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In natural soils cross-anisotropic fabric is common due to deposition in a gravitational 

field. The behavior and properties of sandstone are different from sand due to 

cementation. The focus of this study is to describe the features connected with cross-

anisotropy and cementation. Furthermore, a model capable of predicting the behavior of 

cross-anisotropic sandstone is developed based on The Single Hardening Model. 

 First the behavior of cross-anisotropic sandstone is examined in a literature 

review of cemented geological materials. The behavior is further explored by triaxial and 

torsion shear tests on artificially cemented sandstone. A review of The Single Hardening 

Model revealed minor possible improvements, which are addressed by developing an 

improved plastic potential function and a new softening function. 

 The triaxial tests showed that cross-anisotropic sandstone has an initial 

cementation yield surface. Hollow cylinder torsion shear tests confirmed the behavior 

inside the cementation yield surface to be elastic. The elastic behavior inside the 

cementation yield surface was found to be stiffer in vertical direction than in horizontal 

direction. The failure surface at high confining pressures corresponds to the critical state 

line. At intermediate confining pressures the failure surface is curved and at low 

confining pressures the failure surface is affected by the initial cementation yield surface 

similar to overconsolidated soil, increasing the strength further. The cross-anisotropy was 



found to decrease as the confining pressure increased and the cementation started to 

break. 

 The modeling of the cementation is captured by translation of the stress space. As 

the cementation breaks down, the stress space moves back towards the origin, 

corresponding to uncemented sand. The rate of decementation is controlled by the initial 

cementation yield surface and a second yield surface corresponding to zero tensile 

strength. The cross-anisotropy is modeled using a microstructural tensor describing the 

anisotropy in the material. The cross-anisotropic model requires parameters 

corresponding to vertically cored specimens and horizontally cored specimens. The 

model then averages the behavior depending on the loading direction. To successfully 

model the artificial cross-anisotropic sandstone tested here, it was found sufficient to 

apply the modifications to the failure surface and the yield surface.  
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1. Introduction 

The focus of this study is the behavior and modeling of cross-anisotropic sandstone. The 

behavior is described based on a literature review and further explored by triaxial and 

torsion shear tests. The modeling focuses on expanding The Single Hardening Model to 

capture decementation and cross-anisotropy.  

1.1 Cementation and Cross-Anisotropy 

Sandstone is differentiated from sand due to cementation binding the grains together. 

Most grains are composed of quartz or feldspar whereas the origin of the cementation is 

more varied. However, the most common cementations are calcite, clay, or silica. The 

cementation prevents the grains from moving until broken down, and as a result the 

cohesion creates tensile strength in sandstone. 

 Cross-anisotropic (also named transversely isotropic) material has one axis of 

symmetry around which the material is isotropic. Due to the deposition in a gravitational 

field most sedimentary geological materials exhibit some degree of cross-anisotropy. The 

stress history is known to cause fissures with a preferred orientation thereby creating 

cross-anisotropic behavior. Furthermore, in large formations differences in porosity and 

degree of cementation between the individual layers of sandstone, can give rise to 

macroscopic cross-anisotropic behavior. However, at the level of each layer, the 

sandstone does not contain the cross-anisotropic features caused by the interlayered 

nature experienced at a larger scale. 

1 
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 The behavior exhibited by sandstone has many similarities with other porous 

rocks (e.g. chalk, diatomite, limestone, schist, and shale), weakly cemented sands, and 

certain types of porous concrete. Results obtained from these materials have to some 

extent been used as a general guideline for the behavior of cross-anisotropic sandstone.  

1.2 Constitutive Modeling and Laboratory Testing 

The purpose of a constitutive model is to mathematically express the stress-strain 

behavior of a material. The model needs to be able to handle the initial conditions of the 

material, the boundary conditions, and the loading conditions. Once these conditions are 

known, the model should be able to predict the behavior of the material based on 

predetermined parameters. A low number of parameters are desirable, to keep the model 

as simple as possible, while still capturing the behavior accurately. Furthermore, a certain 

amount of flexibility in the acceptable range of parameters is required to incorporate the 

large variation in behavior experienced in natural soils. 

 In laboratory experiments the initial, boundary, and loading conditions are 

controlled and results are therefore used in development of constitutive relations. During 

laboratory testing it is assumed that the material distribution, the stresses acting on the 

specimen, and the strains measured are uniform on the macroscopic level. Any 

experimental determination of constitutive behavior therefore yields the relationship 

between the average properties measured in the experiment. 

 Natural soils experience large variation in initial material conditions due to e.g. 

composition of the grains, gradation, void ratio, stress history, anisotropy, and 



 3

cementation. Some of these features can easily be incorporated in a model while others 

require additional functions and parameters. 

1.3 Aim of Research 

1.3.1 Review of The Single Hardening Model 

The first goal is an evaluation of The Single Hardening Model based on previously 

published experimental data on sand. Focus will be on examining the plastic potential 

function, the hardening parameters, and the softening function.  

 Predictions of tests on sand performed over a large range of confining pressures 

show that The Single Hardening Model tends to underestimate the volumetric change at 

high pressures. Observations during the parameter determination indicate that this arises 

from the plastic potential function. This will be addressed by modifying the plastic 

potential function.  

 In silty sands, the volumetric change differs from that experienced in regular 

sands. The sand and silt grains form a collapsible structure, resulting in almost identical 

volumetric change during shearing in triaxial compression irrespective of the confining 

pressure. The determination of the corresponding yield surface parameters yields 

ambiguous results. It has been found that changing the procedure for the determination of 

the hardening parameters solves this problem. The result is different hardening 

parameters and unambiguous yield surface parameters.  
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 Finally, a new softening function that ensures a smooth transition from hardening 

over failure to softening has been developed. This allows more precise modeling and 

opens up to better prediction of shear bands in the vicinity of smooth peak failure. 

 To fully exercise the enhanced model, predictions of torsion shear tests on sand 

are performed. These tests contain both triaxial loading and rotation of the principal 

stresses.  

1.3.2 Experiments on Sandstone 

The experimental study of the behavior of sandstone consists of two separate studies. 

First the elastic behavior inside the cementation yield surface is examined by hollow 

cylinder torsion shear tests. Second, the behavior of cross-anisotropic sandstone is 

examined by series of triaxial compression tests on vertically and horizontally cored 

specimens. Furthermore, isotropic compression tests, K0-tests, and Brazilian tests are 

performed to supplement the triaxial tests. 

 Both studies are conducted on artificial sandstone. In the first study three hollow 

cylinder torsion shear specimens are produced and loaded to determine weather the 

sandstone behaves elastic or plastic inside the initial cementation yield surface. 

 For the second study two blocks of artificial cross-anisotropic sandstone are 

produced and specimens cored vertically and horizontally are tested to determine the 

effect of cross-anisotropy. Triaxial tests performed over a large range of confining 

pressures ensure the effect of decementation is captured. Furthermore, the isotropic 

compression tests and the K0-loading are used to determine the transition from elastic 
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behavior inside the cementation yield surface to the plastic behavior associated with 

decementation. The Brazilian tests are performed to determine the indirect tensile 

strength.  

1.3.3 Modeling of the Behavior of Cross-Anisotropic Sandstone 

When modeling the behavior of cross-anisotropic sandstone, the focus will be on two 

individual features, (1) the effect of cementation and decementation, and (2) the effect of 

cross-anisotropy. The base for the predictions is the enhanced version of The Single 

Hardening Model.  

 The effect of cementation is modeled by translation of the coordinate system 

along the hydrostatic axis and as the cementation is destroyed the coordinate system 

slowly moves towards the original location, which corresponds to uncemented sand. The 

translation is controlled between two yield surfaces, one corresponding to the initial 

cementation and one corresponding to zero tensile strength. 

 The cross-anisotropy is modeled using a microstructure tensor describing the 

inherent anisotropy in the material. The tensor is applied to the yield function and the 

failure criterion. The advantage of the microstructure tensor approach is that it allows 

predictions with stress rotation. 



2. Previous Studies 

2.1 Behavior of Sandstone 

The cementation in sandstone acts as bonds between the individual grains, preventing 

movement of the grains before the cementation is broken (Clough et al. 1981). This 

results in behavior similar to the behavior of overconsolidated soil, where an initial yield 

surface exists. According to Leroueil and Vaughan (1990), the initial yield surface is 

affected by structure in the material. Structure has also been identified in uncemented soil 

and can be caused by deposition of silica at particle contacts in sands, from cold welding 

at interparticle contacts under high pressure, from deposition of carbonates, hydroxides, 

or organic matter from a solution, and from recrystallization of minerals during 

weathering (Leroueil and Vaughan 1990). In cemented soils, the structure can further 

arise from interlocking fabric (Clough et al. 1981, Cuccovillo and Coop 1999). 

Furthermore, the ratio between the strength of the grains and the strength of the 

cementation, results in different structure (Cuccovillo and Coop 1999). As the effect of 

cementation and structure are similar and difficult to distinguish in weakly cemented soil 

(Leroueil and Vaughan 1990), the behavior of weakly cemented soils described in the 

following sections (2.1.1 - 2.1.7) might arise from either, and no distinction is made. 
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2.1.1 Failure 

During unconfined conditions the cemented soil behaves brittle and the strength is 

controlled primarily by the void ratio and the degree of cementation. Figure 2.1 shows the 

conceptual variation of compressive and tensile strength as a function of void ratio and 

cementation, based on findings by Huang and Airey (1998) and Consoli et al. (2007). An 

increase in the cementation results in an increase in the strength. Increasing the void ratio 

decreases the strength. At low void ratios, an increase in the degree of cementation results 

in a higher increase in strength than at high void ratios. This has been attributed to the 

particles being closer together at low void ratios causing the cementing agent to be more 

effective. At higher void ratios the cementing agent fills the voids thus having less of a 

binding effect on the grains and resulting in a lower increase in strength.  

 According to Lade and Overton (1989), the effect of cementation on the failure at 

low confining pressures is an increase in both friction angle and cohesion. This was 

attributed to cementation as well as an increase in dilation. This is in agreement with later 

findings by Schnaid et al. (2001), who found the effect of cementation at low confining 

pressures to increase both friction angle and cohesion.  

 In the intermediate range of confining pressures, the cementation breaks, and the 

effect of cementation was interpreted by Lade and Overton (1989) as a parallel shift of 

the failure surface equal to the cohesion. This corresponds to the findings by Clough et al. 

(1981) at low confining pressures.  
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Figure 2.1: Relation between unconfined compressive/tensile strength and void ratio 
with degree of cementation.  
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 Under high confining pressures, the soil behavior becomes ductile, with a 

substantial amount of plastic deformation prior to failure. Under these conditions the 

effect of the cementation is insignificant and only the friction angle is slightly increased 

by the initial cementation (Coop and Atkinson 1993). Tests by Lade and Overton (1989) 

indicated the strength at high confining pressures of a material with lower degree of 

cementation could surpass the strength of the same material but with higher degree of 

cementation. This was explained by the material with the lower degree of cementation 

experiencing an increased compression during application of the higher confining 

pressure, thereby creating additional frictional strength. 

 After the bonds are broken, the soil does not necessarily return to the behavior of 

the similar uncemented soil (Clough et al. 1981). This is due to lumps of cemented 

material acting as larger particles. However, Reddy and Saxena (1993) found the residual 

strength of an artificially cemented soil to be independent of the initial degree of 

cementation. This was experienced for triaxial compression tests at both low and high 

confining pressures.  

 The effect of the intermediate principal stress on the strength of sandstone and 

mudstone was examined by Lee et al. (1999, 2002). In both materials the effect of the 

intermediate principal stress was a reduction of the strength resulting in the octahedral 

shape of the failure surface to be a smoothly cornered triangle (Figure 2.2). This is in 

agreement with tests performed by Reddy and Saxena (1993) on artificially cemented 

sand. This effect of the intermediate principal stress was also noted by Al-Ajmi and 

Zimmerman (2005) after compiling triaxial strength data of eight different porous rocks.  
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Figure 2.2: Shape of failure surface for Shirahama Sandstone 
in the octahedral plane. Data from Takahashi and Koide 
(1989). 
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2.1.2 Yielding 

The presence of cracks and fissures on the micro-scale affects the overall strength of a 

porous rock. An increase in the overall stress magnitude also causes higher local stresses. 

If the local stress exceeds the local strength, cracks occur, grow and interact. If the 

orientation or the magnitude of the principal stresses change, new damage may occur. 

Apart from the stress magnitude and orientation, the amount of new damage depends on 

the damage that has previously been induced, Kranz (1983).  

 The permanent damage results in plastic deformation and can be used to 

determine the yield surface. Pestman and Van Munster (1996), Wong et al. (1997), and 

David et al. (1998) measured the acoustic emission to determine the bond breakage in 

sandstones and cemented sand. They found a significant increase in acoustic emission 

when the cementation starts breaking. The approximate shape of this damage-surface is 

shown in Figure 2.3 in the p-q stress space. The mean stress, p is defined in equation 

(2.1) and the deviator stress q is defined in equation (2.2): 

p  =  1 3σ' 2 σ'
3

+ ⋅  (2.1) 

q  =  1 3σ' σ'−  (2.2) 

in which 1σ'  is the effective major principal stress and 3σ'  is the effective minor principal 

stress. 

 The damage-surface determined from the acoustic emission has been linked to the 

stress-strain relation by Wong et al. (1997). The relation between the mean stress p and 

the volumetric change εvol during hydrostatic compression is named the hydrostat. During 
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Figure 2.3: Shape of yield surface determined from acoustic emission. 
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triaxial loading, the relation between the mean stress p and the volumetric change εvol 

follows the hydrostat until yielding. This is demonstrated in Figure 2.4 a) where the 

hydrostat and two triaxial tests are shown. The triaxial test at low confining pressure 

dilates, and the triaxial test at high confining pressure contracts. The yield point where 

the triaxial tests deviate from the hydrostat is associated with the increase in acoustic 

emission.  

 The method described for determination of the cementation yield surface is used 

by David et al. (1998) to determine the relation between cement content and the size of 

the cementation yield surface. They found that by increasing the cement content, the 

yield surface increased in size, shifting the brittle-to-ductile transition towards higher 

pressures.  

The yield surface separates elastic behavior from elasto-plastic behavior, and the 

elasticity experienced inside the yield surface is often considered linearly elastic. 

Therefore, the deviation from a linear stress-strain relation can also be used to determine 

the yield surface (e.g. Airey 1993, Leroueil and Vaughan 1990). This is shown in Figure 

2.4 b) based on a procedure described by Airey (1993) where both axial and radial strains 

are used. 

 Post yielding behavior (often referred to as cataclastic flow) is dominated by grain 

crushing and pore collapse (Wong et al. 1997). According to Pestman and Van Munster 

(1996), the yield surface expands and provides the state of crushing corresponding to the 

state of stress to which the material has previously been subjected. 
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Figure 2.4: Determination of yielding. a) From deviation from hydrostat. After Wong et 
al. (1997). b) From deviation from linear behavior. After Airey (1993). 
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2.1.3 Elastic Behavior 

The elastic behavior inside the cementation surface varies with the degree of cementation 

(Clough et al. 1981, Baig et al. 1997, Huang and Airey 1998, Schnaid et al. 2001, Sharma 

and Fahey 2004). Figure 2.5 summarizes their findings schematically. The relation 

between the elastic modulus and the stress is shown for increasing degree of cementation. 

