases. In this model, the physical quantity that describes the amount of illumination

is the net X-ray flux Fx, in units of energy per unit area per unit of time. Since

the flux is defined as the second moment of the intensity, (Equation 3.24), therefore

Fx = 1
2

∫

Iincµdµ, and using Equation (3.36)

Iinc =
2Fx

µ0

δ(µ− µ0),
�

�

�

�3.37

which means that for the same value of Fx (or the same ionization parameter ξ),

varying the incidence angle µ0 effectively varies the intensity of the radiation incident

at the surface. This will, of course, produce more heating and raise the temperature

and ionization of the top layers in the disk. However, the angular dependence of the

radiation field ensures that in the cases of normal incidence the illuminating radiation

reaches deeper regions in the atmosphere than those of grazing angles, as is expected.

Although the effects on the reflected spectra are not obvious, the spectrum for the

grazing incidence (blue curve) is stronger than the other two, mimicking a case of a

higher illumination (note that none of the curves have been offset). Nevertheless, the

emission lines are, in general, very similar in all cases. It is also interesting to see how

the temperature profiles of the three models converge at large optical depths, since

the radiation fields become more isotropic after many scatterings.

The anisotropy of the reflected radiation field can also be investigated by looking

its angular distribution through different viewing angles. Figure 3.8 contains the

reflected spectra for 3 different ionization parameters (indicated next to each case), as
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is observed from 3 different angles with respect to the normal, in the 2-10 keV energy

range. For consistency the colors represent the same angles as in Figure 3.7, i.e., the

red curves indicate µ = 0.95 (face-on), the green curves µ = 0.5, while the blue curves

correspond to µ = 0.05 (edge-on). Note that no rescaling or normalization is applied

to these curves, therefore the differences are exclusively due to the differences in the

ionizing fluxes and on the viewing angles. Moreover, the physical quantity plotted here

is the outgoing specific intensity I(0,+µ,E) instead of the flux (as the other Figures),

which is an angle averaged quantity. In fact, these 3 cases are those presented in

Figures 3.2 and 3.3 (models 2, 5 and 8 in Table 3.1), and thus their temperature

profiles correspond to those shown in Figure 3.1. In general, the reprocessed features

are stronger when the disk is observed face-on than when the viewing angle is parallel

to the surface. Nayakshin et al. (2000) found the same tendency in their hydrostatic

models, which they explained to be a consequence of an effective Thomson depth that

changes when the slab is observed at different angles, according to the geometrical

projection τeff = τ/µ. However, their results suggest that the reflection features

almost disappear for small values of µ, and that no visible iron could been detected

in such cases. The results shown in Figure 3.8 do not completely agree with this,

since the Fe K lines are strong even for the high ionization case. Nevertheless, one

must take this comparison with care, since all the results presented in this Chapter

correspond to constant density models, while Nayakshin et al. (2000) calculations

were done under hydrostatic equilibrium. In any case, the trend in the emerging

spectra shown in Figures 3.7 and 3.8 is similar to previous models in the literature,

such as those by Nayakshin et al. (2000) and Ballantyne et al. (2001).

3.3.5 Iron abundance

We have also studied the effects of the iron abundance on the ionization of the at-

mosphere and the reprocessed spectra. The upper panel of Figure 3.9 shows the

temperature profiles along the vertical direction for a gas at log ξ = 2.5 when the

iron abundance is assumed to be 0.2, 1, 2, 5 and 10 times its solar value (models 17,
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Figure 3.9 Upper panel: temperature profiles from a constant density model with

log ξ = 2.5 and different iron abundances with respect to the solar values. From

right to left, each curve corresponds to: AFe=0.2, 1, 2, 5 and 10 (models 17, 6 and

18-20, respectively). Lower panel: reflected spectra for the same models. The curves

are shifted by arbitrary factors for clarity. These factors are, from bottom to top:

10−2, 100, 102, 104, and 106. The values of the iron abundance with respect to the

solar value are shown at the top of each curve.
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6 and 18-20, respectively). The solar atomic abundances used in all our calculations

are those from Grevesse et al. (1996), and in particular for iron is 3.16 × 10−5 (with

respect to the hydrogen). The curves towards the left of the plot correspond to higher

values of the iron abundance, which means that the gas is effectively cooler than the

solar and sub-solar cases. This shows that the iron produces a net cooling as its

abundance is increased. The transition between the hot and cold regions in the gas

occurs at lower optical depths for the super-solar abundance models, decreasing the

thickness of the hot skin. However, all the models converge to the same temperature

in the cold region of the disk (T ∼ 2.5 × 104 ◦K).

The corresponding reflected spectra are shown in the lower panel of Figure 3.9.

These curves are shifted by factors of 10−2, 100, 102, 104, and 106 from bottom to top

for clarity. The iron emission is enhanced when the abundance is increased, as can be

clearly seen at ∼ 6 keV, ∼ 1 keV and ∼ 0.1 keV for the K-, L- and M-shell transitions,

respectively. It is also evident that the continuum is highly modified in the 1-40 keV

energy region, which is where the larger opacity takes place. However, there are no

significant modifications at higher energies (i.e., if these spectra are placed on the top

of each other, there are no differences in the region above 40 keV).

The suppression of the continuum combined with the enhancement of the K-shell

emission lines, as the iron abundance is increased, shows a significant impact on the

line equivalent width. When solar abundance is assumed, the equivalent width for the

Fe Kα is ∼ 700 eV. This value is increased to about 1.1, 2.3 and 3.9 keV when iron is

chosen to be twice, five and ten times more abundant, respectively. Conversely, this

value decreases to ∼ 203 eV for the model when AFe = 0.2.

3.3.6 Comparison with previous models

Taking into account that our main contribution to the already existing models of

accretion disk is the inclusion of the most complete atomic data available (particularly

important for iron), we compare our results for constant density accretion disks models

with those included in reflion (Ross & Fabian, 2005). Such a comparison is shown
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in Figure 3.10 where the reflected spectra for three different ionization parameters

are shown (log ξ = 1.5, 2.5 and 3.5). In the figure, the black curves correspond to our

calculations (models 11-13), while the red curves are the models from reflion with

the same input parameters. It is clear from this comparison that these two models

show important differences. The Fe K line profile around 6.4 keV from our model is

shown to be much more intense but with similar widths, and the absorption edge at ∼

7.5 keV to be quite strong (especially for the lower ionization). In fact, the equivalent

widths of the iron Kα emission line are similar in both models for log ξ = 1.5, our

models predict a value of 610 eV while reflion predicts 793 eV. However, there

are larger discrepancies in the higher ionization cases: our models predict equivalent

widths of 695 eV and 92 eV for log ξ = 2.5 and 3.5, respectively; while reflion

models show values of 473 eV and 49 eV for the same cases, respectively. As before,

these equivalent widths were calculated using a local continuum which is defined by

interpolating a straight line between two points. In this case the integration was

performed between 6 and 7 keV in order to take into account only the contribution

from the Kα emission (since any Fe Kβ emission will occur at energies above 7 keV).

Furthermore, the same integration region is applied to all the models in order to

provide a consistent quantity to compare models with different ionization parameters.

However, we have also calculated the equivalent widths when the integration region

is modified for each model such that the entire broadened line is included. The new

integration regions are: 6.1-6.6 keV, 5.9-7.3 keV, and 5.2-7.8 keV for models with

log ξ = 1.5, 2.5 and 3.5, respectively. The resulting equivalent withs from our models

are 569 eV, 829 eV and 255 eV; while reflion predicts 700 eV, 813 eV and 420 eV for

the same models, respectively. Clearly, there is a better agreement when the entire line

profile is taken into account, especially for the two lowest ionization cases. Although

both set of models share the same input parameters, in reflion the illuminating

spectrum extends up to 1 MeV with an exponential cutoff placed at 300 keV, while

our models cover up to 210 keV, with the exponential cutoff placed at 200 keV. This

could be responsible for some of the differences seen here, in particular by altering the

broad component of the Fe K emission which is highly affected by the Comptonization
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of the photons in the gas. In general, our models predicts stronger Fe Kα emission,

a more complex structure for the Fe absorption edge, and the presence of the Fe Kβ

emission line at ∼ 7.2 keV, not seen in the reflion models.

Additionally, we have also compared our models with those presented by Nayak-

shin et al. (2000). In many aspects these models are the most similar to the ones

presented in this Chapter, in particular since they have also used the code xstar

to solve the ionization structure of the gas. By means of visual comparison of their

figures we found a good general agreement in the five constant density models in-

cluded in Nayakshin et al. (2000). However, our models predict higher temperatures

in the regions close to the surface of the disk (at small optical depths), and lower

temperatures at large optical depths; which affects the ionization of the gas and the

final reprocessed spectrum. This is likely due to the fact that their models only ex-

plicitly treat a smaller optical depth (up to τThomson = 4) than ours, and the radiation

transmitted through this region is treated approximately.

3.4 Conclusions

In this Chapter we have presented new models for the structure of X-ray illuminated

accretion disks and their reflected spectra, assuming constant density along the verti-

cal direction. These models include the most recent and complete atomic data for the

iron isonuclear sequence. The energy resolution used in the reflected spectra exceeds

other models previously published as well as the resolution of the detectors on current

X-ray observatories (Chandra, XMM Newton, Suzaku), and it is comparable to the

expected resolving powers of the forthcoming X-ray missions such as Astro-H.

In models with intermediate values of the ionization parameter (1.5 ≤ logξ ≤

3.1), the structure of the gas often displays a two temperature regime: a hot skin

(T > 106 ◦K) close to the surface where the Compton heating and cooling dominates,

and a cold region (T < 105 ◦K) where the photoelectric opacity quickly thermalizes

the radiation fields. The thickness of the hot skin increases with the illumination.

Although these solutions are thermally stable, the transition between the hot and cold
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regions can be sudden. The emergent spectra corresponding to these models show a

clear combination of absorption and emission features, particularly for log ξ < 2.5.

For higher illumination cases the effects of Compton scattering become more evident,

even in the low-energy part of the spectrum (E < 100 eV). In the high energy part of

the spectrum Compton scattering partially smears the profile of the iron K line. The

Compton hump above 10 keV is clearly visible in all the models considered here.

The equivalent width of the Fe Kα emission line varies between ∼ 400-800 eV for

models with 1 . logξ . 3. Once the ionization parameter is larger than 103, the

equivalent width decreases drastically. The lowest value of the equivalent width is

∼ 20 eV, corresponding to the highest illumination case (log ξ = 3.8). This behavior

resembles the X-ray Baldwin effect, recently observed in several AGNs. A comparison

with other models previously published such as reflion shows important differences

in the structure of the iron K lines. In particular, the equivalent widths in those

models can differ by a factor of 2 when compared to the ones shown in this Chapter.

In general, our simulations show that the K-shell atomic data is crucial to prop-

erly model the structure and profile of the iron lines. These results also suggest that

the line emission from Fe ions in different ionization stages and Comptonization of

high energy photons by cold electrons can be responsible for significant line broad-

ening. These processes need to be taken into account since they can be mistaken for

relativistic effects, especially in cases when the gas is partially or high ionized.



4
Theory of The Atomic Structure

4.1 Introduction

Both modern quantum mechanics and computational physics have been crucial in

the development of the necessary tools for the calculation of the atomic structure of

many elements, with an accuracy that, in many cases, is comparable to laboratory

measurements. In this chapter we present a review of the methodology used in the

calculation of atomic data for the isonuclear sequence of nitrogen, namely energy

levels, wavelengths, partial and total radiative and Auger rates, and photoionization

cross sections. Each theoretical framework is related to different computer codes in

the public domain, such as autostructure, hfr and bprm. Although these share

the same final purpose, they differ in terms of the numerical techniques and minor

physical aspects. These could yield to significant differences in the final result. The

relevance of using different techniques lies in the possibility of a detailed comparison

of each one of the physical quantities computed, as well as the identification of the

relevance of small corrections introduced by each approximation.

92
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4.2 AUTOSTRUCTURE

The computer code autostructure (Eissner et al., 1974; Badnell, 1986, 1997, pre-

viously called superstructure), is a tool for the calculation of the atomic structure

of a given ion. It has been defined by its authors as “an automatic computational

program of general purposes”, which means that, in principle, its capabilities do not

depend on the particular ion to be studied, and that its implementation is more au-

tomatized since the information required from the user in minimal. This code allows

the calculation of energy terms in LS coupling, energy levels in intermediate coupling,

radiative and Auger data and wavelengths.

Its main feature is the use of the Slater method as a expansion technique to

generate the eigenfunctions of the angular momentum operators L2, Lz, S
2 and Sz,

described in detail by Condon & Shortley (1951). Other important features are:

• The algebraic and analytic problems are treated separately inside the code,

which represent a huge advantage in the study of isonuclear sequences: the

algebra is calculated only once, while the analytic part calculates the radial

wave functions, energies and other quantities for each member of the sequence.

• There is flexibility in the type of radial wave functions that can be used, which

can be provided by the user, or calculated internally using a modified Thomas–

Fermi potential.

• It is capable of processing dipolar transition probabilities in order to obtain

cascade coefficients.

With these features, autostructure makes use of the eigenfunctions mentioned

above to calculate the matrix elements of the non-relativistic Hamiltonian, the Breit–

Pauli relativistic operators and the electric dipolar and magnetic quadrupolar radia-

tive operators.
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4.2.1 Energy Levels

The quantum mechanical description of any atom or ion requires the solution of the

Schrodinger wave equation. For a many body system in steady state it can be written

as

HΨ = EΨ
�

�

�

�4.1

where E is the total energy, H is the Hamiltonian operator and Ψ is the wave function

that describes the system. For an ion with N electrons the non-relativistic Hamilto-

nian is given by

Hnr = −
N

∑

i=1

(

∇2
i +

2Z

ri

)

+
∑

i>j

2

rij

�

�

�

�4.2

with energies in Rydberg. This expression assumes that the nucleus can be treated

as a point charge; Z is the atomic number, ri is the distance of the i-th electron from

the nucleus, and rij is the distance between the i-th and j-th electrons. An exact

solution of Equation (4.1) only can be found for systems with one electron, such as

the hydrogen atom (N = 1). Nonetheless, it is possible to obtain an approximate

wavefunction by replacing the Hamiltonian in Equation (4.2), by one that can be

solved. As a first approximation an independent model of particles can be adopted

Hnr ≈ Ho =
N

∑

i=1

{

−∇2
i −

2Z

ri
+ Ui

}

�

�

�

�4.3

If a wavefunction Φ satisfies the new wave equation

HoΦ = EoΦ
�

�

�

�4.4

it means that Φ is an approximation of Ψ, with the difference that the new function

can be rewritten as a combination of independent functions as

Φ = ϕ(1)ϕ(2)...ϕ(i)...ϕN

�

�

�

�4.5

where ϕ(i) is the wavefunction of the i-th electron. Therefore, Equation (4.4) becomes
[

−∇2
i −

2Z

ri
+ Ui

]

ϕ(i) = Eoiϕ(i)
�

�

�

�4.6
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As a second approximation we can assume that Ui is a central potential, from where

Equation (4.6) can be separated as combination of functions depending on the angu-

lar, radial and spin coordinates

ϕ(r, θ, φ, σ) =
P (r)

r
Ylml

(θ, φ)χms

�

�

�

�4.7

where Ylml
(θ, φ) is the spherical harmonic and χms is the spin function. The radial

function P (r) is now a solution of the equation

[

d2

dr2
+

2Z

r
− U(r) −

l(l + 1)

r2
+ ǫ

]

P (r) = 0, (ǫ = Eoi)
�

�

�

�4.8

with the boundary conditions P (0) = P (∞) = 0. Then, we have an eigenvalue

problem, where the eigenvalues and eigenvectors are ǫnl and Pnl, respectively, and n

plays the same role as the principal quantum number in the equation for the hydrogen

atom. As a result, the functions for one electron can be completely specified in terms

of the four quantum numbers n, l,ml,ms, which are called orbital-spin functions. In

this approximation, the total wave function describes a configuration of electrons in

which the quantum numbers n and l are specified for each electron (even though the

wave functions are still degenerate with respect to ml and ms). The difficulty of this

scheme lies in choosing a potential U(r) also approximated for one electron.