The elastic modulus increases as the stress is increased, and increasing the degree of 

cementation results in higher elastic modulus as well. Furthermore, the elastic modulus 

becomes less dependent on the confining pressure with increased cementation. Baig et al. 

(1997) concluded that the effect of confining pressure was less significant at small 

strains, rendering the effect of confining pressure negligible for the dynamic properties of 

cemented soil. 

 The elastic behavior during cementation bond breakage has been studied under 

different loading conditions: Huang and Airey (1998) determined the static bulk modulus 

during isotropic loading, Fernandez and Santamarina (2001) determined the dynamic 

elastic modulus during isotropic loading, Sharma and Fahey (2003) investigated the 

degradation of stiffness during triaxial compression, and Yun and Santamarina (2005) 

examined the dynamic stiffness during K0-loading. The general evolution of elastic 

modulus during breakage of the bonds is shown in Figure 2.5. As the bonds start 

breaking, a decrease in elastic modulus is experienced. As the elastic modulus of the 

cemented soil reaches that of the uncemented soil, the elastic modulus starts increasing, 

eventually becoming identical to that for the uncemented soil. If the initial degree of 

cementation is increased, the stress required to break the cementation increases and the  
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Figure 2.5: Evolution of elastic modulus with increasing cementation and pressure. 
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subsequent drop in elastic modulus diminishes. The dynamic elastic modulus has been 

found to not converge towards the elastic modulus of the uncemented soil as easily as the 

static elastic modulus. 

 The elastic modulus in tension and compression has been found to be similar. E.g. 

Talesnick et al. (2000) found the elastic modulus in tension and in compression to be 

approximately the same in sandstone and cemented sand. Liao et al. (1997) found 

argillite to be stiffer in tension than in compression. This was attributed to closure of 

micro-fissures in compression, indicating that stress history causes different elastic 

moduli in compression and tension. This is demonstrated in Figure 2.6 where the stress-

strain relation in compression and tension is shown. In compression, Young’s modulus 

increases as the fissures closes and eventually becomes equal to Young’s modulus in 

tension. In tension the elastic modulus remains constant.  

2.1.4 Stress-Strain Behavior during Triaxial Compression 

Coop and Atkinson (1993) and Cuccovillo and Coop (1999) identified two types of 

behavior of cemented soil, based on the degree of cementation. These idealized behaviors 

are shown in Figure 2.7 and Figure 2.8. Figure 2.7 a) shows the location of the initial 

cementation yield surface and the critical state line for strongly cemented soil, with 

indication of three stress paths for triaxial compression. Figure 2.7 b) shows the 

normalized (with respect to q p ) stress-strain response corresponding to the three stress 

paths in Figure 2.7 a). Similarly, the yield surface, the critical state line, the failure 

surface and the stress paths for weakly cemented soil are shown in Figure 2.8 a). The cor- 
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 Figure 2.6: Closure of fissures results 

in initial lower Young’s modulus in 
compression than tension. 

 

 

Figure 2.7: Idealized behavior of strongly 
cemented soil. After Coop and Atkinson 
(1993). 

Figure 2.8: Idealized behavior of weakly 
cemented soil. After Cuccovillo and Coop 
(1999). 
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responding normalized stress-strain response is shown in Figure 2.8 b). Note Figure 2.7 

a) and Figure 2.8 a) are shown with almost similar size of the cementation yield surface. 

If shown in the same scales, the cementation yield surface in Figure 2.7 a) would be 

significantly larger than the yield surface in Figure 2.8 a). 

 In the strongly cemented soil, the yield surface increases the peak strength at low 

confining pressures resulting in elastic behavior until failure. As the confining pressure 

increases, the yield surface is reached before the critical state line, resulting in first 

elastic, then elasto-plastic behavior. At high confining pressure only elasto-plastic 

behavior is observed. 

 In the weakly cemented soil, the stress-strain behavior is similar to the strongly 

cemented soil at low confining pressures where the behavior is elastic until failure, and at 

high confining pressures where only elasto-plastic behavior is experienced. In the 

intermediate range two other types of stress-strain behavior is observed, one starting 

inside the cementation yield surface and one starting outside. Both experience increased 

peak strength with subsequent reduction to the critical state line. 

 Wu et al. (2000) determined the onset of dilatancy inside the cementation yield 

surface for two different sandstones and found the onset of dilatancy to vary linearly with 

confining pressure. The best fit line was parallel shifted to intersect the q-axis, resulting 

in increased contraction (compared to sand) before the onset of dilatancy. This is in 

agreement with findings by e.g. Lade and Overton (1989) who found delayed onset of 

dilatancy with increased degree of cementation. Furthermore, the rate of dilatancy 

experienced was higher in cemented sand than in uncemented sand. As the confining 
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pressure increases, the rate of dilation decreases and at high confining pressures only 

contractive behavior is observed. 

2.1.5 Stress-Strain Behavior during Isotropic Compression 

The influence of cementation on the volumetric behavior during isotropic compression is 

shown in Figure 2.9. Until yielding, the cemented soil behaves elastic, and the degree of 

cementation determines the location of the yield point in comparison with the intrinsic 

compression line. In most cemented soils, yielding takes place beyond the intrinsic 

compression line. Lagioia and Nova (1995) observed temporarily unstable behavior in a 

strain-controlled isotropic compression test, corresponding to a reduction in the stress 

right after yielding. After yielding, the cementation breaks and the soil eventually returns 

to the behavior of the uncemented soil. Examples of behavior during isotropic 

compression can be found in e.g. Coop and Atkinson (1993), Leroueil and Vaughan 

(1990), Cuss et al. (2003). 

 In some natural soils, the initial behavior is softer due to closure of preexisting 

cracks and fissures (e.g. Cuss et al. 2003). The development of these cracks is further 

addressed in section 2.1.7. 

2.1.6 Stress-Strain Behavior during K0-loading 

The behavior of sandstone during K0-loading is similar to the behavior during isotropic 

compression. The loading starts elastically until yielding, where the cementation starts 

breaking and the soil eventually returns to the intrinsic compression line of the sand. This 
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Figure 2.9: Schematic representation of 
the influence of cementation during 
isotropic compression. After Cuccovillo 
and Coop (1999). 
 

 

 

 

 

 

 

 

 

 

 

 

 



 22

is illustrated in Figure 2.10 a). Due to the difference in boundary conditions, compared 

with the isotropic compression test, the stress path is not predetermined. According to 

Nova et al. (2003), the transition from elastic to plastic behavior follows the yield 

surface, if no bond degradation takes place. The degree of cementation influences the 

transition from elastic to plastic behavior, as illustrated in Figure 2.10 b). Examples of 

stress paths from K0-loading can be found in e.g. Coop and Atkinson (1993), and Lagioia 

and Nova (1995), Leroueil and Vaughan (1990). 

2.1.7 Cementation History 

According to Rotta et al. (2003) cementation in natural sandstones take place during 

several different loading-cementation histories, where the three major relations are: (1) At 

the surface under no confining pressure, (2) at shallow depth after overconsolidation, and 

(3) progressively with burial. The loading-cementation history affects the results of tests 

on natural sandstone.  

  To examine the effect of curing stress on isotropic yielding, Rotta et al. (2003) 

performed isotropic compression tests on specimens of artificially cemented sandstone. 

Two specimens with identical void ratio and degree of cementation were tested. Both 

were loaded to an isotropic pressure of 500 kPa. One was allowed to cure at that pressure 

while the other was unloaded till 50 kPa and then cured. During further isotropic loading, 

the specimen cured under high confining pressure would start yielding later than the 

specimen cured at low confining pressure. After yielding, the specimens behaved 

similarly, resulting in identical compression lines.  
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Figure 2.10: a) Schematic representation of the influence of cementation during K0-
loading. After  b) Stress paths followed during K0-loading. 
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 To simulate the damage taking place when retrieving sandstone from in-situ 

conditions and bringing it to the laboratory, Holt et al. (2000) performed oedometric tests 

on three different artificial sandstones, all cured under stress. They found that damage 

occurred during unloading from the simulated in-situ stress. After reloading the 

sandstones to the curing stress, the bulk modulus and the elastic wave velocities were 

reduced. In weakly cemented sandstone, enough damage took place to break the bonds 

between the grains. As a result, the weakly cemented sandstone exhibited a reduction in 

void ratio during reloading, which was not found in the sandstones with stronger 

cementation. Fernandez and Santamarina (2001) showed experimentally that sandstone 

cemented under pressure could have the interparticle bonding damaged by unloading due 

to local tension on the cementing bonds.  

2.1.8 Shear Bands in Sandstone 

Shear bands are localized strains often 4-10 grain diameters wide, with further damage 

restricted to within approximately 2 mm of the shear band (El Bied et al. 2002, Cuss et al. 

2003). SEM-photos (Scanning Electron Microscope) performed by El Bied et al. (2002) 

show that tests performed under low confining pressure has a shear zone characterized by 

grain cracking with no grain crushing while tests performed under high confining 

pressure has a shear zone characterized by grain crushing and pulverization. The shear 

bands at low confining pressures experience an increase in porosity and are therefore 

often referred to as dilating shear bands. The shear hands at high confining pressures 

experience a decrease in porosity and are sometimes referred to as contraction shear 
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bands. According to Sulem and Ouffroukh (2006) both the dilating and contracting shear 

bands experience a reduction in permeability. However, the reduction in permeability is 

more pronounced in the contracting shear bands. The shear bands are near failure 

phenomena and Ord et al (1991) observed that in plane strain tests, the shear band 

initiates in the hardening regime, resulting in a reduced strength. The angle of the shear 

band has been found to decrease as the confining pressure increases (Bésuelle et al. 2000, 

El Bied et al. 2002). The angle of the shear band is here defined as the angle between the 

major principal stress and the normal to the shear band. 

 Similar to the shear band is the compaction band observed by e.g. Olsson (1999), 

Klein et al. (2001), and Baud et al. (2004). Compaction bands are localized deformation 

with reduction in porosity and are approximately perpendicular to the major principal 

stress (angle of band equal to zero). They have been observed to form in the stress range 

around the cap of the cementation yield surface. According to Katsman and Aharonov 

(2006) compaction bands are likely to nucleate around heterogeneities in the rock 

properties, such as local variation in porosity or compressive strength.  

2.2 Anisotropy in Sandstone 

Due to deposition in a gravitational field, many natural soils exhibit some degree of 

anisotropy. Soil and rock often have one axis of symmetry, making it cross-anisotropic 

(or transversely isotropic). The coordinate system adopted in this study is shown in 

Figure 2.11, along with the stresses acting on a small cube of cross-anisotropic material. 

The z-axis is the direction of symmetry, and the xy-plane corresponds to the bedding 

planes. The first suffix of the stresses refers to the direction of the normal to the plane on  
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Figure 2.11: Coordinate system adopted 
and stresses on a small cube. 

Figure 2.12: Specimens cored with a 
orientation angle of 0o and 90o are referred 
to as vertically and horizontally cored, 
respectively. 
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which the stress act and the second suffix refers to the direction of the stress component 

itself. 

 When examining the effect of anisotropy, specimens are often cored in different 

directions with respect to the bedding planes. The orientation angle, β refers to the angle 

between the normal to the bedding planes (z-direction in Figure 2.11) and the direction of 

the major principal stress in triaxial testing. Two specimens cored with orientation angles 

of β = 0o and β = 90o are referred to as vertically cored specimens and horizontally cored 

specimens, respectively (Figure 2.12). These two directions are the only orientation 

angles where only normal stresses are applied to the cube in Figure 2.11. All other 

orientation angles result in shear stresses on the cube. 

 Often a distinction is made between inherent and induced anisotropy (e.g. Wong 

and Arthur 1985). Inherent anisotropy is the result of the deposition process and is an 

intrinsic property of the material. Induced anisotropy is caused by the strains and varies 

depending on the magnitude and direction of the stresses applied. The induced anisotropy 

can both enhance and reduce the inherent anisotropy. 

 According to Louis et al. (2005) macroscopic inherent anisotropy in sandstone 

can be caused by several microscopic features: The pores, the cracks, the grains, and the 

contacts between them, and the respective distribution of each element. However, 

macroscopic variation in porosity, grain size distribution, and cement content plays a 

significant role in natural anisotropic sandstone. In other porous rocks, the anisotropy has 

been attributed to several other mechanisms such as preferred direction of micro-fissures 
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in argillite (Liao et al. 1997), or preferred orientation of particular minerals in schists 

(Nasseri et al. 2003). 

 Tien and Tsao (2000) studied the strength and elastic behavior of interlayered 

(ABAB) artificial sandstone and found the behavior of the vertically cored specimens to 

be dominated by the softer/weaker material while the behavior of the horizontally cored 

specimens was controlled by the stiffer/stronger material. This is equivalent of having 

two materials working in series for the vertically cored specimens and working in parallel 

for the horizontally cored specimens. Interlayered material is not of interest in this study 

as it would be considered (and modeled) as two materials with different properties.  

2.2.1 Cross-Anisotropic Failure 

When determining the failure of cross-anisotropic rock, a common procedure is to 

perform series of unconfined compression tests varying the orientation angle, β from 0o to 

90o, (e.g. Al-Harthi 1998), or performing series of triaxial tests with increasing confining 

pressure and with varying orientation angles (Donath 1964, Hoek 1964, McLamore and 

Gray 1967, Attewell and Sandford 1974, Duveau and Shao 1998, Tien and Tsao 2000, 

Whittles et al. 2002,  Tien et al. 2006, Saroglou and Tsiambaos 2008). Also Liao et al. 

(1997) performed direct tension tests with varying orientation angle, β to determine the 

failure mode in tension. 

 Three different types of behavior have been observed depending on the type of 

anisotropy. These findings are summarized in Figure 2.13, Figure 2.14, and Figure 2.15.  
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Figure 2.13: Typical strength variation with orientation angle of anisotropic rock failing 
along a single discontinuity. After Al-Harthi (1998). 
 
 

Figure 2.14: Typical strength variation with orientation angle of anisotropic rock 
failing along one set of discontinuities. After Al-Harthi (1998). 
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Figure 2.15: Typical strength variation with orientation angle of anisotropic rock 
failing along two sets of discontinuities. After Al-Harthi (1998). 
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 The first type of behavior (Figure 2.13) is characterized by a large reduction in 

strength in the midrange of orientation angles. The reduction in strength is due to 

shearing along the bedding plane. At low and high orientation angles, a strength plateau 

is observed and the strength is here controlled by the matrix of the soil (McLamore and 

Gray 1967). In unconfined compression tests the strength plateau is sometimes caused by 

splitting (Whittles et al. 2002), which is more often found in the horizontally cored 

specimens. 

 In the second type of behavior (Figure 2.14) the specimens primarily fail by 

shearing along a set of discontinuities. The shear strength along the bedding planes 

control the strength and multiple shear bands, or kinking is observed as failure 

mechanism (McLamore and Gray 1967). The result is a u-shaped failure curve. 

 The third type of behavior (Figure 2.15) does not represent cross-anisotropic soil, 

as two planes of anisotropy perpendicular to each other are observed (e.g. Pomeroy et al. 

1970, Al-Harthi 1998). The anisotropy typically comes from foliation and bedding planes 

in one direction and fissures and cracks in the other direction. Here two u-shaped curves 

act together and the result is a single curve with two minima combined from the two 

planes of anisotropy.  

 The influence of the confining pressure on the failure mode is conceptually shown 

in Figure 2.16. The reduction in strength experienced at the midrange of orientation 

angles diminishes as the confining pressure increases. This is observed for all three types 

of failure (e.g. McLamore and Gray 1967, Whittles et al. 2002, Pomeroy et al. 1970). 

Furthermore, the anisotropy in the soil matrix gets reduced as the confining pressure in- 
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Figure 2.16: Compressive strength of anisotropic rock with 
increasing confining pressure.  
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creases. 

 According to Li and Aubertin (2002), the tensile strength of cross-anisotropic 

natural rocks, does not follow the same strength variation as the compressive strength, 

because the tensile strength is controlled by the cohesion in the soil. In direct tension, 

Liao et al. (1997) found specimens of argillite to be stronger in horizontal direction than 

in vertical direction. The approximate variation with orientation angel is shown in Figure 

2.17, and is in accordance with findings of indirect tensile strength of siltstone 

determined by Whittles et al. (2002). 

 To characterize the inherent cross-anisotropy when failure of the soil matrix is 

experienced, the anisotropy ratio of the strength, RS defined in equation (2.3) is used: 

v
S

h

SR   =  
S

 (2.3) 

in which Sv is the compressive strength of vertically cored specimens and Sh is the 

compressive strength of horizontally cored specimens. Values of RS close to unity reveal 

isotropy, while values of RS larger than unity indicates a material that is stronger in 

vertical direction, and values of RS smaller than unity indicates a material that is stronger 

in horizontal direction.  

 Figure 2.18 shows the variation of anisotropy ratio with confining pressure for 

two siltstones determined from tests performed by Whittles et al. (2002). At unconfined 

compression, the anisotropy ratio is above two indicating higher strength for vertically 

cored specimens and as the confining pressure increases, the anisotropy ratio decreases. 

For siltstone I the anisotropy is almost gone at a confining pressure of 8 MPa, whereas 

for siltstone II anisotropy remains at that pressure. The large drop in anisotropy ratio  
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Figure 2.17: Tensile strength variation with orientation angle of 
anisotropic rock. After Liao et al. (1997). 
 

  

Figure 2.18: Variation of anisotropy ratio with confining pressure of 
siltstone. Data from Whittles et al. (2002). 
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from unconfined compression to a confining pressure of 2 MPa was also observed by 

Duveau and Shao (1998). They further noticed that the horizontally cored specimens 

were more likely to fail by splitting, resulting in the high anisotropy ratio in unconfined 

compressive tests to be caused by the failure mode rather than the anisotropy of the soil 

matrix.  

 In all the tests examined here, the anisotropy ratio was found to be higher than 

unity, indicating higher strength in vertically cored specimens than horizontally cored 

specimens. Furthermore, the anisotropy ratio was found to decrease as the confining 

pressure increased. 

2.2.2 Cross-Anisotropic Elastic Behavior 

The relationship between increments of stress and increments of strain for cross-

anisotropic elastic material is described in equation (2.4): 
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The direction of the stress increments and the strain increments follow the convention in 

Figure 2.11, meaning the z-direction is the direction of symmetry, and the xy-plane 

corresponds to the bedding planes. The suffix on the elastic parameters are adopted from 

Kirkgard and Lade (1991), where Ev is Young’s modulus in vertical direction, Eh is 

Young’s modulus in horizontal direction, νhv is Poisson’s ratio of strain in vertical 

direction to applied strains in horizontal direction, νvh is Poisson’s ratio of strain in 

horizontal direction to applied strains in vertical direction, νhh is Poisson’s ratio of strain 

in horizontal direction to applied strains in orthogonal horizontal direction, Ghv is the 

shear modulus in any vertical plane, and Ghh is the shear modulus in any horizontal plane.  

 The shear modulus in the horizontal plane, Ghh can be replaced with 

( )
h

hh
hh

EG   =  
2 1 + ν

 (2.5) 

thereby reducing the independent parameters by one. Symmetry of the elastic compliance 

matrix results in: 

hv vh

h v

ν ν  =  
E E

 (2.6) 

From equation (2.6) it is evident that only three of the four parameters are required. 

Therefore only five independent parameters are needed to fully describe cross-anisotropic 

elastic behavior. Four parameters can be determined from two triaxial compression tests 

cored in vertical and horizontal directions, with measurement of the normal strains. The 

last parameter, Ghv requires shear stresses applied in a vertical plane of the specimen.  

 Three common approaches to achieve the Ghv are, (1) omit the shear modulus for 

the vertical plane from the results, (e.g. Lockner and Beeler 2003), (2) perform torsion 
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shear tests (e.g. Talesnick and Ringel 1999, Talesnick et al. 2000, Gautam and Wong 

2006), (3) perform triaxial tests on specimens cored with orientation angles between 0o 

and 90o (e.g. Sargand and Hazen 1987, Liao et al. 1997, Gatelier et al. 2002). 

 Lockner and Beeler (2003) determined the evolution of elastic anisotropy in 

Berea sandstone under different loading conditions. Only vertically and horizontally 

cored specimens were used and Ghv was not determined. They found that increased 

confining pressure reduced the inherent anisotropy, while increased differential stress 

produced increasing anisotropy. All tests were performed inside the cementation yield 

surface resulting in the specimens returning to their initial degree of anisotropy upon 

unloading. Gatelier et al. (2002) also observed a decrease of elastic anisotropy with 

increasing confining pressure. 

 Liao et al. (1997) examined the cross-anisotropic elastic response of argillite in 

tension, and compared the result with the cross-anisotropic elastic response in 

compression. They found the argillite to be more anisotropic in compression than in 

tension due to closure of micro-fissures in compression. Similar results were achieved by 

Talesnick et al. (2000) on Loveland sandstone.  

 Gautam and Wong (2006) used the anisotropy ratio, RE defined in equation (2.7) 

to monitor anisotropy in Young’s modulus in different formations of Colorado shale. 

v
E

h

ER   =  
E

 (2.7) 

in which RE is the anisotropy ratio for Young’s modulus, and Ev and Eh are Young’s 

moduli in vertical and horizontal directions, respectively. Values of RE close to unity 

reveals isotropy, while values of RE smaller than unity means the material is stiffer in 
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horizontal direction and values of RE larger than unity means the material is stiffer in 

vertical direction. Similarly, the anisotropy ratio, RG for the shear modulus is defined as: 

hh
G

hv

GR   =  
G

 (2.8) 

in which Ghh and Ghv are shear moduli in the horizontal plane and a vertical plane, 

respectively.  

 Compiled in Table 2.1 are the values of the anisotropy ratio for Young’s moduli 

(equation (2.7)) and for the shear moduli (equation (2.8)) calculated from the literature 

reviewed for this study. Most natural deposits are stiffer in horizontal direction than in 

vertical direction, with the exception of Berea sandstone, Colorado shale, and Siltstone I 

and II. Furthermore, the presence of micro fissures in one direction seems to create 

strongly anisotropic behavior. The fissures creating the stone anisotropy would suggest 

the anisotropic behavior in these materials is a function of the stress history rather than an 

inherent property. The creation of these directional fissures is described in section 2.2.3. 
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Table 2.1: Anisotropy ratios determined for Young’s modulus and shear modulus. 
*Compression/Tension. **Indicates the elastic properties at the lowest confining pressure 
available.  
Material Origin of anisotropy C/T* RE RG Reference 
Adamswiller sand- 
  stone, initial state** 

preferred orientation of  
mica minerals C 0.79 1.16 Gatelier et al. (2002) 

Argillite horizontal micro-fissures C 0.67 1.70 Liao et al. (1997) 
Argillite horizontal micro-fissures T 0.87 1.39 Liao et al. (1997) 

Artificial sandstone pouring direction C 1.04 1.01 Talesnick et al. 
(2000) 

Colorado shale face to face clay particles C 1.70-
2.19

1.48-
1.86 

Gautam and Wong 
(2006) 

Indiana limestone Not known C 0.87 0.88 Talesnick and 
Ringel (1999) 

Lac duBonnet 
granite horizontal micro-fissures C 0.38 1.10 Talesnick and 

Ringel (1999) 

Loveland sandstone Not known C 0.75 0.91 Talesnick et al. 
(2000) 

Marsha chalk Not known C 0.73 0.99 Talesnick and 
Ringel (1999) 

Artificial sandstone pouring direction T 1.12 N/A Talesnick et al. 
(2000) 

Artificial sandstone 
  initial state** interlayered (AAAA) C 0.94 N/A Tien and Tsao 

(2000) 
Artificial sandstone 
  initial state** stratified (ABAB) C 0.86 N/A Tien and Tsao 

(2000) 

Bentheim sandstone 
pore volume anisotropy 

and anisotropic grain 
distribution 

C 0.69 N/A Louis et al. (2005) 

Berea sandstone 
  initial state** Not known C 1.27 N/A Lockner and Beeler 

(2003) 
Himalayan schist 
  quartzitic schist 

preferred orientation of 
mica and chlorite minerals C 1.00 N/A Nasseri et al. (2003) 

Himalayan schist 
  chlorite schist 

preferred orientation of 
mica and chlorite minerals C 0.81 N/A Nasseri et al. (2003) 

Himalayan schist 
  quartz mica schist 

preferred orientation of 
mica and chlorite minerals C 0.70 N/A Nasseri et al. (2003) 
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Table 2.1: Continued. Anisotropy ratios determined for Young’s modulus and shear 
modulus. *Compression/Tension. **Indicates the elastic properties at the lowest confining 
pressure available. 
Material Origin of anisotropy C/T* RE RG Reference 
Himalayan schist 
  biotite schist 

preferred orientation of 
mica and chlorite minerals C 0.43 N/A Nasseri et al. (2003) 

Loveland sandstone Not known T 0.96 N/A Talesnick et al. 
(2000) 

Siltstone I interlayered 
siltstone/mudstone C 1.40 N/A Whittles et al. 

(2002) 

Siltstone II interlayered 
siltstone/mudstone C 1.35 N/A Whittles et al. 

(2002) 
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2.2.3 Yielding and Induced Anisotropy 

During yielding, cracks and fissures appear and the cementation breaks. If the 

cementation breakage has a preferred orientation, e.g. cracks in one direction, then the 

damage is anisotropic, and the result is induced anisotropy. Ramez (1966) analyzed the 

direction of fractures in Darley Dale sandstone after failure. In the brittle regime, two 

kinds of fractures were observed: Tensile fractures parallel to the direction of 

compression, and fractures that were approximately parallel to the shear band. At high 

confining pressures Ramez (1966) recognized three types of fractures: Tensile fractures, 

shear fractures inclined at a small angle to the direction of compression, and fractures that 

were normal to the compression direction. It was suggested that the fractures normal to 

the compression direction could originate from the release of elastic strain energy during 

unloading. 

 According to Wu et al. (2000) there is a trend towards the induced anisotropy to 

decrease as the porosity increases. In high porosity rocks like sandstone, the orientation 

of the inter- and intra-granular cracks are more scattered due to the pores in the material. 

 The evolution of anisotropy during several different stress paths have been 

examined by measurement of sound velocities and ultrasonic attenuations (e.g. Crawford 

et al. 1995, Desai et al. 1995, Benson et al. 2005, Scott and Abousleiman 2005). The 

sound travels through the matrix of the soil, and as cracks develop, the sound travels a 

further distance. By measuring the sound velocity in three directions simultaneously, the 

evolution of directional cracks can be monitored.  
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 During hydrostatic loading, a cross-anisotropic material gradually looses the 

anisotropy as the cementation breaks down (Desai et al. 1995, Benson et al. 2005). Scott 

and Abousleiman (2005) found initially isotropic sandstone to maintain the isotropic 

behavior during isotropic loading.  

 According to Desai et al. (1995) the anisotropy increases during triaxial loading 

until the specimen starts dilating, then the induced anisotropy reduces towards zero. This 

means, the cracks and fissures start propagating in all directions during dilation.  

 During K0-loading, Scott and Abousleiman (2005) found the anisotropy of 

isotropic sandstone to increase rapidly during the initial loading. Then the anisotropy was 

locked in at a constant level and remained constant.  

2.3 Modeling the Behavior of Sandstone 

In chapter 3 The Single Hardening Model is reviewed and its capabilities demonstrated 

for sand. Later, in chapter 8, additions to The Single Hardening Model are proposed to 

capture the behavior of cross-anisotropic sandstone. Therefore, this part of the review 

focuses on features relevant for The Single Hardening Model. The features are explained 

conceptually here, and a detailed description with a formulation applicable for The Single 

Hardening Model follows in succeeding chapters. 

2.3.1 Cementation 

Lade (1982) and Kim and Lade (1984) have demonstrated that the failure of concrete and 

rocks can be captured by translation of the principal stress space along the hydrostatic 

axis. This captures the effect of cohesion and the tensile strength exhibited by concrete 
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and rocks. The principal stress space is translated along the hydrostatic axis by the 

distance ‘a’, as shown in equation (2.9). The parameter ‘a’ is added to the normal 

stresses, and as the parameter ‘a’ increases, the material is able to withstand larger and 

larger tensile strength. 

ij ij ij aσ   =  σ  + δ a p⋅ ⋅   (2.9) 

in which σij are the stresses to be translated, δij is Kronecker’s delta (δij = 1 for i = j, δij = 

0 for i ≠  j), ‘a’ is a dimensionless parameter, and pa is atmospheric pressure in the same 

units as σij.  

 To capture the behavior of concrete in the brittle regime, Lade and Kim (1988)b 

translated the principal stress space as expressed in equation (2.9). This included 

calculation of elastic and plastic deformation in the translated stress space. This means 

that the failure surface, yield surface, and plastic potential surface originate through the 

origin of the translated principal stress space. This is demonstrated in Figure 2.19, where 

failure surface, yield surface and plastic potential surface are plotted in the translated 

stress space.  