The function (4.5) does not ensure Pauli’s exclusion principle. However it can

be satisfied if we make Φ take the form of a Slater determinant of the orbital-spin

functions. It is convenient that the orbital-spin functions form an orthonormal set

∫

ϕ
(1)
nlmlms

ϕ
(1)

n′l′m′

lm
′

s
dτ1 = δnn′δll′δmsm′

s
δmlm

′

l

�

�

�

�4.9

where dτ1 means that the integration is over the whole space and that the sum

is performed over all the spin coordinates of electron 1. Since the Hamiltonian is

independent of the spin, it must commute with the total spin angular momentum

operators S2 and Sz, as well as with the total orbital angular momentum operators

L2 and Lz, which also commute with the previous two. This means that the exact

solution of Equation (4.1) is also an eigenfunction of these operators. Therefore the
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approximated wave functions are taken as linear combinations of the Slater determi-

nants coupled to produce the eigenfunctions of the four operators mentioned above.

In the scheme of the Russell–Saunders coupling (LS coupling), the spin and orbital

angular momentum are coupled independently in order to produce the | LSMLMS〉

states. Clearly, it is advantageous to use LS coupling in systems where the spin-orbit

effects are negligible.

4.2.2 Variational Principle in the Calculation of Energy Lev-

els

Each configuration C used in the expansion in autostructure will produce a set

of terms t where

t = CβSL
�

�

�

�4.10

and β a degeneration parameter. The wave function of a particular state is then given

by a linear combination of the wave functions of the configuration

| γSLMSML〉 = 〈CβSL | γSL〉 | CβSLMSML〉
�

�

�

�4.11

To calculate the matrix elements, the wave functions are expressed in terms of the

Slater states

| t〉 = 〈u | t〉 | u〉
�

�

�

�4.12

where

| u〉 = πN
g=1 | nglgµgmg〉

�

�

�

�4.13

and

MS =
N

∑

g=1

µg

�

�

�

�4.14

ML =
N

∑

g=1

mg .
�

�

�

�4.15
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Thus, each matrix element is calculated in the representation of the Slater states and

then transformed to the representation of the configurations t

〈t | H | t′〉 = 〈t | u〉〈u | H | u′〉〈u′ | t′〉 .
�

�

�

�4.16

The coefficients of the coupled vectors 〈u | t〉 are obtained by looking at which

combinations of the Slater states are eigenvectors of S2 and L2 simultaneously, and

then diagonalizing the S2 and L2 matrices.

The radial wave functions can be obtained with the functional of the well known

variational principle

δ {〈t | H − E | t′〉} = 0
�

�

�

�4.17

where t and t′ are the trial functions. The radial functions Pnl are solutions of the

equation
{

d2

dr2
−
l(l + 1)

r2
+ 2V (λl, r) + ǫnl

}

Pnl(r) = 0
�

�

�

�4.18

under the boundary conditions r → 0 and r → ∞. The potential V (λl, r) is of the

type of the Thomas–Fermi statistical model, and the functions Pnl depend on the

scaling parameters λl, which are considered as variational parameters. Thus,

Ei = Ei(λs, λp, ...) = 〈γSL | H | γSL〉
�

�

�

�4.19

replacing Equation (4.17) by

δF = δ

{

INC
∑

i=1

giEi(λs, λp, ...)

}

�

�

�

�4.20

where gi is the statistical weight of the i term, and INC is the number of energies

included in the minimization process.

4.2.3 Relativistic Corrections to the Hamiltonian

The relativistic effects usually have a small impact on the calculation. However, if

high accuracy is desired, they might be quite relevant, in particular for ions with high
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atomic number, or highly ionized species where high velocities are involved. Histor-

ically, the first relativistic approximation to the Schrodinger equation was proposed

by Klein–Gordon. However this only admits solutions in which the probability den-

sity is negative, thus lacking physical meaning. Later, Paul Dirac found the proper

relativistic wave equation that solved these type of problems. The solution of the

Dirac equation represents the most correct way of including relativistic corrections in

atomic calculations. Dirac’s deduction was made for one electron systems only. In

the case of many bodies, the solution of the Dirac equation is extremely difficult and

cumbersome. Therefore, in practice (and specifically in autostructure), lower or-

der operators are introduced to complement the Hamiltonian described before, which

are obtained through expansions of powers of α, the fine-structure constant. The

resulting Hamiltonian is known as the relativistic Breit–Pauli Hamiltonian (Breit,

1932), and can be expressed as

Hbp = Hnr +H1b +H2b

�

�

�

�4.21

where Hnr is the one showed in Equation (4.2), and H1b and H2b are the operators

associated with the one or two body interactions, respectively. Each one of them

contains a different kind of correction, namely

H1b =

N
∑

i=1

fi(mass) + fi(d) + fi(so)
�

�

�

�4.22

H2b =
∑

i>j

gij(so) + gij(ss) + gij(css) + gij(d) + gij(oo)
�

�

�

�4.23

1. 1-Body Operators

The 1-body mass correction operator,

fi(mass) = −
1

4
α2∇4

i

�

�

�

�4.24

represents the term for the correction in the kinetic energy of the electron due

to the variation of its mass as a function of the velocity.
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The 1-body Darwin operator,

fi(d) = −
1

4
Zα2∇2

i

1

ri

�

�

�

�4.25

corresponds to the relativistic correction for the potential energy.

The spin-orbit 1-body operator

fi(so) =
Zα2

r3
i

(li.si)
�

�

�

�4.26

corresponds to the interaction of the intrinsic magnetic moment of the electron

with the magnetic field produced by its orbit around the nucleus.

2. 2-Body Operators

The fine-structure 2-body spin-orbit operator

gij(so) = −α2

(

rij

r3
ij

× pi

)

· (si + 2sj)
�

�

�

�4.27

considers the interaction of the electron spin with the orbit of another electron,

and the contribution of its own spin-orbit interaction. Other operators are:

The spin-spin operator is

gij(ss) = 2α2 1

r3
ij

(

sisj −
3(si.rij)(sj.rij)

r2
ij

)

;
�

�

�

�4.28

The contact spin-spin operator

gij(css) = −
16πα2

3
(si.sj)δ

3(rij) ;
�

�

�

�4.29

The 2-body Darwin operator

gij(d) = −
1

2
α2∇2

(

1

rij

)

;
�

�

�

�4.30

and the orbit-orbit operator between valence electrons

gij(oo) = −α2

(

Pi.Pj

rij

+
rij(rij.Pi).Pj

r2
ij

)

.
�

�

�

�4.31
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4.2.4 Photoionization Cross Sections

Consider the photoionization process

hν + Ai → A+
j + e−

�

�

�

�4.32

where Ai is an atom in the state i and A+
j is the residual ion in the state j. The total

cross section of the emission of electrons in any direction due to the absorption of a

photon with energy hν (from an unpolarized beam), is given by

σji(ν) =
8π3ν

3c

1

gi

Sji

�

�

�

�4.33

where Sji is the line strength and gi is the statistical weight if the initial state. It is

important to notice that when considering an atomic system as A+ + e−, the initial

state i correspond to the bound state and the final state j correspond to the free state.

The wave function of the bound state is normalized to unity, while the normalization

of the final state (or state of the continuum), is defined as

〈Ψj | Ψj′〉 = δjj′δ(E − E ′) .
�

�

�

�4.34

When using Rydberg as energy unit, Equation (4.33) is transform to

σji(µ) =
4π2αa2

0

3
(Ii + Ej)

1

gi

Sji

�

�

�

�4.35

where Ii is the ionization threshold energy and Ej is the kinetic energy of the excited

electron.

4.3 X-ray Fluorescence lines

In accretion discs around black holes reprocessing of a hard X-ray continuum in

relatively cool matter (∼ 105−106 K) and can generate intense iron K radiation from

less ionized iron. Iron fluorescence can be quite prominent and has long been known

to constitute an essential component of the disk spectra.
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The reprocessing mechanism, for any species with more than two electrons, begins

with the photoionization of a 1s electron by a photon with energy ǫ above the K edge,

sending an element A in charge state i − 1, to charge state i, where i is in a quasi

bound state that is coupled to the continuum, denoted here with a double asterisk

ǫ+ Ai−1 → A∗∗
i + e−

�

�

�

�4.36

The intermediate state A∗∗
i , since it lies above the threshold, has a non-vanishing

probability to react

A∗∗
i → Ai+1 + e−

�

�

�

�4.37

The ejection of an electron by this mechanism is called Autoionization. Referred

also as Auger effect for 1s vacancy states, autoionization is often the dominant decay

route for the 1s-hole state. The reaction products are Auger electrons; i.e., an electron

with a kinetic energy that is characteristic of the atomic energy level structure, and

an ion in charge state i + 1, which can be excited or at its ground state. For iron,

autoionization rates ∼ 1012 − 1014 s−1 are typical (Kallman et al., 2004). Competing

with the autoionization of the state A∗∗
i is spontaneous radiative decay. Radiative

transitions rates are of the same order of magnitude as Auger rates in iron, but can

be smaller by factors of a few. The case of highest probability involves a radiative

transition that fills the K-shell hole. The line energy ǫK is characteristic of the atomic

structure of the ion. We write the reaction as

A∗∗
i → A∗

i + ǫK
�

�

�

�4.38

The resulting ion A∗
i is indicated as being an excited level, although there are cases

when it is a ground level. Transitions filling the K-hole, from n = 2 are referred

to as Kα transitions, and from n = 3, Kβ transitions. These processes are shown

schematically in Figure (4.1).

These two processes together, the photoionization followed by radiative emission

of a K photon, make up what is called inner fluorescence. The K fluorescence yield

YK is the quotient if the rate at which K lines are generated from an irradiated sample
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Figure 4.1 Schematic view of atomic processes involved in the production of iron

K-spectra.

and the rate at which K-shell holes are produced in the sample (Bambynek et al.,

1972). The usual convention is to associate a fluorescence yield with pre-ionization

charge state. For example, Fe II K lines are associated with a Fe I yield.

For a set of energy levels u that lie above the ionization threshold, and a set of

stabilized levels l, all of which belong the charge state i (See Figure 4.1), the emissivity

summed over all K lines is

jK =
∑

u

∑

l

ni,uA
r
ul

�

�

�

�4.39

where we assume that transitions u→ l are members of the Kα complex in i. Level

population densities of level u in charge state i are denoted ni,u, and radiative tran-

sition rates by Ar. The units are cm−3 s−1. The level population density is found by

dividing the population flux into level u by the total decay rate of the level

ni,u =

∑

k ni−1,kβku
∑

j A
r
uj +

∑

mA
a
um

�

�

�

�4.40

where Aa
um is the Auger rate connecting level u in state i to level m in state i + 1.
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Energy levels k in the pre-ionization charge state i− 1 are represented as ni−1,k, and

βku is the photoionization rate connecting level k in state i−1 with autoionizing levels

u in state i. The the emissivity becomes

jK =
∑

k

∑

u

∑

l

ni−1,kβkuΓul

�

�

�

�4.41

where we define the line fluorescence yield Γul for each transition u→ l by

Γul =
Ar

ul
∑

j A
r
uj +

∑

mA
a
um

�

�

�

�4.42

Now we normalize the emissivity by dividing it by the total photoionization rate,

which gives an expression for the fluorescence yield

YK =

∑

k

∑

u

∑

l ni−1,kβkuΓul
∑

k

∑

u ni−1,kβku

�

�

�

�4.43

Then the yield YKα is thus a weighted average of the line fluorescence yields,

where the weightings are determined by the level population distribution of charge

state i− 1 and the level-to-level photoionization rates.
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Nitrogen K-shell photoabsorption

5.1 Introduction

The improved resolution and sensitivity of current satellite-borne X-ray observatories

(Chandra and XMM Newton) allow the study of previously inaccessible weak spectral

features of astrophysical interest. In the early stages of these missions, it was realized

that absorption by low-ionization species was common. Additionally, all charge states

(except the fully ionized) left identifiable imprints in the X-ray spectrum proved to be

a powerful diagnostic. Inner-shell absorption is important in the outflows of Seyfert

galaxies in terms of both Fe Lα (Sako et al., 2001; Behar et al., 2001) and Kα lines

of high-Z elements (Behar & Netzer, 2002), and also of elements in the first row of

the periodic table such as oxygen (Pradhan, 2000; Behar et al., 2003; Garćıa et al.,

2005). Furthermore, inner-shell absorption of continuum X-rays from bright galactic

sources is a useful diagnostic of the interstellar medium (Yao et al., 2009; Kaastra

et al., 2009).

Nitrogen K-shell absorption and emission are detected in X-ray spectra, mostly

due to the H- and He-like charge states. For instance, observations of the emission

lines of N vi and N vii in the ejecta of η Carinae by Leutenegger et al. (2003) have

resulted in the lower bound N/O > 9 for its nitrogen abundance. This result puts

a constraint in the evolution of η Car and is a signature of CNO-cycle processing.

104
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The N vi triplet is observed in the spectrum of the magnetic B star β Cep where it

has been used to test magnetically confined wind shock models (Favata et al., 2009).

It is found that the plasma is not heated by magnetic reconnection and there is no

evidence for an optically thick disk at the magnetic equator. Highly ionized emission

lines of nitrogen have been observed by Miyata et al. (2008) on the north-eastern

rim of the Cygnus Loop supernova remnant which can be used to determine nitrogen

abundances, which turn out to be 23% solar. Seyfert galaxy outflows may also have

super-solar N abundances (Brinkman et al., 2002; Arav et al., 2007).

Narrow absorption Kα and Kβ lines of N vi have been identified in the warm

absorber of the MR 2251-178 quasar, which point to a complex velocity field with an

outflow of ionized material (Ramı́rez et al., 2008). K-shell absorption by Li-like N v,

which has prominent UV lines, or by lower charge states at wavelengths λ > 29 Å is

difficult to detect due to the reduced sensitivity of current X-ray instruments towards

these longer wavelengths. Notable exceptions include : Kα absorption by N v at

29.42 Å has been reported by Steenbrugge et al. (2005) in the outflow of NGC 5548;

and N absorption by a white dwarf outflow has been observed following the outburst

of nova V4743 Sagittarii (Ness et al., 2003). In the latter case, only the H- and

He-lines are discussed, but lower charge states of N are clearly seen in the spectrum

longward of 29 Å (see Fig. 3b in Ness et al., 2003).

The current proliferation of X-ray spectra with high signal-to-noise ratio in as-

tronomical archives makes the computation of nitrogen K-shell photoabsorption par-

ticularly timely. This is also an additional and important step in the ongoing effort

to compute reliable atomic data by Garćıa et al. (2005); Palmeri et al. (2008a,b);

Witthoeft et al. (2009) for K-line analysis within the context of the xstar spec-

tral modeling code (Kallman & Bautista, 2001). Available spectroscopic data for

K-vacancy levels of the N isonuclear sequence are notably scarce, mainly limited to

N v and N vi for which a few levels are listed in the NIST database (Ralchenko

et al., 2008) and four measured wavelengths have been reported by Beiersdorfer et al.

(1999). This shortage of reliable measurements precludes empirical corrections to

calculated level energies. On the other hand, several relativistic methods have been
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previously used to generate atomic data for nitrogen K-vacancy states: the saddle-

point complex-rotation method (Davis & Chung, 1989; Chung, 1990; Shiu et al., 2001;

Lin et al., 2001, 2002; Zhang et al., 2005); the Raleigh–Ritz variational method (Hsu

et al., 1991; Yang & Chung, 1995; Wang & Gou, 2006); and multiconfiguration Dirac–

Fock (MCDF) approaches such as those by Hata & Grant (1983); Hardis et al. (1984);

Chen (1986); Chen & Crasemann (1987, 1988); Chen et al. (1997). Photoabsorption

cross sections in the near K-edge region of N ions have been obtained by Hartree–

Slater central-field computations (Reilman & Manson, 1979), where the resonance

structure due to quasibound states as well as configuration correlations are neglected.

The net effect of the resonance structure is to fill in the photoionization cross section

below the inner-shell threshold altering the shape of the K edge.

In this chapter we report on calculations of energy level structure and bound-

bound and bound-free transition probabilities for the K-shell of nitrogen. The outline

of the present chapter is as follows. The numerical methods are briefly described

in Section 5.2 while an analysis of the results based on comparisons with previous

experimental and theoretical values is carried out in Section 5.3. Some conclusions

are discussed in Section 5.4.

5.2 Numerical methods

The numerical approach used here has been fully described in Bautista et al. (2003).