2.3.2 Degradation of Cementation 

Yielding of cemented material with and without degradation of the soil structure was 

described by Nova et al. (2003), using translation of the yield surface. The model only 

described the plastic deformation, meaning the elastic properties and failure surface were 

assumed constant during the degradation. The model is conceptually explained here, 

based on the three yield surfaces in Figure 2.20. For clarity reasons only the parts of the 



 44

 

Figure 2.19: Translation of coordinate system to account for cohesion. 
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Figure 2.20: The initial yield surfaces due to cementation and breaking of cementation, 
and the evolution of yield surface during triaxial loading. After Nova et al. (2003). 
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yield surfaces above the hydrostatic axis are shown. There exists two initial yield 

surfaces, one caused by cementation fpc, and one describing the state where the 

cementation is broken, fpb. The cementation surface increases in size like a regular yield 

surface and defines the elastic area. The broken surfaces decrease in size as the tensile 

strength is reduced. Inside the cementation surface the material behaves elastic, and 

between the two surfaces, the cementation breaks down, resulting in zero tensile strength 

when the two surfaces are equal in size. Outside the broken cementation surface, the soil 

behaves like the residual soil. The third yield surface, fp is the yield surface controlling 

the behavior of the soil. All yield surfaces are assumed to have the same shape. 

 Three quantities, HT, HC, and HB, are defined in Figure 2.20 and relates to the 

isotropic stresses. The parameter HT describes the difference between the original and the 

translated stress space. The parameter HC describes the initial location of the cementation 

surface in the original stress space. The parameter HB defines the isotropic stress range 

where the cementation breaks. Nova et al. (2003) used the ratio k defined in equation 

(2.10) to indicate the rate of degradation.  

T

B

Hk  =  
H

 (2.10) 

in which HT and HB, are defined in Figure 2.20. 

 The evolution of the yield surfaces during the triaxial loading in Figure 2.20 is 

demonstrated in Figure 2.21. The points A, B, C, and D on the triaxial stress path is 

shown in Figure 2.21 a), b), c), and d), respectively. The loading until the stresses reach 

point A is elastic. This is modeled using the translated stress space. After point A, a 

simultaneously translation and inflation of the yield surface fp takes place. This is demon- 
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Figure 2.21: Location and size of the yield surfaces in Figure 2.20 during the triaxial 
stress path shown. a) Point A, b) Point B, c) Point C, d) Point D. 
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strated in Figure 2.21 b) where the cementation surface has increased. The parameter HB 

is decreased by an equal amount, resulting in a decrease of the tensile strength according 

to equation (2.10) in which k is assumed to be constant. The surface of broken 

cementation, fpb, and the yield surface controlling the strains, fp, are both translated to a 

new origin, defined by the reduction in tensile strength. At point C, no tensile strength is 

left as the cementation is broken and the three yield surfaces are identical. At point D, 

only one yield surface remains, fp and the behavior is modeled as a cohesionless soil.

 The model presented by Nova et al. (2003) predicted the behavior of Gravina 

Calcarenite during isotropic compression, triaxial tests at low and high confining 

pressure, and oedometric loading. Furthermore, the model was used to predict the 

degradation due to weathering of cemented silica sand.  

2.3.3 Previous Modeling of Cross-Anisotropy 

The Single Hardening Model has previously been expanded to incorporate cross-

anisotropy in granular materials (Abelev et al. 2007). The model incorporated rotation of 

the principal stress space to account for cross-anisotropy. After rotation, the model 

operated isotropically within the rotated stress space. The failure surface was rotated 

individually from the yield and the plastic potential surfaces. Furthermore, the rotation of 

the yield surface and plastic potential surface was stress-dependent, meaning the 

anisotropy decreased as the confining pressure increased. The rotation of the plastic 

potential surface is demonstrated in Figure 2.22. 
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Figure 2.22: Rotation of plastic potential surface to account for 
cross-anisotropy. After Abelev et al. (2007). 
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2.3.4 Modeling of Elastic Cross-Anisotropy 

 Yu and Dakoulas (1993) developed a stress dependent model for the elastic 

behavior of cross-anisotropic soils. The expressions for the stress dependence of the 

moduli are derived on the basis of conservation of energy during elastic loading. With 

that, they follow the idea of Lade and Nelson (1987), who developed an isotropic elastic 

model based on the same principles. The cross-anisotropic model makes use of five 

parameters to describe the behavior. However, under isotropic conditions, the cross-

anisotropic model reduces down to the isotropic model. The isotropic elastic model is 

presented in detail in section 3.1.1. 

2.3.5 Describing Anisotropy with a Microstructural Tensor 

 Several authors have incorporated a cross-anisotropic microstructural tensor into 

the constitutive relations (e.g. Oda and Nakayama 1989, Muhunthan et al. 1996, 

Pietruszczak and Mroz 2000, 2001, Pietruszczak et al. 2002, Li and Dafalias 2002, 2004, 

Dafalias et al. 2004, Hicher and Chang 2006, Lade 2007, 2008). The tensor describes the 

three-dimensional variation of microstructural cross-anisotropic features such as 

distribution of voids, fissures, grain contacts or cementation. In isotropic soil, the 

microstructural features are distributed evenly over a sphere. In cross-anisotropic soil, the 

microstructural features vary depending on the direction. This is demonstrated in Figure 

2.23 where the distribution of contact orientations with different degrees of cross-

anisotropy is shown.  
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The fabric tensor is often based on a probability density function of either the 

solid phase (grain orientation, grain contacts) or the void inside a representative 

elemental volume. To couple the macroscopic behavior to microstructural features, 

Muhunthan and Chambau (1997) determined the void fabric tensor by stereological 

techniques. They concluded that the void fabric added additional information about the 

cross-anisotropy not obtainable from the grain orientation fabric tensor.  

A phenomenological approach, followed by e.g. Pietruszczak and Mroz (2000, 

2001), is to describe the combined effect of different cross-anisotropic microstructural 

features in one tensor derived from the macroscopic behavior. According to Voyiadjis 

and Kattan (2007), in damage mechanics this approach leads to fabric tensors derived 

from sound thermodynamic principles.  

The fabric tensor approach to cross-anisotropy have been applied to the elastic 

behavior (e.g. Hicher and Chang 2006), the failure surface (e.g. Pietruszczak and Mroz 

2000, 2001, Lade 2007, 2008), and the yield surface/plastic potential function (e.g. 

Muhunthan et al. 1996, Pietruszczak et al. 2002, Dafalias et al. 2004). 
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Figure 2.23: Distribution of contact orientations with different 
degrees of cross-anisotropy. After Hicher and Chang (2006). 
 

 



3. Review of The Single Hardening Model 

3.1 The Single Hardening Model 

The Single Hardening Model introduced by Lade and Kim (1988a, 1988b) and Kim and 

Lade (1988) have predicted the behavior of sand, clay and concrete under a variety of 

loading conditions. The model is composed of an elastic model, a failure criterion, a 

plastic potential function, and a yield function with a work hardening/softening relation. 

For normally consolidated, cohesionless soil eleven parameters are required to fully 

describe the behavior. All parameters needed to calibrate the model can be found from 

standard experiments consisting of three triaxial tests and one isotropic compression test.  

 The total strain increment, dεij is divided into an elastic part, e
ijdε  and a plastic 

part, p
ijdε . They are calculated separately and then summed as expressed in equation (3.1). 

e p
ij ij ijdε  = dε  + dε  (3.1) 

 All components in the model are expressed in terms of the stress invariants I1, I2, 

I3 and the second stress deviator invariant, 2J ,′  all of which are defined in equation (3.2), 

(3.3), (3.4), and (3.5), respectively. 

1 xx yy zzI   =  σ  + σ  + σ′ ′ ′  (3.2) 

( )2 xx yy yy zz zz xx xy yx yz zy zx xzI   =  - σ σ  + σ σ  + σ σ  + τ τ  + τ τ  + τ τ′ ′ ′ ′ ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (3.3) 

( )
3 xx yy zz xy yz zx yx zy xz

xx yz zy yy zx xz zz xy yx

I   =  σ σ σ  + τ τ τ  + τ τ τ

         - σ τ τ  + σ τ τ  + σ τ τ

′ ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅

′ ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 (3.4) 
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( ) ( ) ( )2 2 2
2 xx yy yy zz zz xx

xy yx yz zy zx xz

1J   =  σ - σ  + σ - σ  + σ - σ  
6

          + τ τ  + τ τ  + τ τ

⎡ ⎤′ ′ ′ ′ ′ ′ ′⎢ ⎥⎣ ⎦
⋅ ⋅ ⋅

 (3.5) 

The direction of the normal and shear stresses ( xx yy zzσ ,  σ ,  σ ,′ ′ ′ xy yz zxτ ,  τ ,  τ ) are defined in 

Figure 3.1 where the first suffix refers to the direction of the normal to the plane on 

which the stress act, and the second suffix refers to the direction of the stress component 

itself. 

 In the following sections, the individual components of The Single Hardening 

Model are described along with the parameter determination process. The determinations 

of the required parameters are demonstrated for loose Santa Monica Beach Sand (e = 

0.810). The test results used for the parameter determination were obtained by 

Boonyachut (1977) in a study of the behavior of cohesionless soil during large stress 

reversals. Later, in section 3.3, the parameters determined for the loose Santa Monica 

Beach Sand will be used to predict the behavior of hollow cylinder torsion shear tests 

performed by Geiger (1979). The tests were performed on loose Santa Monica Beach 

Sand (e  0.806) with the purpose of studying large stress reversals and reorientation of 

the principal stresses. However, as the void ratio is a little lower in the torsion shear tests, 

the parameters derived from the triaxial tests would predict the behavior of sand with 

higher void ratio. Furthermore, the triaxial tests were performed with lubricated ends and 

the torsion shear tests were performed with rough ends. This produces higher apparent 

stiffness in the torsion shear tests (e.g. Rowe and Barden 1964). To overcome this 

difference in void ratio and boundary conditions, triaxial loading performed at the 

beginning of some of the hollow cylinder torsion shear tests were compared with the tri- 
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Figure 3.1: Stresses on a small cube. 
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axial tests. This is done in Figure 3.2, where the stress-strain relations from the tests are 

compared. The tests performed in the torsion shear apparatus with a confining pressure of 

200 kPa are initially stiffer than the tests performed in the triaxial apparatus at 240 kPa. 

The volume change from the torsion shear tests follows the same patters as the triaxial 

tests. The difference in stiffness is found to have no significant effect on most parameters 

determined, except the yield surface parameter α. To be able to predict the torsion shear 

tests, the parameter α defined in section 3.1.4, is determined using the stress-strain 

relations from triaxial loading during the torsion shear tests.  

 Triaxial tests on loose Santa Monica Beach Sand have previously been used for 

parameter determination for The Single Hardening Model e.g. Lade and Inel (1997) and 

Lade (2005). Some of the parameters determined here are different from those in the 

papers due to the reasons discussed above.  

3.1.1 Elasticity 

The elastic strains are calculated from Hooke’s law using a nonlinear variation of 

Young’s modulus developed by Lade and Nelson (1987). Young’s modulus is expressed 

in terms of stress invariants and given by: 

λ2 '
1 2

a 2
a a

I JE  =  M p  + R
p p

⎡ ⎤⎛ ⎞
⎢ ⎥⋅ ⋅ ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (3.6) 

in which M and λ are non-dimensional parameters and pa is atmospheric pressure in the 

same units as the stresses used in the calculations of I1 and '
2J  (defined in equation (3.2) 

and (3.5), respectively). The constant R is defined in equation (3.7): 
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Figure 3.2: Comparison between stress-strain relations on loose Santa Monica 
Beach Sand performed in torsion shear apparatus and triaxial apparatus. a) 
Stress-strain relation. b) Vertical strain vs. volumetric strain. 
 

 

 

 

a) 
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1 + υR  =  6
1 - 2υ

⋅  (3.7) 

in which υ is Poisson’s ratio, which is assumed independent of the stress state.  

 The elastic parameters are determined right after stress reversal during unloading-

reloading branches performed during the triaxial tests. The best results for the 

determination of Poisson’s ratio are achieved from the reloading branch. Equation (3.8) 

shows two different ways of calculating Poisson’s ratio: Either from the major and minor 

principal strains or from the slope of the vertical strain vs. volumetric strain curve.   

3 vol

1 1

Δε Δε1ν  =  -   =  1
Δε 2 Δε

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 (3.8) 

in which Δε1 and Δε3 are the increment in major and minor principal strain, respectively, 

and Δεvol is the incremental volumetric strain. For the development of the model used, 

Lade and Nelson (1987) examined the elastic properties of loose Santa Monica Beach 

Sand (e = 0.810) and found an average Poisson’s ratio of 0.26 with a variation of 0.06. As 

shown in Figure 3.3, the smaller data set analyzed here supports a value of Poisson’s ratio 

of 0.26.  

 The parameters M and λ require Young’s modulus, E to be determined after stress 

reversal, where the behavior is assumed elastic. The stress state at reversal is recorded 

and the stress term inside the parenthesis in equation (3.6) is calculated. By plotting 

Young’s modulus and the stress term on double logarithmic scales, as shown in Figure 

3.4, the parameters M and λ can be determined from the best fitted straight line as the 

value of the normalized Young’s modulus at unity and the slope, respectively. The values 

of M = 600 and λ = 0.27 determined by Lade and Nelson (1987) fits the smaller 
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Figure 3.3: Determined values of Poisson’s ratio for loose Santa Monica Beach 
Sand. 

 

 
Figure 3.4: Determination of elastic parameters λ and M for loose Santa Monica 
Beach Sand.  
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data set analyzed here. 

 Contours of constant Young’s modulus in principal stress space using the elastic 

parameters for loose Santa Monica Beach Sand are shown in Figure 3.5. The contours are 

found to be ellipsoidal in the triaxial plane and circular in the octahedral plane. 

Furthermore, the elastic model is found to be homothetic, meaning the contours do not 

change shape as they increase in size. 

3.1.2 Failure Criterion 

The failure criterion used was first presented by Lade (1977) and is expressed in terms of 

the first and the third stress invariants, I1 and I3 respectively: 

m3
1 1

n 1
3 a

I If   =   - 27   =  η
I p
⎡ ⎤ ⎡ ⎤

⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.9) 

in which η1 and m are non-dimensional parameters, pa is atmospheric pressure in the 

same units as the stresses used in the calculations of I1 and I3. The stress invariants, I1 and 

I3 are defined in equation (3.2) and (3.4), respectively.  

For the parameter determination, the stresses at failure are recorded and the terms 

inside the two parentheses in equation (3.9) are plotted on double logarithmic scales as 

demonstrated in Figure 3.6. The value of the best fitting straight line at unity, defines the 

parameter η1 and the slope corresponds to the parameter m. Values of η1 = 31.2 and m = 

0.095 fits the data. 

The low value of the exponent m, results in an almost straight failure line, when 

the failure surface is plotted in the triaxial plane. The plot of the failure surface in the 

triaxial plane and a plot of two octahedral planes are shown in Figure 3.7. 
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Figure 3.5: Contours of constant elastic modulus in a) triaxial and b) octahedral plane for 
loose Santa Monica Beach Sand. 