Level energies, wavelengths, A-coefficients, and radiative and Auger rates are com-

puted with the codes autostructure (Eissner et al., 1974; Badnell, 1986, 1997) and

hfr (Cowan, 1981). For consistency, configuration-interaction (CI) wave functions of

the type

Ψ =
∑

ciφi

�

�

�

�5.1

are calculated with the relativistic Breit–Pauli Hamiltonian

Hbp = Hnr +H1b +H2b

�

�

�

�5.2
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where Hnr is the usual non-relativistic Hamiltonian. The one-body relativistic oper-

ators

H1b =
N

∑

n=1

fn(mass) + fn(d) + fn(so)
�

�

�

�5.3

represent the spin–orbit interaction, fn(so), the non-fine-structure mass variation,

fn(mass), and the one-body Darwin correction, fn(d). The two-body Breit operators

are given by

H2b =
∑

n<m

gnm(so) + gnm(ss) + gnm(css) + gnm(d) + gnm(oo)
�

�

�

�5.4

where the fine-structure terms are gnm(so) (spin–other-orbit and mutual spin-orbit),

gnm(ss) (spin–spin), and the non-fine-structure counterparts gnm(css) (spin–spin con-

tact), gnm(d) (two-body Darwin), and gnm(oo) (orbit–orbit). It must be pointed out

that hfr neglects contributions from the two-body term H2b of Equation (5.4).

In hfr, core-relaxation effects (CRE) are always taken into account since each

electron configuration is represented with its own set of non-orthogonal orbitals op-

timized by minimizing the average configuration energy. In autostructure, on

the other hand, configurations may be represented with either orthogonal or non-

orthogonal orbitals which then enables estimates of the importance these effects. In

the present calculation five approximations are considered in order to study the ef-

fects of electron correlation, i.e. configuration interaction (CI) and CRE, and thus to

estimate data accuracy.

Approximation AS1 Atomic data are computed with autostructure including

CI from only the n = 2 complex. CRE are neglected.

Approximation AS2 Atomic data are computed with autostructure including

both n = 2 CI and CRE.

Approximation AS3 Atomic data are computed with autostructure including

CI from both the n = 2 and n = 3 complexes. CRE are neglected.

Approximation HF1 Atomic data are computed with hfr including CI only from

the n = 2 complex.
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Approximation HF2 Atomic data are computed with hfr including CI from both

the n = 2 and n = 3 complexes.

Photoabsorption cross sections are obtained with the codes Breit-Pauli R-Matrix

bprm (Berrington et al., 1987; Seaton, 1987) and hullac (Hebrew University Lawrence

Livermore Atomic Code, Bar-Shalom et al., 2001). In bprm, wave functions for states

of an N -electron target and a colliding electron with total angular momentum and

parity Jπ are expanded in terms of the target eigenfunctions

ΨJπ = A
∑

i

χi
Fi(r)

r
+

∑

j

cjΦj .
�

�

�

�5.5

The χi functions are vector coupled products of the target eigenfunctions and the

angular components of the incident-electron functions; Fi(r) are the radial part of

the continuum wave functions that describe the motion of the scattered electron; and

A is an antisymmetrization operator. The functions Φj are bound-type functions of

the total system constructed with target orbitals. The Breit–Pauli relativistic version

has been developed by Scott & Burke (1980) and Scott & Taylor (1982), but the

inclusion of the two-body terms (see Equation 5.4) is currently in progress, and thus

not included. Auger and radiative damping are taken into account by means of an

optical potential (Robicheaux et al., 1995; Gorczyca & Badnell, 1996; Gorczyca &

McLaughlin, 2000) where the resonance energy with respect to the threshold acquires

an imaginary component. In the present work, the N -electron targets are represented

with all the fine structure levels within the n = 2 complex. It is important to mention

that the bprm approach does not allow the inclusion of CRE in the photoionization

calculations; therefore, both the initial and final states correspond to configurations

represented with orthogonal orbitals. Thus, the wave functions for the target states

are those produced with approximation AS1.

hullac is a multiconfiguration, relativistic computing package that is based on

the relativistic version of the parametric potential method by Klapisch et al. (1977),

and employs a factorization-interpolation method within the framework of the dis-

torted wave approximation (Bar-Shalom et al., 1988). It includes the Breit interaction
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for relativistic configuration averages and can take into account part of the correlation

effects by allowing different potentials for each group of configurations. Its newest

version (Klapisch & Busquet, 2009), which is used here, incorporates a number of im-

provements such as important corrections to the photoionization subroutines. For the

present work we calculated only transition energies and direct photoionization cross

sections, but hullac can also efficiently compute photo-autoionization resonances

by means of the isolated resonance approximation (Oreg et al., 1991), which are sub-

sequently superimposed on the continuum photoionization cross section. Moreover,

attempts have been made to adapt hullac to calculate the quantum interference of

resonances with the continuum that leads to Fano-type asymmetric profiles (Behar

et al., 2000, 2004). However, these calculations with hullac are beyond the scope

of the present paper.

5.3 Results

5.3.1 Energy levels

Energies have been computed for both valence and K-vacancy levels in the five approx-

imations delineated in Section 5.2 and with hullac. A comparison of approximations

AS1 with AS2 provides an estimate of CRE while those of AS1 with AS3 and HF1

with HF2 give measures of out-of-complex CI. Also, level energy accuracy can be

bound with a comparison of AS2 and HF1, that is, from two physically comparable

approximations but calculated with two independent numerical codes.

In Figure 5.1, average energy differences for AS1 vs. AS2 and AS1 vs. AS3 are

plotted for each ionic species, 3 ≤ N ≤ 7. It may be seen that while core relaxation

effects lowers the valence-level energies by around 0.5–0.8 eV, it raises by a similar

amount those for the K-vacancy levels in species with electron number 3 ≤ N ≤ 5; as

a consequence, transition wavelengths for these ions are expected to be shorter due

to this effect. Although n = 3 CI also causes a lowering (less than 0.7 eV) of the

valence level energies (see Figure 5.1), the impact on the K-vacancy level energies is
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more pronounced (as large as 1.5 eV): it mainly lowers levels for species with N < 5

and raises those for N > 5. The latter result is mostly due to K-vacancy levels from

the n = 2 and n = 3 complexes intermixing in the lowly ionized members.

Figure 5.2 shows the corresponding quantities for HF1 and HF2. As shown in

Figure 5.2, the effect of CI on the energies computed with hfr is somewhat different

as they are decreased (less than 0.5 eV) for both valence and K-vacancy levels, the

minimum occurring in ions with N = 5 and N = 6. Level energy differences between

the AS2 and HF1 data sets are within 0.5 eV which is a reliable accuracy ranking of

the present level energies.

Computed level energies are compared with the few spectroscopic measurements

available (2 ≤ N ≤ 3) in Table 5.1. It may be seen that CRE in autostructure

(approximation AS2) in general reduce differences with experiment. Furthermore,

hfr and hullac seem to provide better energies than autostructure; differences

of hfr (hullac) with experiment not being larger than 1.53 eV (1.19 eV). In the He-

like system, hullac is particularly accurate for triplet states and less so for singlet

states. The accurate approximation of HF2 is compared with previously computed

term energies in Table 5.2. Although we would not quote present term energies with

the same number of significant figures as previous results, HF2 values are consistently

lower.

Fine-structure level splittings in HF2 can be problematic as shown in Table 5.3. It

may be seen that HF2 gives a value in good accord (1%) with beam-foil measurements

for the ∆E(5P2,
5 P1) splitting of the 1s2s2p2 5P K-vacancy term of N iv but an

intolerably discrepant one (factor of 2) for ∆E(5P3,
5 P2). On the other hand, both

AS2 splittings are in reasonable agreement (10%) with experiment and with results

obtained with the relativistic Raleigh–Ritz variational method (Yang & Chung, 1995;

Wang & Gou, 2006) and MCDF (Hata & Grant, 1983; Hardis et al., 1984). This

problem has been shown by Hata & Grant (1983) to be due to the neglect of the

Breit interaction which is the case in HF2.

The most stringent accuracy requirements for the energies come from the capa-

bilities of the astronomical instruments which can observe these transitions. Current
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Figure 5.1 Average level energy differences with respect to approximation AS1 for

ions of the nitrogen isonuclear sequence with electron number 3 ≤ N ≤ 7. Filled

circles: valence level energies computed with AS2. Open circles: valence level energies

computed with AS3. Filled squares: K-vacancy level energies computed with AS2.

Open squares: K-vacancy level energies computed with AS3.
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Figure 5.2 Average level energy differences with respect to approximation HF1 for

ions of the nitrogen isonuclear sequence with electron number 3 ≤ N ≤ 7. Open

circles: valence level energies computed with HF2. Open squares: K-vacancy level

energies computed with HF2.
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Table 5.1. Measured and computed K-vacancy level energies (eV)

N Level E E(Th) − E(Expt)

Expt AS1 AS2 AS3 HF1 HF2 hullac

2 1s2s 3S1 419.80 −1.76 −1.34 −2.35 −0.59 0.01

2 1s2p 3Po
0 426.30 −1.85 −0.93 −2.36 −0.56 0.09

2 1s2p 3Po
1 426.30 −1.85 −0.93 −2.36 −0.54 0.11

2 1s2p 3Po
2 426.33 −1.86 −0.94 −2.37 −0.53 0.13

2 1s2s 1S0 426.42 −1.61 −0.21 −2.15 0.03 0.69

2 1s2p 1Po
1 430.70 −1.64 −0.85 −2.24 −0.24 0.67

3 1s(2S)2s2p(3Po) 4Po
5/2

414.61 −2.49 −1.97 −3.64 −1.48 −1.53 0.42

3 1s(2S)2s2p(3Po) 2Po
3/2

421.52a −1.72 −0.80 −2.18 −0.51 −0.62 0.83

3 1s(2S)2p2(3P) 4P5/2 425.70 −2.54 −1.64 −3.37 −1.31 −1.33 1.19

Note. — Experimental level energies (relative to the ion ground state) from the NIST database

(Ralchenko et al., 2008).

aDerived from the wavelength measurement of Beiersdorfer et al. (1999).
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Table 5.2. Computed total energies (au) for K-vacancy terms

N Term HF2 Other theory

3 1s2s2p 4Po −33.240 −33.192008a, −33.192204b

3 1s(2S)2s2p(3Po) 2Po −32.952 −32.919222a

3 1s(2S)2s2p(1Po) 2Po −32.777 −32.768550a

4 1s2s22p 3Po −36.219 −36.171232c, −36.173064d

4 1s2s2p2 3S −35.646 −35.615357d

4 1s2s2p2 3P −35.842 −35.788866d

4 1s2s2p2 3P −35.542 −35.536868d

4 1s2s2p2 3D −35.815 −35.785042d

4 1s2s22p 1Po −36.081 −36.036967e

4 1s2p3 1Po −35.086 −35.082958e

4 1s2s2p2 1D −35.594 −35.583448f

4 1s2s2p2 1P −35.445 −35.435017f

4 1s2s2p2 1S −35.425 −35.415017f

4 1s2s2p2 5P −36.160 −36.0934586g, −36.0934407h

4 1s2p3 5So −35.596 −35.5414665g, −35.5413248h

4 1s2p3 3Po −35.214 −35.204065i

4 1s2p3 3Do −35.387 −35.366601i

aBreit–Pauli saddle-point complex-rotation method (Davis & Chung,

1989)

bRelativistic Raleigh–Ritz variational method (Hsu et al., 1991)

cBreit–Pauli saddle-point complex-rotation method (Chung, 1990)

dBreit–Pauli saddle-point complex-rotation method (Lin et al., 2001)

eBreit–Pauli saddle-point complex-rotation method (Lin et al., 2002)

fBreit–Pauli saddle-point complex-rotation method (Shiu et al., 2001)

gRelativistic Raleigh–Ritz variational method (Wang & Gou, 2006)

hRelativistic Raleigh–Ritz variational method (Yang & Chung, 1995)

iBreit–Pauli saddle-point complex-rotation method (Zhang et al.,

2005)
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Table 5.3. Level splittings (cm−1) for the 1s2s2p2 5P K-vacancy term of N iv

Level splitting Expta HF2 AS2 Other theory

∆E(5P2,
5 P1) 127± 1 126 119 127.07b, 126.9c, 129.19d, 128.94e

∆E(5P3,
5 P2) 79.5± 0.8 188 70 78.49b, 78.45c, 86.72d, 86.58e

aBeam-foil measurements by Berry et al. (1982)

bRelativistic Raleigh–Ritz variational method (Wang & Gou, 2006)

cRelativistic Raleigh–Ritz variational method (Yang & Chung, 1995)

dMCDF-EAL calculation of Hata & Grant (1983)

eMCDF calculation of Hardis et al. (1984)
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instruments, the Chandra and XMM-Newton gratings, have a resolving power which

is nominally ε/∆ε ≤ 1000, which imposes a resolution of 0.4 − 0.5 eV in the en-

ergy region of the nitrogen K lines (400 − 500 eV), essentially the same accuracy we

have achieved in the present calculations. However, in spectra with good statistical

signal-to-noise it is possible to determine line centroids to a factor ∼3 more accu-

rately than this. Future instruments, principally the grating instruments considered

for the International X-ray Observatory (IXO), may also have resolving power as high

as 3000. Knowledge of transition wavelengths and energy levels with this precision

is needed for truly unambiguous identification of observed features and comparison

with models. Clearly, precise laboratory measurements are irreplaceable requisites in

the theoretical fine-tuning of these calculations in order to reduce the current uncer-

tainties.

5.3.2 Wavelengths

The accuracy of computed wavelengths must be determined without a comparison

with measurements due to the scarcity of the latter. CRE and n = 3 CI in au-

tostructure impact wavelengths in an opposite manner to that displayed for the

K-vacancy levels in Figure 5.1. Specifically, core relaxation on average shortens wave-

lengths by as much as 150 mÅ in ions with 2 ≤ N ≤ 5 while the effect is less pro-

nounced on the higher members. CI increases wavelengths by ∼50 mÅ for N ≤ 4

and decreases them by as much as 150 mÅ for N ≥ 5. CI in hfr in general increases

wavelengths with a maximum of 25 mÅ at N = 5.

Wavelengths computed with AS2 are on average 7 ± 21 mÅ greater than HF1.

This finding can be further appreciated in a comparison with the few available mea-

sured wavelengths (see Table 5.4) where computed values are always greater. HF1

differences with experiment are the smallest (less than 37 mÅ) while CRE in au-

tostructure (AS2) also reduces discrepancies.

Wavelengths for K transitions in nitrogen ions have been previously computed

with the MCDF method by Chen (1986); Chen & Crasemann (1987, 1988); Chen
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Table 5.4. Experimental and theoretical wavelengths (Å) for nitrogen ions

N Lower level Upper level λ(Expta) λ(Th) − λ(Expt)

HF1 AS1 AS2 AS3 hullac

2 1s2 1S0 1s2s 3S1 29.5321(26) 0.1266 0.0971 0.1683 0.0012

2 1s2 1S0 1s2p 3Po
1 29.0835(26) 0.0374 0.1274 0.0642 0.1627 –0.0074

2 1s2 1S0 1s2p 1Po
1 28.7861(22) 0.0167 0.1108 0.0576 0.1515 –0.0444

3 1s22s 2S1/2 1s2s2p 2Po
3/2

29.4135(37) 0.0353 0.1208 0.0560 0.1550 –0.0573

aWavelength measurements by Beiersdorfer et al. (1999)

et al. (1997). While reasonable agreement is found with HF2 for species with N = 3

(average difference of 13 ± 25 mÅ) and N = 5 (average difference of −4 ± 33 mÅ),

puzzling discrepancies are found for those with N = 4 and N = 6. As shown in Fig-

ure 5.3, the MCDF wavelengths of Chen & Crasemann (1987) show the large average

difference with respect to HF2 of 155± 45 mÅ; i.e., on average, they are significantly

longer. The situation in the C-like ion is somewhat different (see Figure 5.4) where the

average difference with HF2 is now −45± 449 mÅ showing a very wide and clustered

scatter with questionable deviations as large as 800 mÅ. These comparisons lead us

to conclude that the wavelengths computed with HF2, our best approximation, are

accurate to better than 100 mÅ.