    

 
Figure 3.6: Determination of failure parameters m and η1 for loose Santa 
Monica Beach Sand.  
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Figure 3.7: Failure surface for loose Santa Monica Beach Sand in a) triaxial and b) 
octahedral planes. 
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3.1.3 Flow Rule and Plastic Potential Function 

The plastic strain increments, p
ijdε , are calculated from the flow rule in equation (3.10): 

pp
ij p

ij

g
dε   =  dλ

σ
∂

⋅
∂

 (3.10) 

where gp is a plastic potential function and dλp is a scalar factor of proportionality. The 

plastic potential function in The Single Hardening Model was developed by Kim and 

Lade (1988) and is given by: 

μ3 2
1 1 1

p 1 2
3 2 a

I I Ig   =  ψ    + ψ
I I p

⎡ ⎤ ⎡ ⎤
⋅ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.11) 

where Ψ1, Ψ2 and μ are dimensionless parameters, I1, I2, and I3 are the first, second, and 

third stress invariants defined in equation (3.2), (3.3), and (3.4), respectively. The 

constant pa is atmospheric pressure in the same units as the stresses used in the 

calculations of the stress invariants. By differentiating equation (3.11) with respect to the 

stresses, the derivatives become:  
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( ) ( )

( ) ( )

( ) ( )

( )

2 3
21 1

yy zz 1 yy zz yz2 2
2 3
2 3

21 1
zz xx 1 zz xx zx2 2

2 3
2 3

21 1
μ xx yy 1 xx yy xy2 2

2 3p 1
2 3

ij a 1 1
yz 1 xy zx xx yz2 2

2 3
2
1

zx 1 yz xy y2
2

I IG - σ σ  - ψ σ σ τ
I I

I IG - σ σ  - ψ σ σ τ
I I

I IG - σ σ  - ψ σ σ τ
I Ig I  =  

σ p I I2 τ  - 2ψ τ τ σ τ
I I

I2 τ  - 2ψ τ τ σ
I

+ −

+ −

+ −
∂ ⎡ ⎤

⎢ ⎥∂ ⎣ ⎦ −

−( )

( )

3
1

y zx 2
3

2 3
1 1

xy 1 zx yz zz xy2 2
2 3

Iτ
I

I I2 τ  - 2ψ τ τ σ τ
I I

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

−⎪ ⎪
⎩ ⎭

 (3.12) 

where 

( ) ( )
2
1 1

1 2
3 2 1

I I μG  =  ψ μ + 3  - μ + 2   ψ
I I I

+  (3.13) 

The scalar factor of proportionality, dλp introduced in equation (3.10) is related to the 

plastic work increment, dWp as shown in equation (3.14): 

p
p

p

dW
dλ   =  

μg
 (3.14) 

where the increment in plastic work, dWp is determined from the hardening and softening 

relations described in equation (3.21) and (3.25) respectively, gp is the plastic potential 

function described in equation (3.11), and μ is a parameter in the plastic potential 

function.  

 Two of the three parameters used for the plastic potential function need to be 

determined from triaxial compression tests. However, the parameter Ψ1 that controls the 

ratio between the triangular shape of the I3 term and the circular shape of the I2 term is 
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defined as a function of the failure parameter m as: 

-1.27
1ψ   =  0.00155 m⋅  (3.15) 

For the determination of the remaining parameters, ψ2 and μ, the incremental 

plastic strain ratio, defined in equation (3.16), is calculated by subtracting the incremental 

elastic strains from the measured strain increments. 

p
p 3

p
1

dεν   =  -
dε

 (3.16) 

in which νp is the incremental plastic strain ratio, p
3dε  is the increment in minor principal 

strain, and p
1dε  is the increment in major principal strain. By combining equation (3.12) 

with equation (3.10) the increment in major and minor plastic strains can be found. By 

substituting the results under triaxial conditions (σ2 = σ3) into equation (3.16), the two 

parameters, ψ2 and μ can be isolated as shown in equation (3.17):  

y x 2
1ξ   =  ξ ψ
μ

−  (3.17) 

where ξx and ξy are defined in equation (3.18) and equation (3.19), respectively. 

( ) ( )
3 4 3 2

p p 21 1 1 1
x 1 3 3 1 1 3 3 1p 2 2

2 3 3 2

I I I I1ξ   =  σ σ 2ν σ ψ σ σ ν σ 3ψ 2
1+ν I I I I

⎡ ⎤
+ + + + − +⎢ ⎥

⎣ ⎦
 (3.18) 

3 2
1 1

y 1
3 2

I Iξ   =  ψ
I I

−  (3.19) 

By calculating ξx and ξy for each increment, and making the ξx vs. ξy plot shown in Figure 

3.8, the parameters ψ2 and μ can be found. The intersection with the y-axis gives the 

negative value of ψ2 and the slope is equal to the inverse of μ. The parameters determined 

for loose Santa Monica Beach Sand: ψ2 = -3.74 and μ = 2.26.  
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Figure 3.8: Determination of parameters ψ2 and μ from triaxial compression 
tests. 
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 In Figure 3.9, the shape of the plastic potential surface defined in equation (3.11) 

is plotted in the triaxial and octahedral plane, using the parameters determined for loose 

Santa Monica Beach Sand. As the surfaces of constant elastic modulus (Figure 3.5), the 

plastic potential surfaces are homothetic. As a consequence, the characteristic line is a 

straight line in the triaxial plane.  

3.1.4 Yield Criterion and Work Hardening/Softening Relation 

The yield surface is defined as contours of constant plastic work, and the model uses a 

single isotropic yield function, defined by Lade and Kim (1988)a as: 

( ) ( )p p ij p pf   =  f σ f W   =  0′ ′′−  (3.20) 

where pf ′  describes the yield surface as a function of the stress state and pf ′′  describes the 

yield surface as a function of the plastic work. During hardening, the yield surface 

inflates according to equation (3.21): 

( )
h
p

p
p 1

a

W
f   =  27ψ 3

C p
⎛ ⎞′′ + ⎜ ⎟⋅⎝ ⎠

 (3.21) 

in which C and p are parameters used to model the plastic work during isotropic 

compression. The parameter ψ1 is defined in equation (3.15) and the parameter h is 

related to the shape of the yield surface. The hardening function, described in equation 

(3.20) is shown in Figure 3.10 along with the softening function that describes the 

relation between the yield surface and the plastic work after failure. 
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Figure 3.9: Plastic potential surfaces for loose Santa Monica Beach Sand in a) triaxial 
and b) octahedral plane. 

 

Figure 3.10: The relation between the hardening and softening functions. 
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 The plastic work is calculated as:  

{ }p p p p p p
p xx xx yy yy zz zz xy xy yz yz zx zxW   =  σ dε  + σ dε  + σ dε  + τ dγ  + τ dγ  + τ dγ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫  (3.22) 

in which the direction of the normal stresses (σxx, σyy, σzz) and the shear stresses (τxy, τyz, 

τzx) are defined in Figure 3.1. The incremental plastic strain in normal directions (dεxx, 

dεyy, dεzz) and the incremental plastic shear strains (dγxy, dγyz, dγzx) follow the same 

suffix convention as the stresses. The plastic strains are calculated by subtracting the 

elastic strains from the measured strains. For isotropic compression, equation (3.22) 

reduces to: 

{ }p
p c volW   =  σ dε⋅∫  (3.23) 

where σc is the confining pressure during isotropic compression and dεvol is the 

incremental volumetric plastic strain. With the plastic work and the stress state known, 

the parameters C and p are determined from an isotropic compression test. The plastic 

work is modeled as: 

p

1
p a

a

IW   =  C p
p

⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
 (3.24) 

Figure 3.11 shows the relation between the normalized first stress invariant and the 

normalized plastic work in a double logarithmic diagram. The parameter C is determined 

as the work at unity and the parameter p is the slope of the line.  

 During softening, the yield surface deflates iostropically and the softening 

function suggested by Lade and Kim (1988)a consists of an exponential decay function 

that replaces the hardening function at failure: 
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Figure 3.11: Determination of parameters C and p from isotropic compression 
test. 
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a

Wp-B
p

pf   =  A e′′ ⋅  (3.25) 

in which A and B are positive constants determined on the basis of the hardening curve at 

failure. The initial slope of the softening curve is equal to the negative slope of the 

hardening curve at failure, (Figure 3.10) and is controlled by the constants B and A 

defined in equation (3.26) and (3.27) respectively: 

B  =  p,f

p p,f

df 1
dW f

′′
⋅

′
 (3.26) 

a

Wp,f-B
p

p,fA  =  f e′ ⋅  (3.27) 

 The yield surface is expressed in terms of the stresses:  

h3 2
' q1 1 1
p 1

3 2 a

I I If   =  ψ   e
I I p

⎡ ⎤ ⎡ ⎤
⋅ − ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.28) 

in which h is a parameter to be determined and q is calculated as: 

( )
α Sq  =  

1 - 1 - α S
⋅

⋅
 (3.29) 

where α is a parameter to be determined and S is the stress level defined as: 

m3
n 1 1

1 1 3 a

f I I1S  =    =   - 27
η η I P

⎡ ⎤ ⎡ ⎤
⋅ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.30) 

in which fn is the expression for the failure surface defined in equation (3.9) and used at 

any stress state inside the failure surface. The stress level, S varies from zero at the 

hydrostatic axis to one on the failure surface. The hyperbolic expression between S and q 

in equation (3.29) results in the value of q varying from zero at the hydrostatic axis to one 

at failure. 
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 The yield surface being defined as a contour of constant plastic work is used in 

the determination of the parameter h. Two points, lying on the same yield surface, have 

the same value of '
pf . Point (A) is on the hydrostatic axis and point (B) is at failure. This 

can be expressed as: 

A B

h h3 2 3 2
q q1A 1A 1A 1B 1B 1B

1 1
3A 2A a 3B 2B a

I I I I I Iψ   e   =  ψ   e
I I p I I p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ − ⋅ ⋅ − ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.31) 

As the point A is on the hydrostatic axis, q = 0, and point B being at failure, results in q = 

1. Furthermore, the relation between the first, second and third stress invariants at 

hydrostatic stresses results in the following reduction of equation (3.31): 

[ ]
h h3 2

1A 1B 1B 1B
1 1

a 3B 2B a

I I I I27ψ 3   =  ψ   e
p I I p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ⋅ − ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3.32) 

from which h can be calculated as: 

( )
3 2
1B 1B

1 1
3B 2B

1A

1B

I Iln ψ   1 ln 27ψ 3
I I

h  =   
Iln
I

⎛ ⎞
⋅ − + − +⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.33) 

Once the parameter h is known, the variation of q during triaxial compression can be 

found by substituting equation (3.28) and (3.21) into (3.20) and solving for q. The result 

is shown in equation (3.34): 

h
p

p

a1
3 2 h
1 1 11
3 2 a

W
C p27ψ 3q  =  ln

I I Iψ
I I p

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⋅+ ⎝ ⎠⋅⎜ ⎟

⎜ ⎟⎛ ⎞− ⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠⎝ ⎠

 (3.34) 
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The variation of the stress level S as a function of q is shown in Figure 3.12. The 

parameter α is then determined from equation (3.35) using the value of q for S = 0.80.  

80

80

q1α  =  
4 1-q

⋅  (3.35) 

in which q80 is the value of q at a stress level S of 0.80. 

 The line in Figure 3.12 is the relation between S and q defined in equation (3.29) 

and using the value of α = 0.34 determined for loose Santa Monica Beach Sand. Note that 

the parameter α is determined from triaxial loading in three torsion shear tests. The 

reason for this is the difference in stiffness between the triaxial tests and the torsion shear 

tests. This difference only affects the determination of the yield surface parameter α. 

Using the parameters determined for loose Santa Monica Beach Sand, contours of 

the yield surface in the triaxial and octahedral plane have been plotted in Figure 3.13.  

3.1.5 Material with Cohesion 

For materials with cohesion an extra parameter, a, is introduced. This parameter is added 

to the normal stresses, to translate the principal stress space along the hydrostatic axis: 

ij ij ij aσ   =  σ  + δ a p⋅ ⋅  (3.36) 

in which σij is the stresses to be translated, δij is Kronecker’s delta (δij = 1 for i = j, δij = 0 

for i ≠  j), a is a dimensionless parameter, and pa is atmospheric pressure in the same 

units as σij. The translation should take place before parameter determination, and the 

predictions, should take place in the translated coordinate system as well. A pre-

established yield surface ensures positive plastic work from the beginning of compressive 

loading (Figure 3.14). 



 74

 

 
Figure 3.12: Relation between q and stress level S, for 
determination of the parameter α.  

 

 
Figure 3.13: Yield surfaces for loose Santa Monica Beach Sand in a) triaxial and b) 
octahedral plane. 
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Figure 3.14: Translation of the coordinate system along the hydrostatic axis 
allows prediction of material with cohesion.   
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3.1.6 Summary of Parameters Determined 

The parameters determined for Santa Monica Beach Sand, are summarized in Table 3.1 

and Table 3.2 along with parameters determined for F1-Sand, L1-Sand, L2-Sand, L8-

Sand from and Nevada Sand. The test data for the tests on F1-Sand, L1-Sand, L2-Sand, 

and L8-Sand are acquired from Lade (1992) and repeated in Appendix E. The test data 

for Nevada Sand are from Yamamuro and Lade (1999).  

3.2 Suggested Improvements 

3.2.1 Hardening Parameters 

The behavior of silty sand in drained triaxial compression differs from regular sand by 

showing large contractive volumetric strains. Furthermore, very little variation in the 

volumetric response with confining pressure is experienced (Yamamuro and Lade 1997, 

Lade and Yamamuro 1997). An example of this behavior is shown in Figure 3.15 where 

the stress-strain relationship for three triaxial tests on Nevada 50/200 Sand with 20 % 

fines is shown. The 50/200-designation refers to the particle sizes being between No. 50 

and No. 200 sieves. A small amount of dilation is observed at larger strains. 

 The presence of fines in the soil was identified as the likely cause of this behavior. 

The silt grains and the sand grains form a structure where some of the silt grains are 

interlocked between the sand grains. The silt grains separating the sand grains, as shown 

in Figure 3.16 a), are believed to significantly affect the volumetric behavior of the soil. 

Figure 3.16 b) shows the effect of loading, where the soil structure collapses as the silt 

grains fill up the voids in the sand. After the collapse of the structure, the sand behaves  
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Table 3.1: Elastic, failure, and hardening parameters determined for different sands.  
Material ν M λ m η1 C p 
Santa Monica Beach Sand 0.26 600 0.27 0.095 31.2 0.000180 1.55 
F1-Sand 0.14 350 0.40 0.23 53 0.000028 1.92 
L1-Sand 0.23 300 0.38 0.28 90 0.000045 1.89 
L2-Sand 0.23 400 0.37 0.37 140 0.000050 1.69 
L8-Sand 0.23 400 0.37 0.19 67 0.000170 1.41 
Nevada Sand 0.23 371 0.25 0.071 20.0 0.00018 2.60 
 

Table 3.2: Plastic potential and yield parameters determined for 
different sands. *The yield parameters h and α were not unique 
values. This issue is addressed in section 3.2. 
Material ψ2 μ h α 
Santa Monica Beach Sand -3.74 2.26 0.60 0.34 
F1-Sand -3.17 2.23 0.73 0.58 
L1-Sand -3.17 2.31 0.78 0.58 
L2-Sand -3.09 2.29 0.75 1.00 
L8-Sand -3.21 2.04 0.60 0.41 
Nevada Sand -4.07 2.29 N/A* N/A* 
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Figure 3.15: Observed behavior of Nevada 50/200 Sand with 20 % fines. a) 
Stress-stain relation. b) Volume change relation. From Yamamuro and Lade 
(1999). 
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Figure 3.16: Schematic diagram showing silty sand a) deposited in a loose state 
with sand grains separated by silt grains and b) the silt grains moved into the 
void spaces by applied stresses, causing large contraction and static 
liquefaction. After Yamamuro and Lade (1997).  
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similar to dense sand. A consequence of the densification is the dilation experienced at 

large strains. 