5.3.3 A-coefficients

By comparing A-coefficients computed with approximations AS1 and AS2, CRE on

the K radiative decay process may be estimated. Discarding transitions subject to

cancellation which always display large differences, it is found that, for logA ≥ 10,

CRE generally causes differences not greater than 20%. However, larger discrepancies

(54%) are found for transitions undergoing multiple electron jumps such as those

tabulated in Table 5.5. A-coefficients for these peculiar transitions computed with

HF1, which should be comparable to AS2, are also included in Table 5.5 finding good
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Figure 5.3 Wavelength differences between MCDF (Chen & Crasemann, 1987) and

HF2 for N iv. An average difference of 155 ± 45 mÅ is observed.
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Figure 5.4 Wavelength differences between MCDF (Chen et al., 1997) and HF2 for

N ii. Differences as large as 800 mÅ are observed.
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Table 5.5. Core relaxation effects on K radiative decay

N j i Aji (s−1)

AS1 AS2 HF1

3 1s2s2 2S1/2 1s22p 2Po
1/2 3.85E+10 5.36E+10 4.63E+10

3 1s2s2 2S1/2 1s22p 2Po
3/2 7.62E+10 1.06E+11 9.18E+10

4 1s2s22p 1Po
1 1s22p2 1D2 9.72E+10 1.36E+11 1.24E+11

5 1s2s22p2 2P1/2 1s22p3 2Po
1/2 1.17E+10 1.80E+10 1.78E+10

5 1s2s22p2 2P3/2 1s22p3 2Po
3/2 1.54E+10 2.36E+10 2.32E+10

agreement (within 15%); in fact, differences between A-coefficients computed with

approximations AS2 and HF1 are in general within 22%. Furthermore, CI from the

n = 3 complex tends to decrease A-coefficients with logA ≥ 10, AS3 being on average

16% lower than AS1 and HF2 6% lower than HF1.

MCDF A-coefficients by Chen (1986); Chen & Crasemann (1987, 1988); Chen

et al. (1997) agree with HF2 to around 25% except for N = 6 where they are found

to be, on average, higher by a factor of 4 (see Figure 5.5). This outcome certainly

questions the accuracy of the MCDF A-coefficients by Chen et al. (1997) for C-like

nitrogen. We find that for logA ≥ 10 present A-coefficients are accurate to within

20% for transitions not affected by cancellation.

5.3.4 Radiative widths

A comparison of AS1 and AS2 radiative widths for the K-vacancy levels indicates that

CRE are mainly noticeable in the highly ionized species, namely those with N ≤ 4,

where on average the radiative widths are increased by around 10%. On the other

hand, the inclusion of levels from the n = 3 complex in the CI expansion (AS3) leads
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Figure 5.5 A-coefficient differences (s−1) between MCDF (Chen et al., 1997) and HF2

for N ii. It is found that MCDF is on average higher by a factor of 4.



122

to slightly reduced radiative widths (less than 7%) with respect to AS1 for the lowly

ionized members (N ≥ 5). Larger reductions (∼20%) are also observed for the lowly

ionized species between HF2 (which contains CI from the n = 3 complex) and HF1

(which contains CI only from the n = 2 complex).

A remarkable exception is the radiative width of the 1s2s22p3 5So
2 level in the C-like

ion. For this level, AS2 gives Aj =
∑

iAji = 7.09 × 106 s−1 in good agreement with

HF1 (7.65 × 106 s−1); however, the AS3 and HF2 radiative widths are respectively

Aj = 5.31 × 108 s−1 and Aj = 3.77 × 109 s−1, i.e. around two orders of magnitude

larger. The reason for this huge increase when levels from n = 3 complex are included

in the CI expansion may be appreciated in Table 5.6. Within the n = 2 complex,

the 1s2s22p3 5So
2 decays radiatively to the 1s22s22p2 3Pj ground levels via two spin-

forbidden Kα transitions which have small A-coefficients (. 107 s−1). When the

n = 3 complex is taken into account, 3 → 2 spin-allowed channels appear which

exhibit considerably larger A-coefficients that add up to the quoted enhancement.

The observed discrepancy between AS3 and HF2 (a factor of 7) are due to severe

cancellation in the ∆n 6= 0 transitions.

Radiative widths computed for ions with electron number 3 ≤ N ≤ 6 with the

MCDF method (Chen, 1986; Chen & Crasemann, 1987, 1988; Chen et al., 1997) agree

with HF2 to around 20% except for the C-like species where MCDF is a factor of 4.6

higher.

5.3.5 Auger widths

Auger widths computed with AS2 and HF1 agree to within 20% but are sensitive

to both CRE and CI as depicted in Figures 5.6–5.7. A comparison of AS1 and

AS2 shows that, on average, CRE effects increase Auger widths with logAa ≥ 12

linearly as a function of the ion electron number N . In autostructure CI also

increases Auger widths, particularly for highly ionized species (around 28% for ions

with 3 ≤ N ≤ 4) while in hfr Auger widths are decreased (up to 15% for the lowly

ionized members). We believe these contrasting outcomes are due to the way orbitals
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Table 5.6. Radiative decay routes of 1s2s22p3 5So
2 in N ii

j i Aji (s−1)

AS3 HF2

1s2s22p3 5So
2 1s22s22p2 3P1 2.04E+6 8.57E+6

1s22s22p2 3P2 2.97E+6 2.53E+7

1s22s2p23d 5P1 5.07E+7 3.43E+8

1s22s2p23d 5P2 8.36E+7 5.70E+8

1s22s2p23d 5P3 1.17E+8 7.97E+8

1s22p33p 5P1 7.85E+7 6.99E+8

1s22p33p 5P2 1.31E+7 1.16E+9

1s22p33p 5P3 1.83E+8 1.63E+8

∑

iAji 5.31E+8 3.77E+9
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Figure 5.6 Average percentage difference between Auger widths (logAa ≥ 12) com-

puted with the AS2 and AS1 approximations (filled squares) and with AS3 and AS1

(open squares).

have been optimized in autostructure.

Excluding the C-like ion, MCDF Auger widths by Chen (1986); Chen & Crase-

mann (1987, 1988); Chen et al. (1997) with logAa ≥ 12 in general agree with HF2 to

around 20%. Larger discrepancies are encountered for a handful of K-vacancy levels

listed in Table 5.7 which are mainly caused by level admixture. It may be seen therein

that Auger widths computed with our different approximations also display a wide

scatter thus supporting this diagnostic. For the C-like ion, the MCDF Auger widths

are, on average, a factor of 3 higher than HF2 and thus believed to be of poor quality.

In Table 5.8, Auger widths for the 1s2s2p levels of N v computed with the Breit–
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Figure 5.7 Average percentage difference between Auger widths (logAa ≥ 12) com-

puted with the HF2 and HF1.
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Table 5.7. Discrepant Auger rates (s−1)

N Level AS1 AS2 AS3 HF1 HF2 MCDFa

3 1s(2S)2s2p(3Po) 2Po
1/2

1.51E+13 5.81E+12 2.15E+13 8.61E+12 7.63E+12 1.41E+13

3 1s(2S)2s2p(3Po) 2Po
3/2

1.43E+13 5.27E+12 2.02E+13 8.29E+12 7.30E+12 1.35E+13

4 1s(2S)2s2p2(4P) 3P0 3.09E+13 1.99E+13 4.41E+13 1.86E+13 1.77E+13 3.73E+13

4 1s(2S)2s2p2(4P) 3P1 3.08E+13 1.98E+13 4.40E+13 1.86E+13 1.76E+13 3.68E+13

4 1s(2S)2s2p2(4P) 3P2 3.04E+13 1.95E+13 4.36E+13 1.85E+13 1.75E+13 3.55E+13

4 1s(2S)2s2p2(2P) 1P1 2.26E+13 2.88E+13 2.62E+13 2.46E+13 2.34E+13 1.43E+14

4 1s(2S)2s2p2(2S) 1S0 1.34E+14 1.33E+14 1.77E+14 1.28E+14 1.19E+14 1.77E+13

5 1s(2S)2s2p3(5So) 4So
3/2

3.90E+13 2.98E+13 4.10E+13 2.54E+13 2.48E+13 3.89E+13

5 1s(2S)2s2p3(3So) 2So
1/2

2.34E+13 3.09E+13 2.88E+13 5.30E+13 1.31E+14 3.49E+13

5 1s(2S)2s2p3(1Po) 2Po
1/2

1.37E+14 1.67E+14 1.56E+14 1.27E+14 3.48E+13 1.52E+14

aMCDF computations by Chen (1986); Chen & Crasemann (1987, 1988)

Pauli saddle-point complex-rotation method (Davis & Chung, 1989) are compared

with AS2, HF2, and the MCDF values of Chen (1986). The agreement with AS2 is

within 15% while very large differences are found for the HF2 4Po
j levels which are

most surely due to the neglect of the two-body Breit interaction in hfr. The accord

with MCDF is around 25% except for the 1s2s2p 2Po term where a discrepancy of a

factor of 2 is encountered. The latter is difficult to explain.

Auger widths for K-vacancy terms in N iv computed with the Breit–Pauli saddle-

point complex-rotation method (Lin et al., 2001, 2002; Zhang et al., 2005) are com-

pared with AS2, HF2, and MCDF (Chen & Crasemann, 1987) in Table 5.9. The level

of agreement with AS2 and HF2 is around 20% except for the values quoted by Zhang

et al. (2005) for the 1s2p3 3Po and 3Do terms which are discrepant by about 50%,

in contrast with the MCDF Auger widths for these two terms which agree with AS2

and HF2 to within 10%. The rest of the MCDF Auger widths are in good agreement

except for the 1s2s2p2 3P term which has already been singled out in Table 5.7 as

being sensitive to level mixing.
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Table 5.8. Auger energy widths (au) for 1s2s2p levels in N v

Level AS2 HF2 Other theory

1s(2S)2s2p(3Po) 4Po
1/2

1.46E−08 3.48E−10 1.50E−08a, 1.532E−08b

1s(2S)2s2p(3Po) 4Po
3/2

4.53E−09 8.83E−10 4.98E−09a, 3.952E−09b

1s(2S)2s2p(3Po) 4Po
5/2

4.26E−10 4.587E−10b

1s(2S)2s2p(3Po) 2Po 1.32E−04 1.79E−04 3.31E−04a, 1.54E−04b

1s(2S)2s2p(1Po) 2Po 1.68E−03 1.47E−03 1.14E−03a, 1.53E−03b

aMCDF calculations by (Chen, 1986)

bBreit–Pauli saddle-point complex-rotation method (Davis & Chung, 1989)

5.3.6 Photoabsorption cross sections

In Figure 5.8, we show the high-energy photoabsorption cross sections of N i – N v

computed with the bprm package. Intermediate coupling has been used by imple-

menting the AS1 approximation to describe the target wave functions. In order to

resolve accurately the K-threshold region, radiative and Auger damping are taken

into account as described by Gorczyca & McLaughlin (2000) using the Auger widths

calculated with the HF2 approximation. For comparison, we have included the pho-

toionization cross sections obtained with the hullac code and those by Reilman &

Manson (1979), the latter calculated in a central-field potential. This comparison

shows that the K-threshold energies of bprm and hullac are in very good accord

(within 1 eV) and the background cross sections to within ∼ 10%. Note that for

the sake of comparison, we have used hullac only to compute the direct bound-free

photoionization cross section and not the resonances.

Background cross sections by Reilman & Manson (1979) are in excellent agreement

with bprm for all ions, but K-edge positions and structures are clearly discrepant.

The present bprm calculations result in smeared K edges due to the dominance of the

Auger spectator (KLL) channels over the participator (KLn) channels. This overall
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Figure 5.8 High-energy photoabsorption cross sections for nitrogen ions in the K-

edge region. Solid curve: bprm. Dotted curve: hullac. Dashed curve: Reilman &

Manson (1979).
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behavior is similar to that reported in previous calculations (Kallman et al., 2004;

Witthoeft et al., 2009), and in particular to that displayed by the corresponding

oxygen ions (see Figure 5 in Garćıa et al., 2005).

5.3.7 Additional Tables

We include two long tables in the Appendix A, with all the atomic structure data.

For nitrogen ions with electron occupancy N = 1− 7 and for both valence and Auger

levels, Table A.1 tabulates the spin multiplicity, total orbital angular momentum and

total angular momentum quantum numbers, configuration assignment, energy, and

radiative and Auger widths. For K transitions, Table A.2 tabulates the wavelength,

A-coefficient, and gf -value.

5.4 Conclusions

Detailed calculations have been carried out on the atomic properties of K-vacancy

states in ions of the nitrogen isonuclear sequence. Data sets containing energy levels,

wavelengths, A-coefficients and radiative and Auger widths for K-vacancy levels have

been computed with the atomic structure codes hfr and autostructure. High-

energy photoionization and photoabsorption cross sections for members with electron

occupancies N ≥ 3 have been calculated with the bprm and hullac codes.

Our best approximation (HF2) takes into account both core-relaxation effects

and configuration interaction from the n = 3 complex. By comparing results from

different approximations with previous theoretical work and the few spectroscopic

measurements available, we conclude that level energies and wavelengths for all the

nitrogen ions considered in the present calculations can be quoted to be accurate to

within 0.5 eV and 100 mÅ, respectively. The accuracy of A-coefficients and radiative

and Auger widths is estimated at approximately 20% for transitions neither affected

by cancelation nor strong level admixture. Outstanding discrepancies are found with

some MCDF data, in particular wavelengths and A-coefficients for the C-like ion
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which are believed to be due to numerical error by Chen et al. (1997).

We have also presented detailed photoabsorption cross sections of nitrogen ions in

the near K-threshold region. Due to the lack of previous experimental and theoretical

results, we have also performed simpler calculations using the hullac code in order

to check for consistency and to estimate accuracy. Comparison of bprm and hullac

indicates that present K-threshold energies are accurate to within 1 eV. However,

background cross sections are in better agreement with those computed by Reilman &

Manson (1979) in a central-field potential for all ions except the Li-like system. These

photoabsorption cross sections and their structures are similar to those displayed by

ions in the same isoelectronic sequence (Witthoeft et al., 2009), especially to the

corresponding oxygen ions (Garćıa et al., 2005). The present atomic data sets are

available to the public and have being incorporated in the xstar modeling code in

order to generate improved opacities in the nitrogen K-edge region, which will lead

to useful astrophysical diagnostics such as those mentioned in Section 5.1.
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Table 5.9. Auger widths (meV) for K-vacancy terms in N iv

Term AS2 HF2 Other theory

1s2s22p 3Po 84.1 71.8 77.4a, 79.0b

1s(2S)2s2p2(4P) 3P 12.9 11.6 23.8a, 10.8b

1s(2S)2s2p2(2D) 3D 66.9 62.6 53.4a, 57.7b

1s(2S)2s2p2(2S) 3S 31.2 29.7 26.7a, 28.6b

1s(2S)2s2p2(2P) 3P 66.4 55.5 58.5a, 55.0b

1s2s22p 1Po 55.2 48.3 53.8a, 58c

1s2p3 1Po 44.9 47.0 43.8a, 43c

1s2p3 3Do 80.7 80.3 75.0a, 53.87d

1s2p3 3Po 47.4 47.5 45.5a, 34.16d

aMCDF method (Chen & Crasemann, 1987)

bBreit–Pauli saddle-point complex-rotation

method (Lin et al., 2001)

cBreit–Pauli saddle-point complex-rotation

method (Lin et al., 2002)

dBreit–Pauli saddle-point complex-rotation

method (Zhang et al., 2005)
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Concluding Remarks

Answers to outstanding questions concerning accretion disks will not come alone, but

with the need to reproduce and predict new observations and to identify spectral

profiles at high resolution. In this dissertation we have developed new and powerful

tools to analyze these observations, which yield a better understanding of the physics

governing accretion onto black holes. In particular, this study constitutes the most

accurate description, to date, of the physics of illuminated accretion disks and their

emission spectra in the X-ray energy range.

We have presented new models for the structure of X-ray illuminated accretion

disks and their reflected spectra, assuming constant density along the vertical direc-

tion. These models include the most recent and complete atomic data for the iron

isonuclear sequence. The energy resolution used in the reflected spectra exceeds other

models previously published as well as the resolution of the detectors on current X-ray

observatories (Chandra, XMM Newton, Suzaku), and it is comparable to the expected

resolving power of the forthcoming X-ray missions such as Astro-H.

Additionally, detailed calculations have been carried out on the atomic properties

of K-vacancy states in ions of the nitrogen isonuclear sequence. Data sets contain-

ing energy levels, wavelengths, A-coefficients and radiative and Auger widths for

K-vacancy levels have been computed with the atomic structure codes hfr and au-

tostructure. High-energy photoionization and photoabsorption cross sections for

132
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members with electron occupancies N ≥ 3 have been calculated with the bprm and

hullac codes.

The calculation of the inner-shell atomic data of nitrogen ions is also relevant

outside the context of accretion disk models. For instance, recent studies have pointed

out significant discrepancies (up to 35%), in the abundances of C, N, O and Ne on the

Sun (Asplund et al., 2005). Fluorescence N-Kα lines originated from coronal X-ray

photoionization can be used as independent abundance diagnostics.

In general, our simulations show that the K-shell atomic data is crucial to prop-

erly model the structure and profile of the iron lines. These results also suggest that

the line emission from Fe ions in different ionization stages and Comptonization of

high energy photons by cold electrons can be responsible for significant line broad-

ening. These processes need to be taken into account since they can be mistaken for

relativistic effects, especially in cases when the gas is partially or high ionized.