 An attempt to model the behavior of silty sand with The Single Hardening Model 

was done by Yamamuro and Lade (1999), where the three triaxial tests in Figure 3.15 

were predicted. This was done by a modification to the yield criterion and the work 

hardening law. However, the equations used for the parameter determination, later turned 

out to contain an error, rendering the modified parameter determination impossible.  

 The decision to modify the yield surface was based on the variation of the yield 

surface parameters determined for Nevada 50/200 Sand. The parameter h varied from 

0.62 in the triaxial test with the lowest confining pressure to 1.06 in the test with the 

highest confining pressure, with an average of 0.82. Using the average value of h = 0.82 

results in the variation between q and S shown in Figure 3.17. There is no unique relation 

between q and S for the three tests. At low confining pressures, a maximum value of 0.59 

for the stress level S is reached when q is equal to one. The q-S relation at the 

intermediate confining pressure is S-shaped rather than the hyperbolic variation expected. 

At high confining pressures S reaches unity while q is equal to 0.66.  

 Because the shape of the yield surface in The Single Hardening Model is defined 

as a contour of constant plastic work, it is possible to indicate the shape from the triaxial 

tests. The plastic work during each of the triaxial tests (and the isotropic loading before 

shearing) is calculated. Based on the work calculated, four contours of constant plastic 

work are shown in Figure 3.18. The first surface, indicated by the black diamonds is 

defined by the plastic work produced at the end of isotropic loading in the triaxial test  
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Figure 3.17: Variation between q and S for three triaxial 
tests on Nevada 50/200 Sand render the determination of 
yield surface parameter α impossible. 
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Figure 3.18: Contours of constant plastic work used to determine the shape of the 
yield surface.  
 

 

Figure 3.19: Relation between plastic work, Wp and fp used for determination 
of parameters C and p. 
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with the highest confining pressure. The normalized plastic work has a value of 0.00265. 

The succeeding surfaces all have the plastic work increased by a factor of 3. The contours 

indicated would suggest a long flat yield surface. 

 The isotropic compression test used to determine the parameters C and p come 

from the isotropic loading before shearing of the triaxial test with the highest confining 

pressure. Comparing the amount of plastic work produced during the isotropic 

compression test with the plastic work produced at failure gives ratios of 0.024, 0.014, 

and 0.008 for the tests with the lowest, intermediate, and highest confining pressures, 

respectively. This means that the isotropic work relation used to determine the parameters 

C and p, at best represents 2.5 % of the work produced during triaxial loading.  

  Another way to determine the work-hardening parameters C and p, along with 

the yield surface parameters h and α, is from the relation between the plastic work, Wp 

and the value of fp, using a plot similar to Figure 3.10. The procedure requires a few 

iterations but can be made relatively simple using a spreadsheet. The values of C and p 

are estimated, and the parameters h and α are determined as usual (average values are 

used as the variation is great during the first iterations). The relation between the plastic 

work, Wp and pf ′′  is plotted using equation (3.21). The plastic work during the triaxial 

tests are determined and the value of pf ′  is calculated using the determined values of h 

and α, and equation (3.28), (3.29), and (3.30). The work-hardening relations from each of 

the three triaxial tests during hardening should all coincide. The optimum result for 

Nevada 50/200 Sand is shown in Figure 3.19. The results from the triaxial tests are found 

to coincide with the isotropic work-hardening relation for values of C* and p* equal to 



 84

0.0015 and 0.70, respectively. The suffix * is added to indicate the parameters being 

determined from the triaxial tests.  

Using C* and p* in the parameter determination of the yield surface parameters, h 

becomes 0.22 for all three tests. The relation between q and S is plotted in Figure 3.20 

and reveals a value of α equal to 0.60.  

 Using the yield surface parameters (h = 0.22 and α = 0.60) determined using C* 

and p*, the shape of the yield surface in the triaxial plane in shown in Figure 3.21. The 

shape is long and flat, as indicated by the constant work contours in Figure 3.18.  

 The parameters C* and p* would suggest a lower rate of work produced than that 

originally obtained form the isotropic compression of the triaxial test with the highest 

confining pressure. This can be seen in Figure 3.22 where the plastic work obtained 

during the isotropic compression is compared with the rate obtained from C* and p*. The 

two lines are found to cross each other at a normalized isotropic stress of 1.02 (I1 = 3.06). 

The plastic work produced at isotropic stresses lower than 1.02, is found to be higher 

using C* and p*, but since the plastic work only represented between 0.0 and 2.5 % of the 

total work, the implications by using the parameters C* and p* for prediction of the 

triaxial tests are insignificant. This can be seen in Figure 3.23 where the observed and 

predicted behavior of Nevada 50/200 Sand is presented. The stress-strain relations and 

the unusual, similar volumetric response for the three different confining pressures are 

predicted with good accuracy. 

Isotropic compression tests on silty Nevada Sand with a similar gradation curve as 

Nevada 50/200 Sand but different void ratios indicate high compressibility at low  
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Figure 3.20: Determination of yield surface parameter 
α for Nevada 50/200 Sand. 
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Figure 3.21: The shape of the yield surface for Nevada 50/200 Sand plotted in 
the triaxial plane. 
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Figure 3.22: Comparison of the two different pair of isotropic hardening 
parameters determined for Nevada 50/200 Sand. Parameters C and p are 
determined from the measured isotropic compression test, whereas the 
parameters C* and p* are determined from iteration of the triaxial tests. 
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Figure 3.23: Observed and predicted behavior of Nevada 50/200 Sand. a) 
Stress-stain relation. b) Volume change relation. 
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confining pressures (Yamamuro and Lade 1997). The high compressibility at low 

confining pressures was explained by collapse of the sand-silt structure as discussed 

above. The high compressibility was experienced at normalized isotropic stresses below 

approximately 1.0-1.5 where the isotropic compression test of Nevada 50/200 Sand took 

place. This high compressibility would result in a high rate of work produced. As a result, 

the work produced during isotropic compression at normalized confining pressures above 

1.0-1.5 cannot be modeled using the same parameters as below 1.0-1.5. This is 

demonstrated in Figure 3.24 where the isotropic compression test is back predicted using 

both C and p, and C* and p*. The yield parameters determined using C* and p* were used 

in both cases, as it was assumed the shape of the yield surface did not change. The back 

prediction of the isotropic loading is done most accurately using C and p. However, at 

higher confining pressures, the parameters C* and p* would produce the most accurate 

prediction.  

A simple sway to overcome the problem of the variation in work hardening 

parameters is to define an initial hardening yield surface. Inside this hardening surface, 

the parameters C and p are used, and outside the surface C* and p* are used. The shape of 

the hardening yield surface is defined using the parameters of the ordinary yield surface, 

and it intersects the hydrostatic axis at a normalized pressure of 1.02. Using this 

modification, the prediction of the isotropic compression yields the result shown in 

Figure 3.25. An abrupt bend in the relation between the volumetric strain and the 

normalized confining pressure reveals the transition between the two sets of parameters.  
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Figure 3.24: Observed and predicted behavior of Nevada 50/200 Sand during 
isotropic compression. 
 

 

 
Figure 3.25: Predicted behavior of Nevada 50/200 Sand during isotropic 
loading, with C and p used inside a hardening yield surface, and C* and p* used 
outside the surface. 
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A similar bend is experienced when using the model to predict the triaxial tests, and no 

improvement over just using C* and p* is experienced in these tests. To avoid the bend a 

smooth transition from the high rate of work produced at low pressures to the lower rate 

at higher pressures is needed. This would make it possible to predict the isotropic 

compression at low pressures. It would, however, require a work-hardening relation 

capable of containing the change in compressibility experienced. 

 The hardening parameters and yield surface parameters for Santa Monica Beach 

Sand, F1-Sand, L1-Sand, L2-Sand and L8-Sand have all been tested by the procedure 

described above. Only L1-Sand showed significantly different results, with the new 

parameters indicated in Table 3.1. The improvement obtained for the prediction of the 

behavior of L1-Sand by using the new parameters, can be seen in Figure 3.26 and Figure 

3.27, where the triaxial tests are predicted using both the originally determined and the 

newly determined yield and hardening parameters. The predicted stress-strain behavior is 

improved using the new parameters whereas the volumetric response is somewhat 

improved at low confining pressures, but still underestimate the contraction at high 

confining pressures. This is addressed again in more detail in section 3.2.2 where the 

plastic potential function is reviewed.  

 The suggested method for obtaining the parameters required to successfully 

predict the behavior of silty sand, raises some additional questions: (1) when to use the 

modified method and (2) what to do when predicting isotropic compression tests on silty 

sand.  
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Table 3.3: Plastic potential and yield parameter determined.  
Material C p h α 
Nevada Sand 0.00150 0.70 0.22 0.60 
L1-Sand 0.00014 1.74 0.84 0.58 
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Figure 3.26: Comparison of predicted behavior of L1-Sand at low confining 
pressures using C and p determined from isotropic compression and from the 
triaxial tests. a) Stress-strain relation. b) Volume change. 
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Figure 3.27: Comparison of predicted behavior of L1-Sand at high confining 
pressures using C and p determined from isotropic compression and from the 
triaxial tests. a) Stress-strain relation. b) Volume change. 
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The method should definitely be used if no isotropic compression test is available. If an 

isotropic test with no substantial amount of work is available, it is recommended to use 

the triaxial tests for obtaining the parameters C and p. A substantial amount of work 

means work in the same order of magnitude as the work produced at failure in the triaxial 

tests. Finally it is recommended to use the method, if the scatter in the parameters h and α 

makes an unambiguous determination difficult.  

The prediction of isotropic compression tests with the transition from high 

compressibility at low confining pressures, to lower compressibility at higher confining 

pressures, would require further study of the transition and ultimately a new isotropic 

work-hardening rule. 

3.2.2 Plastic Potential 

When predicting the volumetric response from triaxial tests performed over a large range 

of confining pressures, The Single Hardening Model produce less volumetric contraction 

than observed at high confining pressures. This can be seen in Figure 3.26 and Figure 

3.27 where triaxial tests on L1-Sand are predicted using The Single Hardening Model. 

The problem was addressed in a report predicting the behavior of F1-Sand, L1-Sand, L2-

Sand and L8-Sand with an improved plastic potential function (Lade 1992). The 

suggested modification is evaluated and compared with other possible modifications.  

It was observed that the parameter determination for the plastic potential 

parameters varied as a function of the confining pressure. This is demonstrated in Figure 

3.28 where the determination of ψ2 and μ is shown for L2-Sand. There are two simple  
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Figure 3.28: Determination of plastic potential parameters ψ2 and μ for L8-Sand. 
 

 

Figure 3.29: a) Parameter determination where the plastic potential parameter ψ2 varies 
with confining pressure. b) Parameter determination where the plastic potential parameter 
μ varies with confining pressure. 
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variations of the plastic potential parameters that can result in the observed behavior, (1) 

the parameter ψ2 increases with confining pressure as shown in Figure 3.29 a) where the 

line is parallel shifted or (2) the parameter μ increases with confining pressure as shown 

in Figure 3.29 b) where the line spreads out as a fan with increasing μ. A combination of 

the two cases is also a possibility.  

To examine how the parameters vary with confining pressure, the parameters are 

determined for each of the triaxial tests individually, and plotted as a function of the 

confining pressure. This is done for F1-Sand, L1-Sand, L2-Sand and L8-Sand in Figure 

3.30 and Figure 3.31 for the parameters ψ2 and μ, respectively. There is no common 

variation of the parameter μ as a function of the confining pressure. L8-Sand and L2-

Sand show a tendency towards increasing μ while F1-Sand and L1-Sand have high values 

of μ at low and high confining pressures with a decrease in the mid range. The parameter 

ψ2 increases with confining pressure for all the examined sands. Based on Figure 3.30 

and Figure 3.31 the variation of ψ2 with confining pressure seams the most likely 

solution.  

 The solution is to let the parameter ψ2 vary with the first stress invariant. Lade 

(1992) suggested replacing the parameter ψ2 with a function varying linearly with the 

first stress invariant I1, as shown in equation (3.37): 

1
2 2,0

a

Iψ   =  ψ b
p

+ ⋅  (3.37) 

in which ψ2,0 is the limiting value of ψ2 at a confining pressure of zero, b is a new 

positive parameter defining the variation with the first stress invariant I1 and pa is atmos- 
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Figure 3.30: Variation of plastic potential parameter μ with confining pressure 
for F1-Sand, L1-Sand, L2-Sand and L8-Sand. 
 

 

 
Figure 3.31: Variation of plastic potential parameter ψ2 with confining pressure 
for F1-Sand, L1-Sand, L2-Sand and L8-Sand. 
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pheric pressure in the same units as the stresses used in the calculations of I1. Due to the 

condition of reversibility, there is a lower limit to the parameter ψ2. This limit determined 

by Kim and Lade (1988) is used to define ψ2,0: 

( )2,0 1ψ   =  - 27 ψ 3⋅ +  (3.38) 

in which ψ1 the parameter defined in equation (3.15). 

The variation of the parameter ψ2 with confining pressure in Figure 3.31 shows a 

tendency towards a non linear relationship. To obtain a better fit, two other variations 

have been tested: Cubic root and logarithmic function as shown in equation (3.39) and 

(3.40), respectively. 

1
3

1
2 2,0

a

Iψ   =  ψ b
p

⎛ ⎞
+ ⋅⎜ ⎟

⎝ ⎠
 (3.39) 

1
2 2,0

a

Iψ   =  ψ b ln 1
p

⎛ ⎞
+ ⋅ +⎜ ⎟

⎝ ⎠
 (3.40) 

in which ψ2,0 is the parameter defined in equation (3.38), and b is a positive parameter. I1 

is the first stress invariant defined in equation (3.2) and pa is atmospheric pressure in the 

same units as the stresses used in the calculations of I1. To test which function would 

potentially be the best fit, a linear regression between ψ2 and the I1-term have been 

performed. The values of the coefficient of determination, R2 can be seen in Table 3.4. 