Because the state of the gas in the accretion disk depends on the radiation field at

each point, and the ionization balance required for a realistic definition of the source

function in the radiation transfer depends on both the temperature and density of

the gas, a self-consistent approach must be taken into account in order to solve the

hydrostatic equilibrium equation instead of assuming constant density. This will be

considered as the next step of this project. Future work will also consider the inclusion

of new K-shell atomic data recently calculated for the Ne, Mg, Si, S, Ar and Ca by

Palmeri et al. (2008a) and Witthoeft et al. (2009), as well as for the nickel isonuclear

sequence (Palmeri et al., 2008b).
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Tables

Table A.1: Valence and Auger levels for nitrogen ions

N i 2S + 1 L 2J Configuration Energy Ar Aa

eV s−1 s−1

1 1 2 0 1 1s 2S1/2 0.0000

1 2 2 0 1 2s 2S1/2 500.3121

1 3 2 1 1 2p 2Po1/2 500.3124 1.51E+12

1 4 2 1 3 2p 2Po3/2 500.4214 1.51E+12

2 1 1 0 0 1s2 1S0 0.0000

2 2 3 0 2 1s2s 3S1 419.2093

2 3 3 1 0 1s2p 3Po0 425.7365 7.01E+07

2 4 3 1 2 1s2p 3Po1 425.7572 1.52E+08

2 5 3 1 4 1s2p 3Po2 425.7992 7.21E+07

2 6 1 0 0 1s2s 1S0 426.4470 9.68E+00

2 7 1 1 2 1s2p 1Po1 430.4582 2.12E+12

3 1 2 0 1 1s22s 2S1/2 0.0000

3 2 2 1 1 1s22p 2Po1/2 9.9459 3.32E+08

3 3 2 1 3 1s22p 2Po3/2 9.9774 3.35E+08

3 4 2 0 1 1s2s2 2S1/2 410.1562 1.22E+11 9.79E+13

3 5 4 1 1 1s(2S)2s2p(3Po) 4Po1/2 413.0288 5.05E+06 1.44E+07

3 6 4 1 3 1s(2S)2s2p(3Po) 4Po3/2 413.0471 1.27E+07 3.65E+07

3 7 4 1 5 1s(2S)2s2p(3Po) 4Po5/2 413.0778 0.00E+00 1.76E+07

3 8 2 1 1 1s(2S)2s2p(3Po) 2Po1/2 420.8755 1.65E+12 7.63E+12

3 9 2 1 3 1s(2S)2s2p(3Po) 2Po3/2 420.8968 1.65E+12 7.30E+12

3 10 4 1 1 1s(2S)2p2(3P) 4P1/2 424.3267 7.99E+08 5.54E+06

3 11 4 1 3 1s(2S)2p2(3P) 4P3/2 424.3446 8.06E+08 4.65E+08

3 12 4 1 5 1s(2S)2p2(3P) 4P5/2 424.3741 8.15E+08 2.85E+09

Continued on Next Page. . .
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Table A.1 – Continued

N i 2S + 1 L 2J Configuration Energy Ar Aa

eV s−1 s−1

3 13 2 1 1 1s(2S)2s2p(1Po) 2Po1/2 425.6391 1.63E+11 6.06E+13

3 14 2 1 3 1s(2S)2s2p(1Po) 2Po3/2 425.6545 1.55E+11 6.10E+13

3 15 2 2 3 1s(2S)2p2(1D) 2D3/2 429.2436 8.33E+11 1.07E+14

3 16 2 2 5 1s(2S)2p2(1D) 2D5/2 429.2442 8.32E+11 1.07E+14

3 17 2 1 1 1s(2S)2p2(3P) 2P1/2 430.3236 2.68E+12 1.20E+08

3 18 2 1 3 1s(2S)2p2(3P) 2P3/2 430.3597 2.68E+12 4.50E+10

3 19 2 0 1 1s(2S)2p2(1S) 2S1/2 437.1874 7.86E+11 1.60E+13

4 1 1 0 0 1s22s2 1S0 0.0000

4 2 3 1 0 1s22s2p 3Po0 8.3920

4 3 3 1 2 1s22s2p 3Po1 8.4008 4.70E+02

4 4 3 1 4 1s22s2p 3Po2 8.4184

4 5 1 1 2 1s22s2p 1Po1 17.2102 2.77E+09

4 6 3 1 0 1s22p2 3P0 21.8846 1.85E+09

4 7 3 1 2 1s22p2 3P1 21.8933 1.85E+09

4 8 3 1 4 1s22p2 3P2 21.9105 1.86E+09

4 9 1 2 4 1s22p2 1D2 24.2150 2.31E+08

4 10 1 0 0 1s22p2 1S0 30.3419 3.36E+09

4 11 3 1 0 1s2s22p 3Po0 410.0799 5.72E+10 1.10E+14

4 12 3 1 2 1s2s22p 3Po1 410.0948 5.73E+10 1.09E+14

4 13 3 1 4 1s2s22p 3Po2 410.1250 5.74E+10 1.09E+14

4 14 5 1 2 1s(2S)2s2p2(4P) 5P1 411.7017 5.76E+06 2.65E+08

4 15 5 1 4 1s(2S)2s2p2(4P) 5P2 411.7173 3.94E+06 1.32E+08

4 16 5 1 6 1s(2S)2s2p2(4P) 5P3 411.7406 3.76E+06 5.29E+08

4 17 1 1 2 1s2s22p 1Po1 413.8718 1.67E+12 7.34E+13

4 18 3 1 0 1s(2S)2s2p2(4P) 3P0 420.3553 2.30E+12 1.77E+13

4 19 3 1 2 1s(2S)2s2p2(4P) 3P1 420.3670 2.30E+12 1.76E+13

4 20 3 1 4 1s(2S)2s2p2(4P) 3P2 420.3907 2.30E+12 1.75E+13

4 21 3 2 2 1s(2S)2s2p2(2D) 3D1 421.0956 7.26E+11 9.51E+13

4 22 3 2 6 1s(2S)2s2p2(2D) 3D3 421.0957 7.26E+11 9.51E+13

4 23 3 2 4 1s(2S)2s2p2(2D) 3D2 421.0958 7.26E+11 9.51E+13

4 24 3 0 2 1s(2S)2s2p2(2S) 3S1 425.7094 7.88E+11 4.51E+13

4 25 5 0 4 1s2p3 5So2 427.0700 3.33E+09 4.73E+08

4 26 1 2 4 1s(2S)2s2p2(2D) 1D2 427.1172 7.44E+11 1.75E+14

4 27 3 1 0 1s(2S)2s2p2(2P) 3P0 428.5054 9.19E+10 8.43E+13

4 28 3 1 2 1s(2S)2s2p2(2P) 3P1 428.5172 9.15E+10 8.42E+13

4 29 3 1 4 1s(2S)2s2p2(2P) 3P2 428.5402 9.06E+10 8.44E+13

4 30 1 1 2 1s(2S)2s2p2(2P) 1P1 431.1610 2.35E+12 2.34E+13

4 31 1 0 0 1s(2S)2s2p2(2S) 1S0 431.7259 8.44E+11 1.19E+14

4 32 3 2 2 1s2p3 3Do1 432.7622 6.93E+11 1.22E+14

4 33 3 2 4 1s2p3 3Do2 432.7623 6.93E+11 1.22E+14
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4 34 3 2 6 1s2p3 3Do3 432.7626 6.92E+11 1.22E+14

4 35 3 0 2 1s2p3 3So1 433.9272 3.13E+12 2.28E+09

4 36 1 2 4 1s2p3 1Do2 436.2197 2.27E+12 1.23E+14

4 37 3 1 0 1s2p3 3Po0 437.4444 6.84E+11 7.21E+13

4 38 3 1 2 1s2p3 3Po1 437.4456 6.84E+11 7.21E+13

4 39 3 1 4 1s2p3 3Po2 437.4482 6.84E+11 7.21E+13

4 40 1 1 2 1s2p3 1Po1 440.9335 2.25E+12 7.14E+13

5 1 2 1 1 1s22s22p 2Po1/2 0.0000

5 2 2 1 3 1s22s22p 2Po3/2 0.0211

5 3 4 1 1 1s22s2p2 4P1/2 6.5608 5.55E+02

5 4 4 1 3 1s22s2p2 4P3/2 6.5680 6.12E+01

5 5 4 1 5 1s22s2p2 4P5/2 6.5799 1.72E+02

5 6 2 2 3 1s22s2p2 2D3/2 13.0818 6.64E+08

5 7 2 2 5 1s22s2p2 2D5/2 13.0819 6.61E+08

5 8 2 0 1 1s22s2p2 2S1/2 16.8125 3.27E+09

5 9 2 1 1 1s22s2p2 2P1/2 19.1005 6.95E+09

5 10 2 1 3 1s22s2p2 2P3/2 19.1147 6.96E+09

5 11 4 0 3 1s22p3 4So3/2 22.8945 5.60E+09

5 12 2 2 3 1s22p3 2Do3/2 26.0003 1.37E+09

5 13 2 2 5 1s22p3 2Do5/2 26.0006 1.37E+09

5 14 2 1 1 1s22p3 2Po1/2 29.5377 4.36E+09

5 15 2 1 3 1s22p3 2Po3/2 29.5389 4.36E+09

5 16 4 1 1 1s2s22p2 4P1/2 401.4482 1.93E+10 1.05E+14

5 17 4 1 3 1s2s22p2 4P3/2 401.4612 1.93E+10 1.05E+14

5 18 4 1 5 1s2s22p2 4P5/2 401.4824 1.94E+10 1.06E+14

5 19 6 0 5 1s(2S)2s2p3(5So) 6So5/2 402.1174 2.40E+06 3.30E+08

5 20 2 2 3 1s2s22p2 2D3/2 405.9641 6.64E+11 1.65E+14

5 21 2 2 5 1s2s22p2 2D5/2 405.9649 6.62E+11 1.65E+14

5 22 2 1 1 1s2s22p2 2P1/2 406.3740 2.14E+12 6.54E+13

5 23 2 1 3 1s2s22p2 2P3/2 406.4003 2.14E+12 6.56E+13

5 24 2 0 1 1s2s22p2 2S1/2 408.2965 7.94E+11 1.43E+14

5 25 4 0 3 1s(2S)2s2p3(5So) 4So3/2 411.1883 2.68E+12 2.48E+13

5 26 4 2 3 1s(2S)2s2p3(3Do) 4Do3/2 412.1210 5.89E+11 1.03E+14

5 27 4 2 1 1s(2S)2s2p3(3Do) 4Do1/2 412.1210 5.89E+11 1.03E+14

5 28 4 2 5 1s(2S)2s2p3(3Do) 4Do5/2 412.1211 5.89E+11 1.03E+14

5 29 4 2 7 1s(2S)2s2p3(3Do) 4Do7/2 412.1213 5.89E+11 1.03E+14

5 30 4 1 1 1s(2S)2s2p3(3Po) 4Po1/2 414.8402 6.18E+11 7.72E+13

5 31 4 1 3 1s(2S)2s2p3(3Po) 4Po3/2 414.8403 6.18E+11 7.72E+13

5 32 4 1 5 1s(2S)2s2p3(3Po) 4Po5/2 414.8404 6.18E+11 7.71E+13

5 33 2 2 3 1s(2S)2s2p3(3Do) 2Do3/2 418.3452 1.84E+12 1.47E+14
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5 34 2 2 5 1s(2S)2s2p3(3Do) 2Do5/2 418.3454 1.84E+12 1.47E+14

5 35 2 1 1 1s(2S)2s2p3(3Po) 2Po1/2 421.0667 1.89E+12 1.18E+14

5 36 2 1 3 1s(2S)2s2p3(3Po) 2Po3/2 421.0667 1.89E+12 1.19E+14

5 37 4 0 3 1s(2S)2s2p3(3So) 4So3/2 422.6562 5.75E+10 9.43E+13

5 38 2 2 5 1s(2S)2s2p3(1Do) 2Do5/2 423.4389 7.17E+11 1.69E+14

5 39 2 2 3 1s(2S)2s2p3(1Do) 2Do3/2 423.4389 7.17E+11 1.69E+14

5 40 2 1 1 1s(2S)2s2p3(1Po) 2Po1/2 426.1817 9.47E+11 3.48E+13

5 41 2 1 3 1s(2S)2s2p3(1Po) 2Po3/2 426.1880 7.63E+11 1.43E+14

5 42 2 0 1 1s(2S)2s2p3(3So) 2So1/2 426.2426 2.47E+12 1.31E+14

5 43 4 1 5 1s2p4 4P5/2 428.6799 5.57E+11 9.91E+13

5 44 4 1 3 1s2p4 4P3/2 428.6989 5.57E+11 9.91E+13

5 45 4 1 1 1s2p4 4P1/2 428.7103 5.57E+11 9.92E+13

5 46 2 2 3 1s2p4 2D3/2 432.5493 1.23E+12 1.56E+14

5 47 2 2 5 1s2p4 2D5/2 432.5497 1.23E+12 1.56E+14

5 48 2 1 3 1s2p4 2P3/2 433.2427 2.72E+12 1.00E+14

5 49 2 1 1 1s2p4 2P1/2 433.2654 2.72E+12 1.00E+14

5 50 2 0 1 1s2p4 2S1/2 438.5541 1.24E+12 1.04E+14

6 1 3 1 0 1s22s22p2 3P0 0.0000

6 2 3 1 2 1s22s22p2 3P1 0.0057

6 3 3 1 4 1s22s22p2 3P2 0.0170

6 4 1 2 4 1s22s22p2 1D2 2.2194

6 5 1 0 0 1s22s22p2 1S0 3.9320

6 6 5 0 4 1s22s2p3 5So2 4.7434 1.12E+02

6 7 3 2 2 1s22s2p3 3Do1 11.8077 6.14E+08

6 8 3 2 4 1s22s2p3 3Do2 11.8078 6.13E+08

6 9 3 2 6 1s22s2p3 3Do3 11.8079 6.11E+08

6 10 3 1 0 1s22s2p3 3Po0 13.8804 1.89E+09

6 11 3 1 2 1s22s2p3 3Po1 13.8805 1.89E+09

6 12 3 1 4 1s22s2p3 3Po2 13.8806 1.89E+09

6 13 1 2 4 1s22s2p3 1Do2 19.4376 4.58E+09

6 14 3 0 2 1s22s2p3 3So1 20.3386 1.43E+10

6 15 1 1 2 1s22s2p3 1Po1 21.8276 7.70E+09

6 16 3 1 4 1s22p4 3P2 27.8399 1.53E+09

6 17 3 1 2 1s22p4 3P1 27.8483 1.53E+09

6 18 3 1 0 1s22p4 3P0 27.8525 1.53E+09

6 19 1 2 4 1s22p4 1D2 30.2382 1.97E+09

6 20 1 0 0 1s22p4 1S0 34.0719 2.83E+09

6 21 5 0 4 1s2s22p3 5So2 395.4334 6.82E+06 1.05E+14

6 22 3 2 4 1s2s22p3 3Do2 400.5709 5.29E+11 1.74E+14

6 23 3 2 2 1s2s22p3 3Do1 400.5709 5.29E+11 1.74E+14
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6 24 3 2 6 1s2s22p3 3Do3 400.5712 5.29E+11 1.74E+14

6 25 3 0 2 1s2s22p3 3So1 400.8401 2.48E+12 6.13E+13

6 26 3 1 4 1s2s22p3 3Po2 401.7812 5.99E+11 1.64E+14

6 27 3 1 2 1s2s22p3 3Po1 401.7821 5.99E+11 1.64E+14

6 28 3 1 0 1s2s22p3 3Po0 401.7822 5.98E+11 1.64E+14

6 29 1 2 4 1s2s22p3 1Do2 403.2759 1.78E+12 1.52E+14

6 30 1 1 2 1s2s22p3 1Po1 404.4775 1.86E+12 1.42E+14

6 31 5 1 6 1s(2S)2s2p4(4P) 5P3 405.8336 4.73E+11 8.28E+13

6 32 5 1 4 1s(2S)2s2p4(4P) 5P2 405.8495 4.73E+11 8.28E+13

6 33 5 1 2 1s(2S)2s2p4(4P) 5P1 405.8601 4.73E+11 8.28E+13

6 34 3 1 4 1s(2S)2s2p4(4P) 3P2 412.5561 2.29E+12 1.24E+14

6 35 3 1 2 1s(2S)2s2p4(4P) 3P1 412.5724 2.29E+12 1.24E+14

6 36 3 1 0 1s(2S)2s2p4(4P) 3P0 412.5806 2.29E+12 1.24E+14

6 37 3 2 2 1s(2S)2s2p4(2D) 3D1 413.7875 1.01E+12 1.34E+14

6 38 3 2 4 1s(2S)2s2p4(2D) 3D2 413.7877 1.01E+12 1.34E+14

6 39 3 2 6 1s(2S)2s2p4(2D) 3D3 413.7878 1.01E+12 1.34E+14

6 40 3 0 2 1s(2S)2s2p4(2S) 3S1 417.3594 1.07E+12 1.05E+14

6 41 1 2 4 1s(2S)2s2p4(2D) 1D2 418.8142 1.04E+12 2.28E+14

6 42 3 1 4 1s(2S)2s2p4(2P) 3P2 421.0736 4.17E+11 1.24E+14

6 43 3 1 2 1s(2S)2s2p4(2P) 3P1 421.0831 4.20E+11 1.25E+14

6 44 3 1 0 1s(2S)2s2p4(2P) 3P0 421.0877 4.21E+11 1.25E+14

6 45 1 0 0 1s(2S)2s2p4(2S) 1S0 421.8244 7.65E+11 1.46E+14

6 46 1 1 2 1s(2S)2s2p4(2P) 1P1 422.2153 1.79E+12 8.98E+13

6 47 3 1 4 1s2p5 3Po2 430.5776 6.47E+11 1.28E+14

6 48 3 1 2 1s2p5 3Po1 430.5958 6.47E+11 1.28E+14

6 49 3 1 0 1s2p5 3Po0 430.6049 6.47E+11 1.28E+14

6 50 1 1 2 1s2p5 1Po1 433.4178 2.09E+12 1.41E+14

7 1 4 0 3 1s22s22p3 4So3/2 0.0000

7 2 2 2 3 1s22s22p3 2Do3/2 2.8185

7 3 2 2 5 1s22s22p3 2Do5/2 2.8186

7 4 2 1 3 1s22s22p3 2Po3/2 3.7260

7 5 2 1 1 1s22s22p3 2Po1/2 3.7263

7 6 4 1 5 1s22s2p4 4P5/2 11.1152 7.97E+08

7 7 4 1 3 1s22s2p4 4P3/2 11.1223 8.00E+08

7 8 4 1 1 1s22s2p4 4P1/2 11.1266 8.02E+08

7 9 2 2 3 1s22s2p4 2D3/2 16.7879 2.76E+09

7 10 2 2 5 1s22s2p4 2D5/2 16.7881 2.76E+09

7 11 2 0 1 1s22s2p4 2S1/2 19.3527 6.19E+09

7 12 2 1 3 1s22s2p4 2P3/2 21.7170 1.32E+10

7 13 2 1 1 1s22s2p4 2P1/2 21.7252 1.32E+10
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7 14 2 1 3 1s22p5 2Po3/2 33.1533 5.58E+09

7 15 2 1 1 1s22p5 2Po1/2 33.1626 5.62E+09

7 16 4 1 5 1s2s22p4 4P5/2 397.0912 4.65E+11 1.61E+14

7 17 4 1 3 1s2s22p4 4P3/2 397.1065 4.65E+11 1.61E+14

7 18 4 1 1 1s2s22p4 4P1/2 397.1156 4.65E+11 1.61E+14

7 19 2 2 3 1s2s22p4 2D3/2 400.4302 1.14E+12 1.44E+14

7 20 2 2 5 1s2s22p4 2D5/2 400.4352 9.68E+11 1.90E+14

7 21 2 1 3 1s2s22p4 2P3/2 400.4639 1.96E+12 1.83E+14

7 22 2 1 1 1s2s22p4 2P1/2 400.4772 2.13E+12 1.36E+14

7 23 2 0 1 1s2s22p4 2S1/2 402.0570 1.07E+12 1.80E+14

7 24 4 1 5 1s(2S)2s2p5(3Po) 4Po5/2 409.4482 8.42E+11 1.20E+14

7 25 4 1 3 1s(2S)2s2p5(3Po) 4Po3/2 409.4627 8.42E+11 1.20E+14

7 26 4 1 1 1s(2S)2s2p5(3Po) 4Po1/2 409.4715 8.42E+11 1.20E+14

7 27 2 1 3 1s(2S)2s2p5(3Po) 2Po3/2 414.7056 7.97E+11 9.20E+13

7 28 2 1 1 1s(2S)2s2p5(3Po) 2Po1/2 414.7090 8.14E+11 9.41E+13

7 29 2 1 3 1s(2S)2s2p5(1Po) 2Po3/2 419.5631 1.02E+12 1.82E+14

7 30 2 1 1 1s(2S)2s2p5(1Po) 2Po1/2 419.5711 1.02E+12 1.82E+14

7 31 2 0 1 1s2p6 2S1/2 433.1776 1.07E+12 1.10E+14

Table A.2: Radiative K-transition data nitrogen ions

N j i Wavelength A-coefficient gf -value

0.1 nm s−1

1 3 1 24.7814 1.51E+12 2.77E−01

1 4 1 24.7760 1.51E+12 5.55E−01

2 4 1 29.1209 8.13E+07 3.10E−05

2 7 1 28.8028 2.12E+12 7.93E−01

3 4 2 30.9798 4.08E+10 1.17E−02

3 4 3 30.9822 8.08E+10 2.33E−02

3 5 1 30.0183 5.05E+06 1.36E−06

3 6 1 30.0170 1.27E+07 6.87E−06

3 8 1 29.4586 1.65E+12 4.29E−01

3 9 1 29.4571 1.65E+12 8.61E−01

3 10 2 29.9203 9.70E+06 2.61E−06

3 10 3 29.9226 2.36E+05 6.34E−08

3 11 2 29.9191 7.01E+04 3.77E−08
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3 11 3 29.9213 1.58E+07 8.49E−06

3 12 3 29.9192 2.14E+07 1.72E−05

3 13 1 29.1289 1.62E+11 4.12E−02

3 14 1 29.1279 1.54E+11 7.83E−02

3 15 2 29.5695 7.16E+11 3.76E−01

3 15 3 29.5717 1.17E+11 6.12E−02

3 16 3 29.5717 8.32E+11 6.55E−01

3 17 2 29.4935 1.79E+12 4.68E−01

3 17 3 29.4957 8.89E+11 2.32E−01

3 18 2 29.4910 4.24E+11 2.21E−01

3 18 3 29.4932 2.26E+12 1.18E+00

3 19 2 29.0197 2.56E+11 6.46E−02

3 19 3 29.0218 5.28E+11 1.33E−01

4 11 7 31.9393 5.72E+10 8.75E−03

4 12 1 30.2331 4.74E+07 1.95E−05

4 12 6 31.9374 1.91E+10 8.79E−03

4 12 7 31.9381 1.43E+10 6.58E−03

4 12 8 31.9395 2.38E+10 1.09E−02

4 12 9 32.1303 7.46E+05 3.46E−07

4 12 10 32.6487 8.61E+04 4.13E−08

4 13 7 31.9356 1.44E+10 1.10E−02

4 13 8 31.9370 4.30E+10 3.29E−02

4 13 9 32.1277 6.38E+05 4.94E−07

4 14 2 30.7417 1.38E+06 5.89E−07

4 14 3 30.7424 4.03E+06 1.71E−06

4 14 4 30.7437 3.48E+05 1.48E−07

4 14 5 31.4289 1.87E+00 8.30E−13

4 15 3 30.7412 9.78E+02 6.92E−10

4 15 4 30.7425 3.94E+06 2.79E−06

4 15 5 31.4276 1.57E−01 1.17E−13

4 16 4 30.7407 3.76E+06 3.72E−06

4 17 1 29.9571 1.55E+12 6.27E−01

4 17 6 31.6296 4.67E+05 2.10E−07

4 17 7 31.6304 7.76E+05 3.49E−07

4 17 8 31.6317 1.44E+06 6.50E−07

4 17 9 31.8188 1.11E+11 5.06E−02

4 17 10 32.3271 8.10E+09 3.81E−03

4 18 3 30.0966 2.30E+12 3.13E−01

4 18 5 30.7542 1.60E+05 2.28E−08

4 19 2 30.0951 7.84E+11 3.19E−01
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4 19 3 30.0957 5.67E+11 2.31E−01

4 19 4 30.0970 9.51E+11 3.87E−01

4 19 5 30.7533 3.97E+05 1.69E−07

4 20 3 30.0940 5.96E+11 4.05E−01

4 20 4 30.0953 1.71E+12 1.16E+00

4 20 5 30.7515 8.79E+05 6.22E−07

4 21 2 30.0419 3.89E+11 1.58E−01

4 21 3 30.0426 3.13E+11 1.27E−01

4 21 4 30.0439 2.40E+10 9.73E−03

4 21 5 30.6979 2.75E+06 1.17E−06

4 22 4 30.0439 7.26E+11 6.87E−01

4 23 3 30.0426 5.24E+11 3.54E−01

4 23 4 30.0439 2.02E+11 1.37E−01

4 23 5 30.6978 1.09E+06 7.69E−07

4 24 2 29.7098 8.63E+10 3.43E−02

4 24 3 29.7104 2.61E+11 1.04E−01

4 24 4 29.7117 4.39E+11 1.75E−01

4 24 5 30.3511 1.11E+07 4.60E−06

4 25 7 30.6000 1.13E+06 7.94E−07

4 25 8 30.6013 3.32E+06 2.33E−06

4 25 9 30.7764 7.11E−01 5.05E−13

4 26 3 29.6105 4.48E+06 2.94E−06

4 26 4 29.6118 3.47E+07 2.28E−05

4 26 5 30.2469 7.43E+11 5.09E−01

4 27 3 29.5127 8.81E+10 1.15E−02

4 27 5 30.1448 7.89E+07 1.07E−05

4 28 2 29.5112 2.82E+10 1.11E−02

4 28 3 29.5119 2.11E+10 8.28E−03

4 28 4 29.5131 3.83E+10 1.50E−02

4 28 5 30.1439 5.23E+07 2.14E−05

4 29 3 29.5102 2.13E+10 1.39E−02

4 29 4 29.5115 6.55E+10 4.28E−02

4 29 5 30.1423 8.09E+07 5.51E−05

4 30 2 29.3267 2.58E+06 9.98E−07

4 30 3 29.3273 2.93E+06 1.13E−06

4 30 4 29.3285 3.14E+05 1.22E−07

4 30 5 29.9514 2.35E+12 9.46E−01

4 31 3 29.2882 8.67E+04 1.11E−08

4 31 5 29.9106 8.40E+11 1.13E−01

4 32 1 28.6495 2.25E+05 8.32E−08
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4 32 6 30.1755 3.87E+11 1.58E−01

4 32 7 30.1761 2.86E+11 1.17E−01

4 32 8 30.1774 1.87E+10 7.66E−03

4 32 9 30.3476 6.96E+06 2.88E−06

4 32 10 30.8096 2.33E+06 9.93E−07

4 33 7 30.1761 5.22E+11 3.56E−01

4 33 8 30.1773 1.70E+11 1.16E−01

4 33 9 30.3476 4.96E+06 3.43E−06

4 34 8 30.1773 6.92E+11 6.61E−01

4 34 9 30.3476 1.89E+07 1.82E−05

4 35 1 28.5726 1.74E+05 6.37E−08

4 35 6 30.0901 3.50E+11 1.43E−01

4 35 7 30.0908 1.05E+12 4.27E−01

4 35 8 30.0920 1.73E+12 7.06E−01

4 35 9 30.2613 1.11E+07 4.58E−06

4 35 10 30.7207 3.07E+06 1.30E−06

4 36 7 29.9243 4.49E+07 3.01E−05

4 36 8 29.9255 3.93E+08 2.64E−04

4 36 9 30.0929 2.27E+12 1.54E+00

4 37 7 29.8361 6.81E+11 9.08E−02

4 38 1 28.3428 2.09E+04 7.55E−09

4 38 6 29.8354 2.22E+11 8.89E−02

4 38 7 29.8360 1.68E+11 6.73E−02

4 38 8 29.8372 2.91E+11 1.16E−01

4 38 9 30.0036 4.83E+06 1.95E−06

4 38 10 30.4552 3.05E+06 1.27E−06

4 39 7 29.8358 1.67E+11 1.11E−01

4 39 8 29.8370 5.13E+11 3.43E−01

4 39 9 30.0034 8.34E+08 5.62E−04

4 40 1 28.1186 3.04E+09 1.08E−03

4 40 6 29.5870 9.94E+05 3.92E−07

4 40 7 29.5877 2.46E+06 9.68E−07

4 40 8 29.5889 4.15E+05 1.63E−07

4 40 9 29.7525 1.23E+12 4.89E−01

4 40 10 30.1965 1.02E+12 4.19E−01

5 16 1 30.8842 1.32E+07 3.78E−06

5 16 2 30.8859 4.52E+06 1.29E−06

5 16 11 32.7521 1.93E+10 6.19E−03

5 16 12 33.0230 5.64E+04 1.85E−08

5 16 14 33.3371 5.07E+04 1.69E−08
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5 16 15 33.3372 2.10E+05 7.00E−08

5 17 1 30.8832 2.64E+03 1.51E−09

5 17 2 30.8849 8.86E+06 5.07E−06

5 17 11 32.7510 1.93E+10 1.24E−02

5 17 12 33.0219 1.06E+05 6.92E−08

5 17 13 33.0219 7.63E+04 4.99E−08

5 17 14 33.3359 4.65E−01 3.10E−13

5 17 15 33.3361 1.83E+04 1.22E−08

5 18 2 30.8832 9.74E+06 8.36E−06

5 18 11 32.7491 1.93E+10 1.87E−02

5 18 12 33.0200 1.98E+04 1.94E−08

5 18 13 33.0200 2.79E+05 2.74E−07

5 18 15 33.3341 1.82E+04 1.82E−08

5 19 4 31.3448 7.24E+05 6.40E−07

5 19 5 31.3458 1.68E+06 1.48E−06

5 19 6 31.8696 4.13E−02 3.77E−14

5 19 7 31.8696 5.84E−01 5.33E−13

5 19 10 32.3716 6.89E−02 6.50E−14

5 20 1 30.5407 5.51E+11 3.08E−01

5 20 2 30.5423 7.44E+10 4.16E−02

5 20 11 32.3660 4.14E+04 2.61E−08

5 20 12 32.6305 2.81E+10 1.79E−02

5 20 13 32.6306 4.32E+09 2.76E−03

5 20 14 32.9372 5.56E+09 3.61E−03

5 20 15 32.9373 7.66E+08 4.99E−04

5 21 2 30.5422 6.24E+11 5.24E−01

5 21 11 32.3659 2.44E+05 2.30E−07

5 21 12 32.6305 2.20E+09 2.11E−03

5 21 13 32.6305 3.02E+10 2.90E−02

5 21 15 32.9372 6.24E+09 6.10E−03

5 22 1 30.5099 1.38E+12 3.86E−01

5 22 2 30.5115 6.72E+11 1.87E−01

5 22 11 32.3314 1.33E+03 4.16E−10

5 22 12 32.5954 6.46E+10 2.06E−02

5 22 14 32.9013 1.47E+10 4.78E−03

5 22 15 32.9014 7.63E+09 2.48E−03

5 23 1 30.5079 3.11E+11 1.74E−01

5 23 2 30.5095 1.74E+12 9.73E−01

5 23 11 32.3292 3.02E+03 1.89E−09

5 23 12 32.5931 7.43E+09 4.73E−03
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5 23 13 32.5931 5.70E+10 3.63E−02