The logarithmic function shows superior fit for F1-Sand and L1-Sand, with the linear 

variation having the lowest value of R2. L2-Sand shows the opposite result, with the 

linear fit being the best. L8-Sand shows low values of the coefficient of determination, 

independent of the function used. The highest average is the logarithmic function, and  
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Table 3.4: Coefficient of determination, R2 for the three possible 
variations of parameter ψ2 with first stress invariant I1. 
Material Linear Cubic root Logarithmic function 
 equation (3.37) equation (3.39) equation (3.40) 
F1-Sand 0.56 0.83 0.93 
L1-Sand 0.68 0.91 0.97 
L2-Sand 0.70 0.68 0.64 
L8-Sand 0.54 0.53 0.54 
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this function is therefore compared with the linear function in the evaluation presented 

here.  

Combining the linear variation of ψ2 in equation (3.37) with the plastic potential 

function in equation (3.11) results in the new plastic potential function: 

μ3 2
1 1 1 1

p 1 2,0
3 2 a a

I I I Ig   =  ψ ψ b
I I p p

⎡ ⎤ ⎡ ⎤
⋅ − + + ⋅ ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (3.41) 

Using the logarithmic function in equation (3.40), the new plastic potential function 

becomes: 

μ3 2
1 1 1 1

p 1 2,0
3 2 a a

I I I Ig   =  ψ ψ b ln 1
I I p p

⎡ ⎤⎛ ⎞ ⎡ ⎤
⋅ − + + ⋅ + ⋅⎢ ⎥⎜ ⎟ ⎢ ⎥

⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
 (3.42) 

 The condition of reversibility applied to the plastic potential functions in equation 

(3.41) and (3.42) results in the parameters μ and b having to be positive. The calculations 

leading to this is demonstrated in Appendix A. The scalar factor of proportionality, dλp in 

equation (3.14) gets replaced with: 

p
p μ+1

1
p

a

dW
dλ   =  

Iμ g b
p

⎛ ⎞
⋅ + ⎜ ⎟

⎝ ⎠

 
(3.43) 

for the linear function and  

p
p μ+1

1
p

1 a a

dW
dλ   =  

Ibμ g
I + p p

⎛ ⎞
⋅ + ⎜ ⎟

⎝ ⎠

 
(3.44) 

for the logarithmic function. To calculate the strains (using the flow rule in equation 

(3.10)) the derivative of the plastic potential functions with respect to the stresses needs 
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to be calculated. This is done in Appendix A, and in both the linear and the logarithmic 

version, the derivatives can be summarized as in equation (3.12).  The definition of G in 

equation (3.13) changes, and for the linear version it becomes: 

( ) ( ) ( )
2
1 1

1 2,0
3 2 1 a

I I 1 bG  =  ψ μ 3 μ 2 ψ μ μ 1
I I I p

⋅ + ⋅ − + ⋅ + ⋅ ⋅ + + ⋅  (3.45) 

For the logarithmic version G becomes: 

( ) ( )
2
1 1 1

1 2,0
3 2 a 1 1 a

I I I 1 bG  =  ψ μ + 3   μ + 2  + μ ψ  + b ln 1
I I p I I + p

⎛ ⎞⎛ ⎞
⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.46) 

Following the same procedures as described in section 3.1.3, the parameter 

determination requires calculation of ξx and ξy. The calculation of ξx remains the same as 

in equation (3.18) whereas ξy becomes: 

3 2
1 1

y 1 2,0
3 2

I Iξ   =  ψ ψ
I I

− +  (3.47) 

for both the linear and the logarithmic version. The relation between ξx and ξy replacing 

equation (3.17) becomes:  

1
y x

a

I1 1ξ   =  ξ b 1
μ p μ

⎛ ⎞
⋅ − ⋅ ⋅ +⎜ ⎟

⎝ ⎠
 (3.48) 

for the linear version, and 

( )
1

y x
a 1 a

I1 1ξ   =  ξ b ln 1
μ p μ I + p

⎡ ⎤⎛ ⎞
⋅ − + +⎢ ⎥⎜ ⎟ ⋅⎢ ⎥⎝ ⎠⎣ ⎦

 (3.49) 

for the logarithmic version. The relation between ξx and ξy is not linear, but the deviation 

caused by the second term is negligible. By plotting the relation between ξx and ξy the 
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slope yields the inverse of μ. Once μ is known, b can be calculated using equation (3.50) 

for the linear function and equation (3.51) for the logarithmic function: 

x y

1

a

1 ξ ξ
μb  =  
I 1 1
p μ

⋅ −

⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠

 (3.50) 

  

( )

x y

1

a 1 a

1 ξ ξ
μb  =  

I 1ln 1
p μ I + p

⋅ −

⎛ ⎞
+ +⎜ ⎟ ⋅⎝ ⎠

 (3.51) 

The determination of the parameter b yields the best results, when determined from the 

triaxial compression tests with the highest confining pressures.  

 To compare the models for the plastic potential, the proposed expressions have all 

been implemented in The Single Hardening model and used for prediction of the 

behavior of F1-Sand, L1-Sand, L2-Sand, and L8-Sand. The predictions can be found in 

Appendix C. The linear version proposed by Lade (1992) yields the best results. Both the 

cubic root and the logarithmic function produce too much contraction at high confining 

pressures. A comparison of the new plastic potential function with the original function 

for L8-Sand can be seen in Figure 3.32 and Figure 3.33.  

The shapes of the new linear version of the plastic potential function and the 

original function are compared in the triaxial plane in Figure 3.34. The new plastic 

potential surfaces are not homothetic. At low confining pressures, the shape of the new 

plastic potential function is long and flat, and as it inflates, it changes size until it starts to 

exceed the original version at high confining pressures. The octahedral plane shown in  
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Figure 3.32: Comparison of the new plastic potential function with the original 
plastic potential function on the prediction of the behavior of L8-Sand at low 
confining pressures. a) Stress-strain relation. b) Volume change.  
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Figure 3.33: Comparison of the new plastic potential function with the original 
plastic potential function on the prediction of the behavior of L8-Sand at high 
confining pressures. a) Stress-strain relation. b) Volume change.  
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Figure 3.34: The shape of the new plastic potential function compared with the shape of 
the original function in the triaxial plane. 
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Figure 3.35: The shape of the new plastic potential function compared with the 
shape of the original function in the octahedral plane. 
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Figure 3.34 marks the plane in which the octahedral shapes are compared in Figure 3.35. 

There is no observable change in shape in the octahedral plane, because it is minimal. 

The change in prediction of cubical triaxial tests due to change in octahedral shape is 

therefore negligible. 

 Table 3.5 gives a summary of the new plastic potential parameters determined.  

3.2.3 Softening 

The softening function suggested by Lade and Kim (1988a) predicts the behavior of soil 

in softening with good accuracy. However, to be able to predict shear banding, a 

smoother transition around failure is desired. The prediction of the strain for L2-Sand 

shown in Figure 3.36 demonstrates the sometimes abrupt transition at failure. To ensure a 

smooth transition, a softening function controlling the work prior to failure is desirable.  

 A sketch of the desired softening function is shown in Figure 3.37, along with the 

hardening function for The Single Hardening Model described in equation (3.21). Three 

values of the hardening-softening function, ''
pf  are of interest: (1) at cut-off, where the 

softening function takes over from the hardening function, ''
pf  is equal to ''

p,95f , (2) at 

failure, ''
pf  is equal to ''

p,ff , and (3) ''
pf  is equal to ''

p,rf  when the residual strength is reached. 

Similarly, three values of plastic work are of interest: (1) at cut-off, Wp is equal to Wp,95, 

(2) at failure, Wp is equal to Wp,f, and (3) the peak value of the softening function Wp,peak. 

 There are five boundary conditions to the softening function. At cut-off, where the 

softening function takes over from the hardening function, the value and slope of the 

softening function must be equal to the value and slope of the hardening function. These  
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Table 3.5: Plastic potential parameters determined. 
Material b μ 
Santa Monica Beach Sand 0.005 2.26 
F1-Sand 0.0005 2.11 
L1-Sand 0.0007 2.23 
L2-Sand 0.00085 2.06 
L8-Sand 0.0009 1.98 
Nevada Sand 0.020 2.21 
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Figure 3.36: Predicted strain for L2-Sand. 
 

 

 
Figure 3.37: Modeling of work-hardening and softening. 
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conditions are defined in equations (3.52) and (3.53). The peak value of the softening 

function must be equal to the peak at failure, as defined in equation (3.54). Furthermore, 

the slope of the softening function at peak is zero, as defined in equation (3.55). Finally, 

as the work goes towards infinity the softening function goes toward the residual strength 

(equation (3.56)). 

'' ''
ph p,95 ps p,95f (W )  =  f (W )  (3.52) 

'' ''
ph p,95 ps p,95

p p

df (W ) df (W )
 = 

dW dW
 (3.53) 

'' ''
ps p,peak ph,ff (W )  =  f  (3.54) 

''
ps p,peak

p

df (W )
 = 0

dW
 (3.55) 

'' ''
ps p,rf  f→  for pW  → ∞  (3.56) 

The suggested function for softening: 

( ) SS
DB''

ps S p S p p,95 Sf   =  A W exp C W W  + E⎡ ⎤⋅ ⋅ ⋅ −⎢ ⎥⎣ ⎦
 (3.57) 

in which AS, BS, CS, DS, and ES are constants derived from the boundary conditions in 

equation (3.52) to (3.56). The constants ES, BS, AS, DS, and CS are defined in equation 

(3.58), (3.59), (3.60), (3.61), and (3.62), respectively. The derivation of the parameters 

can be seen in Appendix B. 

ES  =  ''
p,rf  (3.58) 
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''
ph,95

p95
p

S ''
ph,95 S

df
W

dW
B   =  

f E

⋅

−
 (3.59) 

AS  =  
S

''
ph,95 S

B
p,95

f E
W

−
 (3.60) 

( )

S

S p,95 p,peak
S ''

ph,f S
p,peakB

S p,peak

B W W
D   =  

f E
ln W

A W

⋅ −

⎡ ⎤−
⋅⎢ ⎥⋅⎢ ⎥⎣ ⎦

 
(3.61) 

( ) S

S
S D -1

S p,peak p,95 p,peak

 BC   =  
D W W W

−

⋅ − ⋅
 (3.62) 

 The suggested softening function in equation (3.57) does not provide a direct 

calculation of the work. As a result, the work produced needs to be calculated 

numerically. 

 Three parameters need to be defined for the calculation of the constants AS, BS, 

CS, DS, and ES. The first parameter, is the value of the hardening function at cut-off, ''
p,95f . 

Good results have been achieved using the value described in equation (3.63):  

'' ''
p,95 p,ff   =  0.95 f⋅  (3.63) 

The second parameter is the work at the peak of the softening function, Wp,peak. The best 

fits have been found using a value of Wp,peak described in equation (3.64): 

p,peak p,fW   =  1.15 W⋅  (3.64) 

The third parameter is the value of the softening function at the residual strength, ''
p,rf . 

The characteristic state, described by the rate of volumetric change being equal to zero, is 
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suggested being used for the residual strength. The three dimensional shape of the 

characteristic state surface was examined for dense Santa Monica Beach Sand by Abelev 

(2001). The surface was found to be a straight line in the triaxial plane and having an 

octahedral shape similar to the failure surface described in equation (3.9). Based on these 

findings, the residual strength surface described in equation (3.65) is used. 

3
1

R
3

Iη   =    27
I

−  (3.65) 

in which ηR is a non-dimensional parameter. The stress invariants I1 and I3 are defined in 

equation (3.2) and (3.4), respectively. Once the residual strength is known, ηR can be 

determined directly from equation (3.65). This is done for the sands examined, and the 

results are summarized in Table 3.6. 

 During the derivation of the constants AS, BS, CS, DS, and ES, one limitation is 

imposed on the input parameters. The residual value of the softening function, ''
p,rf  must 

be lower than the hardening function at cut-off, ''
p,95f : 

'' ''
p,r p,95f  <  f  (3.66) 

However, when predicting the behavior of sand at high confining pressures, the residual 

strength produced from equation (3.65) can be in violation with equation (3.66). When 

this is the case, the residual value of the softening function, ''
p,rf  is reduced below the 

value of the hardening function at cut-off, ''
p,95f , according to equation (3.67). 

'' ''
p,r p,95f  =  f 0.99⋅  (3.67) 
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Table 3.6: Parameter values of ηR. 
Material ηR 
Loose Santa Monica Beach Sand 22.1 
F1-Sand 15.5 
L1-Sand 20.8 
L2-Sand 19.9 
L8-Sand 17.5 
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Figure 3.38: Comparison of the new softening function with the original 
softening function on the prediction of the behavior of L8-Sand at low 
confining pressures. a) Stress-strain relation. b) Volume change. 
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Figure 3.39: Comparison of the new softening function with the original 
softening function on the prediction of the behavior of L8-Sand at high 
confining pressures. a) Stress-strain relation. b) Volume change. 
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 The predictions with the new softening function for L8-Sand can be seen in 

Figure 3.38 and Figure 3.39. Plots of the predicted behavior of the remaining tests (F1-

Sand, L1-Sand, and L2-Sand) can be seen in Appendix C. The new softening function 

does produce a smoother transition from hardening into softening. At high confining 

pressures, where the characteristic line is close to the failure surface, the major principal 

strains predicted by the new softening function are larger than the strains produced by the 

original function. 

3.3 Predictions with Improved Single Hardening Model 

The behavior of five hollow cylinder torsion shear tests performed on loose Santa Monica 

Beach Sand have been predicted using the improved Single Hardening Model (test results 

from Geiger (1979)). The material parameters used for input are derived in the previous 

sections, and summarized in Table 3.7. All tests were performed with a normalized 

confining pressure of 2. The tests were performed to study the effect of large stress 

reversals. As a consequence none of the tests were continued to failure and the new 

softening function does therefore not come into use. 

 The first test, L11 starts with triaxial loading after which the vertical stress is kept 

constant, and the sample is sheared. Finally, the vertical stress is reduced along with a 

further increase in shear stress. The stress path followed can be seen in Figure 3.40. Two 

points of interest (A and B) have been marked on the plot. These points are identified in 

the observed stress-strain relations for easy comparison. As seen in Figure 3.41, there is 

an overall good agreement between the observed behavior and the predicted behavior in 

test L11. 
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Table 3.7: Parameters for loose Santa 
Monica Beach Sand for the improved Single 
Hardening Model. 
Parameter Value 
ν 0.26 
λ 0.27 
M 600 
a 0 
m 0.095 
η1 31.2 
ηR 22.1 
C 0.00018 
p 1.55 
h 0.60 
α 0.34 
b 0.005 
μ 2.26 
  

 

 
Figure 3.40: Stress path followed for test L11 on loose Santa Monica Beach 
Sand.  
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Figure 3.41: Comparison of predicted and observed behavior of loose Santa 
Monica Beach Sand for test L11. a) Stress-strain relation. b) Vertical strain vs. 
volumetric strain. c) Shear stress-shear strain. d) Shear strain vs. volumetric strain. 
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 The stress path followed in test L12 is very similar to that in test L11: First the 

specimen is loaded triaxially, then sheared at a constant vertical stress and finally, the 

vertical stress is reduced during further increase in shear stress. The stress path followed 

is shown in Figure 3.42  Again, the predicted behavior shows good agreement with the 

observed behavior, as would be expected due to the similarity to test L11. Note that after 

point B, the reduction in vertical stress results in prediction of only elastic strains. 