5 23 14 32.8990 3.42E+09 2.22E−03

5 23 15 32.8991 1.91E+10 1.24E−02

5 24 1 30.3662 2.39E+11 6.59E−02

5 24 2 30.3678 5.17E+11 1.43E−01

5 24 11 32.1701 6.24E+04 1.94E−08

5 24 12 32.4315 4.59E+06 1.45E−06

5 24 14 32.7343 1.32E+10 4.25E−03

5 24 15 32.7344 2.54E+10 8.17E−03

5 25 3 30.6416 4.49E+11 2.53E−01

5 25 4 30.6421 8.95E+11 5.04E−01

5 25 5 30.6430 1.34E+12 7.52E−01

5 25 6 31.1435 1.61E+04 9.40E−09

5 25 7 31.1435 1.45E+05 8.45E−08

5 25 8 31.4381 7.52E+05 4.46E−07

5 25 9 31.6215 1.49E+04 8.91E−09

5 25 10 31.6227 7.60E+04 4.56E−08

5 26 3 30.5711 2.48E+11 1.39E−01

5 26 4 30.5716 3.12E+11 1.75E−01

5 26 5 30.5725 2.82E+10 1.58E−02

5 26 6 31.0707 8.38E+05 4.85E−07

5 26 7 31.0707 1.96E+06 1.14E−06

5 26 8 31.3639 5.07E+05 2.99E−07

5 26 9 31.5465 8.11E+04 4.84E−08

5 26 10 31.5476 1.20E+04 7.16E−09

5 27 3 30.5711 4.92E+11 1.38E−01

5 27 4 30.5716 9.64E+10 2.70E−02

5 27 6 31.0707 5.22E+06 1.51E−06

5 27 8 31.3639 1.03E+06 3.04E−07

5 27 9 31.5465 6.09E+04 1.82E−08

5 27 10 31.5476 2.94E+04 8.79E−09

5 28 4 30.5716 4.16E+11 3.49E−01

5 28 5 30.5725 1.72E+11 1.45E−01

5 28 6 31.0707 1.56E+05 1.36E−07

5 28 7 31.0707 4.42E+05 3.84E−07

5 28 10 31.5476 6.95E+04 6.22E−08

5 29 5 30.5725 5.88E+11 6.59E−01

5 29 7 31.0707 1.38E+06 1.60E−06

5 30 3 30.3675 1.01E+11 2.80E−02

5 30 4 30.3680 5.16E+11 1.43E−01
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5 30 6 30.8604 1.94E+05 5.55E−08

5 30 8 31.1496 2.63E+05 7.64E−08

5 30 9 31.3297 3.64E+05 1.07E−07

5 30 10 31.3309 4.52E+05 1.33E−07

5 31 3 30.3675 2.52E+11 1.39E−01

5 31 4 30.3680 8.26E+10 4.57E−02

5 31 5 30.3689 2.82E+11 1.56E−01

5 31 6 30.8604 4.72E+06 2.70E−06

5 31 7 30.8604 1.71E+01 9.77E−12

5 31 8 31.1496 6.78E+05 3.94E−07

5 31 9 31.3297 1.80E+02 1.06E−10

5 31 10 31.3309 3.02E+04 1.77E−08

5 32 4 30.3680 1.81E+11 1.50E−01

5 32 5 30.3689 4.36E+11 3.61E−01

5 32 6 30.8604 1.71E+06 1.46E−06

5 32 7 30.8604 2.38E+07 2.03E−05

5 32 10 31.3308 1.97E+04 1.74E−08

5 33 3 30.1090 8.12E+05 4.42E−07

5 33 4 30.1095 1.54E+05 8.38E−08

5 33 5 30.1104 5.39E+04 2.93E−08

5 33 6 30.5935 1.60E+12 8.97E−01

5 33 7 30.5935 1.81E+11 1.02E−01

5 33 8 30.8777 1.76E+07 1.01E−05

5 33 9 31.0547 5.16E+10 2.99E−02

5 33 10 31.0558 1.00E+10 5.81E−03

5 34 4 30.1095 2.70E+06 2.20E−06

5 34 5 30.1104 4.34E+05 3.54E−07

5 34 6 30.5935 1.19E+11 1.00E−01

5 34 7 30.5935 1.66E+12 1.40E+00

5 34 10 31.0558 6.10E+10 5.30E−02

5 35 3 29.9113 5.95E+03 1.60E−09

5 35 4 29.9118 4.84E+03 1.30E−09

5 35 6 30.3894 1.06E+12 2.93E−01

5 35 8 30.6699 7.62E+11 2.15E−01

5 35 9 30.8444 4.84E+10 1.38E−02

5 35 10 30.8455 2.47E+10 7.05E−03

5 36 3 29.9113 1.14E+06 6.12E−07

5 36 4 29.9118 2.02E+06 1.08E−06

5 36 5 29.9127 3.53E+06 1.90E−06

5 36 6 30.3894 1.11E+11 6.15E−02
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5 36 7 30.3894 9.46E+11 5.24E−01

5 36 8 30.6699 7.65E+11 4.32E−01

5 36 9 30.8444 1.20E+10 6.82E−03

5 36 10 30.8455 5.90E+10 3.37E−02

5 37 3 29.7971 7.82E+09 4.17E−03

5 37 4 29.7976 1.58E+10 8.41E−03

5 37 5 29.7984 2.42E+10 1.29E−02

5 37 6 30.2715 1.77E+06 9.71E−07

5 37 7 30.2715 1.65E+07 9.08E−06

5 37 8 30.5497 1.44E+07 8.05E−06

5 37 9 30.7229 2.97E+06 1.68E−06

5 37 10 30.7240 1.44E+07 8.15E−06

5 38 4 29.7416 1.62E+05 1.29E−07

5 38 5 29.7425 3.59E+05 2.86E−07

5 38 6 30.2137 1.10E+10 8.99E−03

5 38 7 30.2137 1.57E+11 1.29E−01

5 38 10 30.6646 5.46E+11 4.61E−01

5 39 3 29.7411 3.44E+04 1.83E−08

5 39 4 29.7416 8.20E+03 4.35E−09

5 39 5 29.7425 4.44E+04 2.36E−08

5 39 6 30.2137 1.49E+11 8.17E−02

5 39 7 30.2137 1.91E+10 1.05E−02

5 39 8 30.4909 2.00E+07 1.11E−05

5 39 9 30.6635 4.54E+11 2.56E−01

5 39 10 30.6645 9.06E+10 5.11E−02

5 40 3 29.5467 1.51E+05 3.95E−08

5 40 4 29.5472 8.57E+03 2.24E−09

5 40 6 30.0131 8.38E+10 2.26E−02

5 40 8 30.2866 7.16E+10 1.97E−02

5 40 9 30.4569 7.84E+11 2.18E−01

5 40 10 30.4579 2.08E+07 5.79E−06

5 41 3 29.5463 3.43E+05 1.79E−07

5 41 4 29.5468 7.61E+04 3.98E−08

5 41 5 29.5476 2.62E+05 1.37E−07

5 41 6 30.0127 9.16E+09 4.95E−03

5 41 7 30.0127 8.46E+10 4.57E−02

5 41 8 30.2862 7.63E+10 4.20E−02

5 41 9 30.4564 9.68E+10 5.38E−02

5 41 10 30.4575 4.88E+11 2.72E−01

5 42 3 29.5424 1.94E+04 5.08E−09
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5 42 4 29.5429 7.83E+00 2.05E−12

5 42 6 30.0087 9.34E+09 2.52E−03

5 42 8 30.2821 7.40E+09 2.04E−03

5 42 9 30.4523 4.87E+11 1.36E−01

5 42 10 30.4534 1.96E+12 5.45E−01

5 43 2 28.9238 4.14E+04 3.11E−08

5 43 11 30.5541 5.53E+11 4.65E−01

5 43 12 30.7898 1.09E+06 9.27E−07

5 43 13 30.7898 1.51E+07 1.29E−05

5 43 15 31.0628 7.09E+05 6.15E−07

5 44 1 28.9210 7.25E+00 3.64E−12

5 44 2 28.9225 4.43E+04 2.22E−08

5 44 11 30.5527 5.53E+11 3.10E−01

5 44 12 30.7883 5.44E+06 3.09E−06

5 44 13 30.7884 3.12E+06 1.77E−06

5 44 14 31.0612 1.08E+04 6.27E−09

5 44 15 31.0613 3.80E+05 2.20E−07

5 45 1 28.9203 1.20E+02 3.00E−11

5 45 2 28.9217 3.78E+04 9.48E−09

5 45 11 30.5518 5.54E+11 1.55E−01

5 45 12 30.7875 2.26E+06 6.41E−07

5 45 14 31.0603 6.88E+05 1.99E−07

5 45 15 31.0604 2.98E+06 8.61E−07

5 46 1 28.6636 1.61E+08 7.93E−05

5 46 2 28.6650 4.50E+07 2.22E−05

5 46 11 30.2655 7.34E+05 4.04E−07

5 46 12 30.4967 8.47E+11 4.72E−01

5 46 13 30.4968 7.65E+10 4.27E−02

5 46 14 30.7644 2.43E+11 1.38E−01

5 46 15 30.7645 5.79E+10 3.29E−02

5 47 2 28.6650 2.06E+08 1.52E−04

5 47 11 30.2655 4.49E+06 3.70E−06

5 47 12 30.4967 6.02E+10 5.05E−02

5 47 13 30.4967 8.60E+11 7.19E−01

5 47 15 30.7645 3.04E+11 2.58E−01

5 48 1 28.6177 1.92E+08 9.44E−05

5 48 2 28.6191 9.32E+08 4.58E−04

5 48 11 30.2144 2.39E+05 1.31E−07

5 48 12 30.4448 1.56E+11 8.67E−02

5 48 13 30.4448 1.54E+12 8.55E−01
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5 48 14 30.7116 1.79E+11 1.01E−01

5 48 15 30.7117 8.38E+11 4.74E−01

5 49 1 28.6162 7.40E+08 1.82E−04

5 49 2 28.6176 3.65E+08 8.95E−05

5 49 11 30.2127 8.86E+04 2.43E−08

5 49 12 30.4431 1.68E+12 4.68E−01

5 49 14 30.7099 6.84E+11 1.94E−01

5 49 15 30.7099 3.43E+11 9.68E−02

5 50 1 28.2711 2.34E+07 5.62E−06

5 50 2 28.2725 2.07E+08 4.95E−05

5 50 11 29.8283 5.98E+04 1.60E−08

5 50 12 30.0529 1.80E+06 4.86E−07

5 50 14 30.3128 4.09E+11 1.13E−01

5 50 15 30.3129 8.31E+11 2.29E−01

6 21 2 31.3545 1.71E+06 1.26E−06

6 21 3 31.3554 5.06E+06 3.73E−06

6 21 4 31.5310 4.37E−01 3.25E−13

6 21 16 33.7286 3.45E+04 2.94E−08

6 21 17 33.7294 1.12E+04 9.57E−09

6 21 19 33.9501 4.19E+00 3.62E−12

6 22 2 30.9523 3.98E+11 2.86E−01

6 22 3 30.9532 1.23E+11 8.81E−02

6 22 4 31.1243 1.89E+06 1.37E−06

6 22 16 33.2637 2.10E+09 1.74E−03

6 22 17 33.2645 5.88E+09 4.88E−03

6 22 19 33.4791 7.63E+04 6.41E−08

6 23 1 30.9519 2.95E+11 1.27E−01

6 23 2 30.9523 2.12E+11 9.14E−02

6 23 3 30.9532 1.34E+10 5.75E−03

6 23 4 31.1243 2.39E+07 1.04E−05

6 23 5 31.2587 4.22E+06 1.85E−06

6 23 16 33.2637 2.46E+08 1.22E−04

6 23 17 33.2645 3.37E+09 1.67E−03

6 23 18 33.2648 4.36E+09 2.17E−03

6 23 19 33.4791 5.97E+05 3.01E−07

6 23 20 33.8293 9.92E+04 5.11E−08

6 24 3 30.9532 5.21E+11 5.24E−01

6 24 4 31.1243 6.75E+06 6.85E−06

6 24 16 33.2637 7.99E+09 9.27E−03

6 24 19 33.4791 2.48E+05 2.92E−07
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6 25 1 30.9311 2.76E+11 1.19E−01

6 25 2 30.9315 8.20E+11 3.53E−01

6 25 3 30.9324 1.33E+12 5.74E−01

6 25 4 31.1033 8.82E+05 3.84E−07

6 25 5 31.2375 3.85E+06 1.69E−06

6 25 16 33.2397 2.56E+10 1.27E−02

6 25 17 33.2405 1.51E+10 7.50E−03

6 25 18 33.2408 4.96E+09 2.47E−03

6 25 19 33.4548 1.70E+06 8.55E−07

6 25 20 33.8045 8.46E+04 4.36E−08

6 26 2 30.8591 1.40E+11 1.00E−01

6 26 3 30.8599 4.50E+11 3.21E−01

6 26 4 31.0300 1.24E+08 8.99E−05

6 26 16 33.1561 6.20E+09 5.11E−03

6 26 17 33.1568 2.22E+09 1.83E−03

6 26 19 33.3701 6.06E+06 5.06E−06

6 27 1 30.8586 1.85E+11 7.93E−02

6 27 2 30.8590 1.42E+11 6.10E−02

6 27 3 30.8599 2.63E+11 1.13E−01

6 27 4 31.0300 3.70E+06 1.60E−06

6 27 5 31.1635 3.00E+06 1.31E−06

6 27 16 33.1560 3.23E+09 1.60E−03

6 27 17 33.1567 2.19E+09 1.08E−03

6 27 18 33.1571 2.99E+09 1.48E−03

6 27 19 33.3700 1.92E+05 9.64E−08

6 27 20 33.7179 1.35E+04 6.90E−09

6 28 2 30.8590 5.90E+11 8.41E−02

6 28 17 33.1567 8.40E+09 1.38E−03

6 29 2 30.7447 1.55E+07 1.10E−05

6 29 3 30.7456 4.45E+06 3.16E−06

6 29 4 30.9144 1.74E+12 1.24E+00

6 29 16 33.0241 5.93E+04 4.85E−08

6 29 17 33.0248 2.74E+05 2.24E−07

6 29 19 33.2364 3.99E+10 3.30E−02

6 30 1 30.6529 3.36E+06 1.42E−06

6 30 2 30.6534 4.55E+06 1.92E−06

6 30 3 30.6542 6.22E+06 2.63E−06

6 30 4 30.8220 1.10E+12 4.69E−01

6 30 5 30.9538 7.28E+11 3.13E−01

6 30 16 32.9187 1.59E+05 7.76E−08
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6 30 17 32.9194 1.17E+05 5.70E−08

6 30 18 32.9198 2.19E+05 1.07E−07

6 30 19 33.1297 2.79E+10 1.38E−02

6 30 20 33.4726 9.02E+09 4.55E−03

6 31 6 30.9118 4.72E+11 4.73E−01

6 31 8 31.4660 3.08E+05 3.20E−07

6 31 9 31.4660 2.45E+06 2.55E−06

6 31 12 31.6324 2.44E+03 2.56E−09

6 31 13 32.0873 3.12E−01 3.37E−13

6 32 6 30.9106 4.72E+11 3.38E−01

6 32 7 31.4647 1.99E+05 1.48E−07

6 32 8 31.4647 1.37E+06 1.02E−06

6 32 9 31.4647 6.42E+05 4.76E−07

6 32 11 31.6311 3.28E+03 2.46E−09

6 32 12 31.6311 2.16E+04 1.62E−08

6 32 13 32.0860 1.10E−01 8.49E−14

6 32 14 32.1610 2.89E+04 2.24E−08

6 32 15 32.2857 5.73E−01 4.48E−13

6 33 6 30.9098 4.72E+11 2.03E−01

6 33 7 31.4639 4.84E+05 2.15E−07

6 33 8 31.4639 4.19E+05 1.87E−07

6 33 10 31.6303 1.51E+05 6.81E−08

6 33 11 31.6303 5.14E+05 2.31E−07

6 33 12 31.6303 1.18E+06 5.28E−07

6 33 13 32.0851 3.40E−02 1.57E−14

6 33 14 32.1601 1.61E+04 7.48E−09

6 33 15 32.2848 4.23E−02 1.98E−14

6 34 6 30.4022 1.04E+05 7.18E−08

6 34 7 30.9382 1.55E+10 1.11E−02

6 34 8 30.9382 2.26E+11 1.63E−01

6 34 9 30.9382 1.21E+12 8.71E−01

6 34 11 31.0990 1.99E+11 1.44E−01

6 34 12 31.0990 6.05E+11 4.39E−01

6 34 13 31.5386 1.89E+05 1.41E−07

6 34 14 31.6111 2.46E+10 1.85E−02

6 34 15 31.7315 5.75E+04 4.34E−08

6 35 6 30.4010 5.90E+04 2.45E−08

6 35 7 30.9369 3.70E+11 1.59E−01

6 35 8 30.9369 1.08E+12 4.65E−01

6 35 10 31.0977 2.68E+11 1.17E−01
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6 35 11 31.0977 2.03E+11 8.83E−02

6 35 12 31.0977 3.41E+11 1.48E−01

6 35 13 31.5373 3.10E+04 1.39E−08

6 35 14 31.6098 2.48E+10 1.11E−02

6 35 15 31.7302 9.89E+05 4.48E−07

6 36 7 30.9363 1.44E+12 2.07E−01

6 36 11 31.0971 8.15E+11 1.18E−01

6 36 14 31.6091 2.48E+10 3.72E−03

6 36 15 31.7296 3.73E+04 5.64E−09

6 37 6 30.3107 1.34E+04 5.55E−09

6 37 7 30.8434 5.74E+11 2.45E−01

6 37 8 30.8434 1.98E+11 8.45E−02

6 37 10 31.0032 1.37E+11 5.93E−02

6 37 11 31.0032 9.80E+10 4.24E−02

6 37 12 31.0033 5.91E+09 2.56E−03

6 37 13 31.4401 2.00E+06 8.89E−07

6 37 14 31.5121 1.66E+06 7.41E−07

6 37 15 31.6318 8.13E+04 3.66E−08

6 38 6 30.3107 1.19E+05 8.20E−08

6 38 7 30.8434 1.14E+11 8.11E−02

6 38 8 30.8434 5.31E+11 3.78E−01

6 38 9 30.8434 1.25E+11 8.93E−02

6 38 11 31.0032 1.86E+11 1.34E−01

6 38 12 31.0032 5.63E+10 4.06E−02

6 38 13 31.4401 1.47E+05 1.09E−07

6 38 14 31.5121 2.91E+06 2.17E−06

6 38 15 31.6318 1.08E+05 8.13E−08

6 39 6 30.3107 4.66E+05 4.50E−07

6 39 8 30.8434 8.41E+10 8.39E−02

6 39 9 30.8434 6.84E+11 6.82E−01

6 39 12 31.0032 2.44E+11 2.47E−01

6 39 13 31.4401 5.20E+05 5.40E−07

6 40 6 30.0483 1.45E+05 5.89E−08

6 40 7 30.5717 9.43E+05 3.96E−07

6 40 8 30.5717 2.86E+06 1.20E−06

6 40 10 30.7288 1.18E+11 5.00E−02

6 40 11 30.7288 3.54E+11 1.50E−01

6 40 12 30.7288 5.92E+11 2.52E−01

6 40 13 31.1579 1.56E+06 6.82E−07

6 40 14 31.2286 8.23E+06 3.61E−06
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6 40 15 31.3462 2.97E+06 1.32E−06

6 41 6 29.9428 3.52E+01 2.37E−11

6 41 7 30.4625 1.07E+04 7.41E−09

6 41 8 30.4625 2.51E+06 1.75E−06

6 41 9 30.4625 1.44E+07 1.00E−05

6 41 11 30.6184 5.22E+06 3.66E−06

6 41 12 30.6184 6.56E+06 4.61E−06

6 41 13 31.0444 8.32E+11 6.01E−01

6 41 14 31.1146 9.88E+07 7.18E−05

6 41 15 31.2313 2.04E+11 1.49E−01

6 42 6 29.7802 1.64E+05 1.09E−07

6 42 7 30.2943 3.31E+08 2.28E−04

6 42 8 30.2943 5.03E+09 3.46E−03

6 42 9 30.2943 2.87E+10 1.97E−02

6 42 11 30.4485 2.97E+09 2.06E−03

6 42 12 30.4485 8.84E+09 6.15E−03

6 42 13 30.8698 1.71E+07 1.22E−05

6 42 14 30.9392 3.64E+11 2.61E−01

6 42 15 31.0546 3.83E+07 2.77E−05

6 43 6 29.7796 9.12E+04 3.64E−08

6 43 7 30.2936 8.38E+09 3.46E−03

6 43 8 30.2936 2.54E+10 1.05E−02

6 43 10 30.4478 3.93E+09 1.64E−03

6 43 11 30.4478 2.83E+09 1.18E−03

6 43 12 30.4478 5.46E+09 2.28E−03

6 43 13 30.8691 7.40E+07 3.17E−05

6 43 14 30.9385 3.67E+11 1.58E−01

6 43 15 31.0538 3.73E+06 1.62E−06

6 44 7 30.2932 3.37E+10 4.63E−03

6 44 11 30.4474 1.24E+10 1.73E−03

6 44 14 30.9381 3.68E+11 5.28E−02

6 44 15 31.0535 1.65E+08 2.39E−05

6 45 7 30.2388 2.65E+06 3.63E−07

6 45 11 30.3925 2.03E+06 2.81E−07

6 45 14 30.8813 4.14E+07 5.93E−06

6 45 15 30.9963 7.59E+11 1.09E−01

6 46 6 29.6988 4.35E−04 1.73E−16

6 46 7 30.2100 1.37E+06 5.61E−07

6 46 8 30.2100 2.70E+06 1.11E−06

6 46 10 30.3634 9.44E+04 3.92E−08
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6 46 11 30.3634 2.57E+05 1.06E−07

6 46 12 30.3634 1.84E+06 7.64E−07

6 46 13 30.7823 1.24E+12 5.28E−01

6 46 14 30.8513 4.42E+05 1.89E−07

6 46 15 30.9660 5.38E+11 2.32E−01

6 47 2 28.7952 8.08E+07 5.02E−05

6 47 3 28.7960 2.51E+08 1.56E−04

6 47 4 28.9440 2.22E+04 1.40E−08

6 47 16 30.7853 4.83E+11 3.44E−01

6 47 17 30.7860 1.60E+11 1.14E−01

6 47 19 30.9698 1.48E+06 1.07E−06

6 48 1 28.7936 1.16E+08 4.32E−05

6 48 2 28.7940 9.51E+07 3.55E−05

6 48 3 28.7948 1.19E+08 4.44E−05

6 48 4 28.9428 7.00E+04 2.64E−08

6 48 5 29.0590 1.20E+03 4.54E−10

6 48 16 30.7840 2.66E+11 1.13E−01

6 48 17 30.7846 1.63E+11 6.93E−02

6 48 18 30.7849 2.15E+11 9.14E−02

6 48 19 30.9684 5.61E+07 2.42E−05

6 48 20 31.2678 1.30E+06 5.73E−07

6 49 2 28.7934 3.27E+08 4.06E−05

6 49 17 30.7839 6.43E+11 9.14E−02

6 50 1 28.6062 7.87E+03 2.90E−09

6 50 2 28.6065 1.52E+03 5.60E−10

6 50 3 28.6073 5.79E+03 2.13E−09

6 50 4 28.7534 8.50E+08 3.16E−04

6 50 5 28.8681 8.33E+08 3.12E−04

6 50 16 30.5698 1.08E+07 4.55E−06

6 50 17 30.5704 1.77E+04 7.43E−09

6 50 18 30.5707 2.33E+04 9.79E−09

6 50 19 30.7516 1.78E+12 7.55E−01

6 50 20 31.0468 3.10E+11 1.34E−01

7 16 1 31.2231 4.65E+11 4.08E−01

7 16 2 31.4463 7.46E+05 6.64E−07

7 16 3 31.4463 1.03E+07 9.20E−06

7 16 4 31.5189 2.64E+04 2.36E−08

7 16 14 34.0674 7.34E+04 7.67E−08

7 17 1 31.2219 4.65E+11 2.72E−01

7 17 2 31.4451 4.22E+06 2.50E−06

Continued on Next Page. . .

153



Table A.2 – Continued

N j i Wavelength A-coefficient gf -value

0.1 nm s−1

7 17 3 31.4451 3.36E+06 1.99E−06

7 17 4 31.5176 4.56E+04 2.72E−08

7 17 5 31.5176 8.94E+02 5.32E−10

7 17 14 34.0660 9.32E+04 6.49E−08

7 17 15 34.0668 2.14E+02 1.49E−10

7 18 1 31.2212 4.65E+11 1.36E−01

7 18 2 31.4444 2.13E+06 6.31E−07

7 18 4 31.5169 6.08E+06 1.81E−06

7 18 5 31.5169 2.50E+06 7.46E−07

7 18 14 34.0651 2.19E+04 7.60E−09

7 18 15 34.0660 1.05E+05 3.65E−08

7 19 1 30.9627 1.49E+05 8.59E−08

7 19 2 31.1822 8.16E+11 4.75E−01

7 19 3 31.1822 3.00E+10 1.75E−02

7 19 4 31.2536 2.15E+11 1.26E−01

7 19 5 31.2536 6.83E+10 4.00E−02

7 19 14 33.7577 6.47E+09 4.43E−03

7 19 15 33.7585 1.94E+09 1.33E−03

7 20 1 30.9624 2.32E+06 2.00E−06

7 20 2 31.1818 4.73E+10 4.14E−02

7 20 3 31.1818 6.94E+11 6.07E−01

7 20 4 31.2532 2.20E+11 1.94E−01

7 20 14 33.7572 6.21E+09 6.37E−03

7 21 1 30.9601 4.89E+05 2.81E−07

7 21 2 31.1796 1.42E+09 8.30E−04

7 21 3 31.1796 1.28E+12 7.48E−01

7 21 4 31.2509 4.17E+11 2.44E−01

7 21 5 31.2509 2.35E+11 1.37E−01

7 21 14 33.7546 1.22E+10 8.36E−03

7 21 15 33.7554 6.87E+09 4.70E−03

7 22 1 30.9591 1.08E+05 3.10E−08

7 22 2 31.1785 1.36E+12 3.98E−01

7 22 4 31.2499 2.47E+11 7.24E−02

7 22 5 31.2499 4.92E+11 1.44E−01

7 22 14 33.7534 7.18E+09 2.45E−03

7 22 15 33.7542 1.42E+10 4.85E−03

7 23 1 30.8375 7.30E+05 2.08E−07

7 23 2 31.0552 2.55E+06 7.38E−07

7 23 4 31.1259 7.14E+11 2.07E−01

7 23 5 31.1259 3.45E+11 1.00E−01
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7 23 14 33.6088 5.28E+09 1.79E−03

7 23 15 33.6097 2.85E+09 9.66E−04

7 24 6 31.1258 5.87E+11 5.12E−01

7 24 7 31.1263 2.52E+11 2.19E−01

7 24 9 31.5754 2.55E+04 2.29E−08

7 24 10 31.5754 3.55E+05 3.18E−07

7 24 12 31.9768 2.91E+04 2.68E−08

7 25 6 31.1246 3.78E+11 2.19E−01

7 25 7 31.1252 1.12E+11 6.50E−02

7 25 8 31.1255 3.50E+11 2.03E−01

7 25 9 31.5743 6.01E+05 3.59E−07

7 25 10 31.5743 2.34E+06 1.40E−06

7 25 11 31.7819 9.59E+04 5.81E−08

7 25 12 31.9756 5.46E+04 3.35E−08

7 25 13 31.9763 8.69E+02 5.32E−10

7 26 7 31.1245 7.00E+11 2.03E−01

7 26 8 31.1248 1.40E+11 4.06E−02

7 26 9 31.5736 1.15E+06 3.44E−07

7 26 11 31.7811 3.93E+04 1.19E−08

7 26 12 31.9749 3.80E+04 1.16E−08

7 26 13 31.9756 9.69E+04 2.97E−08

7 27 6 30.7203 1.21E+05 6.85E−08

7 27 7 30.7208 2.19E+05 1.24E−07

7 27 8 30.7212 1.60E+06 9.06E−07

7 27 9 31.1583 5.64E+10 3.29E−02

7 27 10 31.1583 5.09E+11 2.96E−01

7 27 11 31.3604 1.89E+11 1.12E−01

7 27 12 31.5491 3.49E+10 2.08E−02

7 27 13 31.5497 6.73E+09 4.02E−03

7 28 7 30.7206 2.26E+05 6.40E−08

7 28 8 30.7209 6.74E+05 1.91E−07

7 28 9 31.1580 5.78E+11 1.68E−01

7 28 11 31.3601 1.92E+11 5.66E−02

7 28 12 31.5488 1.42E+10 4.24E−03

7 28 13 31.5494 2.82E+10 8.41E−03

7 29 6 30.3550 5.50E+03 3.04E−09

7 29 7 30.3555 1.23E+05 6.79E−08

7 29 8 30.3558 1.56E+05 8.61E−08

7 29 9 30.7825 6.57E+09 3.73E−03

7 29 10 30.7825 6.03E+10 3.43E−02
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7 29 11 30.9798 2.00E+10 1.15E−02

7 29 12 31.1639 7.62E+11 4.45E−01

7 29 13 31.1645 1.53E+11 8.89E−02

7 30 7 30.3549 3.26E+04 8.99E−09

7 30 8 30.3552 1.12E+04 3.09E−09

7 30 9 30.7819 6.52E+10 1.85E−02

7 30 11 30.9791 2.05E+10 5.90E−03

7 30 12 31.1632 3.05E+11 8.89E−02

7 30 13 31.1639 6.10E+11 1.78E−01

7 31 1 28.6220 2.39E+03 5.87E−10

7 31 2 28.8095 6.60E+04 1.64E−08

7 31 4 28.8704 7.54E+07 1.88E−05

7 31 5 28.8704 2.54E+07 6.35E−06

7 31 14 30.9942 7.17E+11 2.07E−01

7 31 15 30.9949 3.48E+11 1.00E−01
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Beiersdorfer, P., López-Urrutia, J. R. C., Springer, P., Utter, S. B., & Wong, K. L.

1999, Review of Scientific Instruments, 70, 276

Berrington, K. A., Burke, P. G., Butler, K., Seaton, M. J., Storey, P. J., Taylor,

K. T., & Yan, Y. 1987, J. Phys. B: At. Mol. Opt. Phys., 20, 6379

Berry, H. G., Brooks, R. L., Cheng, K. T., Hardis, J. E., & Ray, W. 1982, Phys. Scr,

25, 391

Bhattacharyya, S., & Strohmayer, T. E. 2007, ApJ, 664, L103

Blackman, E. G. 1999, MNRAS, 306, L25

Bombaci, I. 1996, A&A, 305, 871

Bowyer, C. S., Lampton, M., Mack, J., & de Mendonca, F. 1970, ApJ, 161, L1+

Breit, G. 1932, Physical Review, 39, 616

Brenneman, L. W., & Reynolds, C. S. 2006, ApJ, 652, 1028

Brinkman, A. C., Kaastra, J. S., van der Meer, R. L. J., Kinkhabwala, A., Behar, E.,

Kahn, S. M., Paerels, F. B. S., & Sako, M. 2002, A&A, 396, 761

Buff, J., & McCray, R. 1974, ApJ, 189, 147

Cackett, E. M., Altamirano, D., Patruno, A., Miller, J. M., Reynolds, M., Linares,

M., & Wijnands, R. 2009, ApJ, 694, L21

Cackett, E. M., et al. 2008, ApJ, 674, 415

Chandrasekhar, S. 1931, ApJ, 74, 81

158



—. 1960, Radiative transfer (New York: Dover)

Chen, M. H. 1986, Atomic Data and Nuclear Data Tables, 34, 301

Chen, M. H., & Crasemann, B. 1987, Atomic Data and Nuclear Data Tables, 37, 419

—. 1988, Atomic Data and Nuclear Data Tables, 38, 381

Chen, M. H., Reed, K. J., McWilliams, D. M., Guo, D. S., Barlow, L., Lee, M., &

Walker, V. 1997, Atomic Data and Nuclear Data Tables, 65, 289

Chung, K. T. 1990, Phys. Rev. A, 42, 645

Condon, E. U., & Shortley, G. H. 1951, The theory of Atomic Spectra (Cambridge

University Press, London)

Cowan, R. D. 1981, The theory of atomic structure and spectra (Berkeley, CA: Univ.

of California Press)

Cunto, W., Mendoza, C., Ochsenbein, F., & Zeippen, C. J. 1993, A&A, 275, L5+

Czerny, B., & Zycki, P. T. 1994, ApJ, 431, L5

Davis, B. F., & Chung, K. T. 1989, Phys. Rev. A, 39, 3942

Done, C., Mulchaey, J. S., Mushotzky, R. F., & Arnaud, K. A. 1992, ApJ, 395, 275

Dumont, A.-M., Czerny, B., Collin, S., & Zycki, P. T. 2002, A&A, 387, 63

Einstein, A. 1905a, Annalen der Physik, 322, 132

—. 1905b, Annalen der Physik, 322, 891

—. 1915, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften

(Berlin), Seite 844-847., 844

Eissner, W., Jones, M., & Nussbaumer, H. 1974, Computer Physics Communications,

8, 270

159



Elvis, M., Maccacaro, T., Wilson, A. S., Ward, M. J., Penston, M. V., Fosbury,

R. A. E., & Perola, G. C. 1978, MNRAS, 183, 129

Fabian, A. C., Iwasawa, K., Reynolds, C. S., & Young, A. J. 2000, PASP, 112, 1145

Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729

Favata, F., Neiner, C., Testa, P., Hussain, G., & Sanz-Forcada, J. 2009, A&A, 495,

217
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