Prediction of this behavior is studied further in the next test (L14). 

 The third test predicted, L14 starts with triaxial compression, as indicated by the 

stress path shown in Figure 3.44. After the triaxial compression, the vertical stress is 

reduced and the shear stress is increased. This results in elastic behavior immediately 

after point A. This can be seen in Figure 3.45 a), where the decrease in vertical stress, 

results in elastic unloading and in Figure 3.45 c), where the increase in shear stress results 

in elastic loading. When the stresses start expanding the yield surface again, the observed 

increases in both shear and vertical strains are captured by the predicted plastic behavior. 
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Figure 3.42: Stress path followed for test L12 on loose Santa Monica Beach 
Sand.  
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Figure 3.43: Comparison of predicted and observed behavior of loose Santa 
Monica Beach Sand for test L12. a) Stress-strain relation. b) Vertical strain vs. 
volumetric strain. c) Shear stress-shear strain. d) Shear strain vs. volumetric strain. 
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Figure 3.44: Stress path followed for test L14 on loose Santa Monica Beach Sand.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 124

 

 

 

 
Figure 3.45: Comparison of predicted and observed behavior of loose Santa 
Monica Beach Sand for test L14. a) Stress-strain relation. b) Vertical strain vs. 
volumetric strain. c) Shear stress-shear strain. d) Shear strain vs. volumetric strain. 
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 In test L10, the specimen is loaded with both vertical stress and shear stress in a 

ratio of approximately 2.25, then unloaded in a ratio of approximately 0.75. This is 

shown in Figure 3.46 where the stress path for test L10 is plotted.  

 The observed behavior shows a substantial amount of both normal and shear 

strain right after stress reversal at point A. This is believed to be caused by creep due to 

the close proximity to failure. Creep is a feature not included in The Single Hardening 

Model, and the observed behavior can therefore not be modeled accurately after stress 

reversal. The volumetric strain right after stress reversal shows a little dilation, then a 

substantial amount of contraction.  

 There is good agreement between the observed and predicted behavior during 

loading (Figure 3.47). After stress reversal, when the specimen is unloaded, the 

predictions indicate a behavior different from the observed. This is believed to be due to 

time effects in the observed behavior, as previously discussed. 

 As in test L10, the last test (L15) is loaded with a constant ratio between the 

vertical stress and the shear stress. This test is performed with a ratio of 0.75 as shown in 

Figure 3.48. The shear stress in then reduced while the vertical stress is kept constant. 

The creep observed after stress reversal in test L10 is also present in test L15. However, 

most of the creep in L15 takes place as shear strains, due to the relative higher shear 

stresses. The predicted behavior is shown in Figure 3.49. There is good agreement 

between the observed and predicted behavior during loading. After stress reversal, the 

observed and predicted behavior differs as discussed in test L10. 
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Figure 3.46: Stress path followed for test L10 on loose Santa Monica Beach 
Sand.  
 

 

 

 

 

 

 

 

 

 



 127

 

 

 

 
Figure 3.47: Comparison of predicted and observed behavior of loose Santa 
Monica Beach Sand for test L10. a) Stress-strain relation. b) Vertical strain vs. 
volumetric strain. c) Shear stress-shear strain. d) Shear strain vs. volumetric strain. 
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Figure 3.48: Stress path followed for test L15 on loose Santa Monica Beach 
Sand.  
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Figure 3.49: Comparison of predicted and observed behavior of loose Santa 
Monica Beach Sand for test L15. a) Stress-strain relation. b) Vertical strain vs. 
volumetric strain. c) Shear stress-shear strain. d) Shear strain vs. volumetric strain. 

 



4. Experimental Evidence of Truly Elastic 

Behavior of Artificial Sandstone within 

Cementation Yield Surface 

4.1 Introduction 

When modeling the stress-strain behavior of porous rock, it is important to know whether 

the material behaves truly elastic. The typical stress-strain behavior in an unconfined 

compression test on porous rock usually has the three characteristic phases shown in 

Figure 4.1. The initial, upward curving part of the stress-strain relation has been 

attributed to the closure of preexisting cracks in the specimen (Bernabé et al. 1994). How 

pronounced this initial phase is, vary depending on the condition of the material 

considered. The second part of the curve is usually linear and considered elastic. 

However, if an unloading reloading cycle is performed at the linear part of the curve, the 

result is often a higher Young’s modulus, indicating plastic strains during the virgin 

loading. The third part of the curve, where it departs from linear, is plastic.  

 The triaxial compression tests at low confining pressure can similarly be divided 

into a linear elastic part and a plastic part as shown in Figure 4.2. The closure of cracks 

(phase 1 in the unconfined compression test), have often taken place during the 

hydrostatic loading before the triaxial shearing and is therefore not present. As the 

confining pressure increases, the linear part of the stress-strain curve decreases and the 
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Figure 4.1: Typical stress-strain relation 
in an unconfined compression test.  

Figure 4.2: Typical stress-strain relation 
in a triaxial test at low confining pressure. 
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plastic deformation starts at a lower deviator stress. Examples of stress-strain relations as 

shown in Figure 4.1 and Figure 4.2 can be found in e.g. Ord et al. (1991) and Bernabé et 

al. (1994).  

 The stress space, in which porous rock behaves linearly, can be defined by an 

initial yield surface. The size and shape of this yield surface vary depending on the 

material. According to Cuss et al. (2003), the primary factors controlling the size of the 

yield surface in sandstone, are the porosity and the grain size. The initial yield surface is 

due to cementation of the grains and the rock is usually considered elastic inside this 

surface. As the stresses exceed the yield stress, the bonds start to break. The breakage of 

bonds can be measured by acoustic emission as done by Pestman and Van Munster 

(1996) and Baud et al. (2004). Both found the shape of the yield surface to be similar to 

the one depicted in Figure 4.3. The yield surface is shown in the p-q stress space, where p 

is the mean stress defined in equation (4.1) and q is the deviator stress defined in equation 

(4.2). 

p  =  1 3σ' 2 σ'
3

+ ⋅  (4.1) 

q  =  1 3σ' σ'−  (4.2) 

in which 1σ'  is the major effective stress and 3σ'  is the minor effective stress. 

 The elastic behavior expected inside the initial yield surface can be characterized 

by two independent criteria: The strains are (1) reversible and (2) uncoupled. The 

reversibility criterion can be illustrated by the two stress paths in Figure 4.4. If the 

material is elastic, stress path ABC and stress path ADC would produce equal strains 

(εABC = εADC). Also, the work produced during the entire loop, dWABCDA would be equal  
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 Figure 4.3: The initial yield surface due to cementation separates the elastic 

deformation from the plastic deformation. 
 

 

 

 

 

Figure 4.4: Two different stress paths from A 
to C. 
 

Figure 4.5: Deformation of elastic 
material. 
 

 

 

 



 134

to zero. The uncoupled behavior is illustrated in Figure 4.5, where an elastic material pre-

stressed with normal stresses, σz and σx is exposed to an increase in shear stress, Δτ. The 

resulting strains are only shear strains. Visa versa, if an elastic material exposed to shear 

stresses experience an increase in normal stresses, the resulting strains are normal strains. 

 The uncoupled behavior is also realized by looking at Hook’s law in equation 

(4.3). The nine zeros in the upper right and lower left corner define this behavior. 

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

1 -ν -ν 0 0 0
E E E
-ν 1 -νΔε Δσ0 0 0
E E E

Δε Δσ-ν -ν 1 0 0 0Δε ΔσE E E  =  
Δγ Δτ10 0 0 0 0

GΔγ Δτ
1Δγ Δτ0 0 0 0 0
G

10 0 0 0 0
G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ′⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪′⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪′⎪ ⎪ ⎪ ⎪⎢ ⎥ ⋅⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.3) 

E is Young’s modulus and ν is Poisson’s ratio. G is the shear modulus, which for an 

isotropic material can be expressed in terms of Young’s modulus and Poisson’s ratio, as:  

G  =  ( )
E

2 1 + ν⋅
 (4.4) 

The direction of the normal and shear stresses ( xx yy zzσ ,  σ ,  σ ,′ ′ ′ xy yz zxτ ,  τ ,  τ ) are defined in 

Figure 4.6, where the first suffix refers to the direction of the normal to the plane on 

which the stress act, and the second suffix refers to the direction of the stress component 

itself. The same direction and suffix notion are used for the strains ( xx yy zzε ,  ε ,  ε ,  

xy yz zxγ ,  γ ,  γ ). The engineering shear strains, γ are defined in Figure 4.7 and they relate to  
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Figure 4.6: Stresses on a small cube. 
 

Figure 4.7: Definition of engineering 
shear strain.  
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the shear strains, ε, as shown in equation (4.5). Strictly, tan γ and not γ should be used, 

but the angles are so small that the differences are negligible. 

xy xy

yz yz

zx zx

γ   =  2 ε

γ   =  2 ε

γ   =  2 ε

⋅

⋅

⋅

 (4.5) 

4.2 Previous Studies 

4.2.1 Reversibility 

According to Jardine (1992) the strains in soils can be divided into three categories. At 

small strains, the stress-strain behavior is linear elastic, and the strains are fully 

recoverable. As the strains increase, beyond the small linear elastic region, the stress-

strain behavior becomes nonlinear and hysteretic. Further strains will result in 

irrecoverable plastic strains. Jardine (1992) found the linear region to increase as the 

stiffness of the soil increased.  

After performing small unloading-reloading cycles during triaxial tests on sandstone, 

Bernabé et al. (1994) found plastic strains to take place inside the cementation surface. 

The plastic strains increased as the triaxial tests progressed, and they were believed to 

originate from grain sliding and rotation rather than grain crushing. Similar results were 

found by Ord et al. (1991) when examining scanning electron micrographs taken around 

shear bands in plane strain tests on Gosford Sandstone.   

4.2.2 Non Coupling Behavior 

Talesnick and Ringel (1999) have sheared several porous rocks including Loveland sand- 
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stone, Indiana limestone, and Marasha chalk in a hollow cylinder torsion shear apparatus. 

All the tests were performed without confining pressure and without any vertical stress. 

The results showed the shear strain increased linear with increasing shear stress. Normal 

strains were practically non-existing. This indicates elastic behavior as the normal strains 

are independent of the shear stresses. However, they also performed similar tests on Lac 

duBonnet granite and found non-linear behavior between the shear stress and shear strain. 

Furthermore, the normal strains (particularly in vertical direction) increased with the 

shear stress. The authors pointed out that the granite was micro-cracked with the 

dominant plane of micro-cracking perpendicular to the vertical direction. By increasing 

the vertical stress and then repeating the shearing the granite not only showed almost 

linear relations between shear stresses and shear strains, but the normal strains also 

disappeared. As the cracks were kept closed by the vertical stress, the material behaved 

elastically, corresponding to the change from phase 1 to phase 2 in Figure 4.1. 

4.3 Methodology 

During a hollow cylinder torsion shear test the stresses shown in Figure 4.8 are applied to 

the hollow cylinder specimen: Vertical stress, σz, radial stress, σr, and shear stress, τzθ. 

The radial stress, σr is applied both inside and outside of the specimen. During the tests 

performed in this study, only vertical stresses and shear stresses were applied to the 

specimens. As a result the radial and tangential stresses are zero (σr = σθ = 0). If no shear 

stresses are applied during a test, the specimen is exposed to a regular triaxial or 

unconfined test. The shear stresses, τzθ are not uniform through the specimen, but 

growing linearly with the distance from the center. The average shear stress found in the 
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Figure 4.8: Stresses applied to the hollow cylinder specimen during the torsion shear test. 
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middle of the specimen is used when calculating the shear stresses.  

 When applying the cylindrical coordinate system and the boundary conditions of 

the torsion shear test in Figure 4.8 to the elastic matrix in equation (4.3), it reduces to: 

z

x z

y zx

zx

1 0
E

Δε -ν 0Δε ΔσE  =  
Δε -ν Δτ0

EΔγ
10
G

⎡ ⎤
⎢ ⎥
⎢ ⎥⎧ ⎫ ⎢ ⎥⎪ ⎪ ′⎢ ⎥ ⎧ ⎫⎪ ⎪ ⋅⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎢ ⎥

⎢ ⎥
⎣ ⎦

 (4.6) 

 Two types of loading patterns have been employed to determine whether or not 

the artificial sandstone behaves elastic: These are referred to as an inside and an outside 

loop. The stress path followed for an inside loop is demonstrated in Figure 4.9. Assuming 

the material behaves plastic inside the cementation yield surface, a second yield surface 

will be formed and expand as the material is loaded. Figure 4.9 a) shows the cementation 

yield surface with a regular plastic yield surface being pushed out by unconfined loading. 

Then, in Figure 4.9 b) the vertical stress, σz is kept constant and a shear stress, τzx is 

applied to the specimen, expanding the potential yield surface further. By reducing the 

vertical stress, σz the stress path turns inside the potential yield surface, and elastic 

behavior is expected. Finally, the shear stress, τzx is removed and in Figure 4.9 c) the 

vertical stress, σz is increased again expanding the potential yield surface, preparing the 

specimen for the next loop. 

 The outside loop shown in Figure 4.10 starts as did the inside loop with 

unconfined loading (Figure 4.10 a)) and then shearing with constant vertical stress  
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Figure 4.9: Loading pattern for inside loop. Figure 4.10:  Loading pattern for outside 
loop. 
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(Figure 4.10 b)). The shear stress, τzx is then kept constant and the vertical stress, σz is 

increased. This expands the potential yield surface further. The shear stress, τzx is then 

decreased to zero and the vertical stress, σz is decreased before the next loop starts 

(Figure 4.10 c)). Because the shear stress for the second loop is reapplied inside the yield 

surface, elastic behavior is expected.  

 As the tests are performed without confining pressure the cementation yield 

surface and the failure surface are practically identical as can be seen in Figure 4.3. The 

shape of the yield surfaces in Figure 4.9 and Figure 4.10 are therefore assumed similar to 

the shape of the failure surface.  

 The response from the two loops defines whether the material behaves elastic or 

elastic-plastic. If only vertical strains are measured during the vertical loading, and only 

shear strains are measured when shear stresses are changed, the material behaves 

uncoupled. To test if the material experience reversible strains, the work produced for 

each leg of the loop is recorded. If the material exhibits reversible strains, the work 

produced for a closed loop is zero. If a loop is not closed, comparison of legs pushing the 

potential yield surface out and legs inside the potential yield surface can determine 

whether the material exhibits reversible strains.  

 The elastic constants can be calculated from the stress and strain increments. 

Young’s modulus, E is calculated as: 

E  =  z

z

Δσ'
Δε

 (4.7) 
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in which zΔσ'  is the vertical stress increment and Δεz is the vertical strain increment. 

With the vertical strain increments, Δεz, and tangential strains increments, Δεx, known, 

Poisson’s ratio, ν, is calculated from equation (4.8): 

ν  =  x

z

- ε
ε

Δ
Δ

 (4.8) 

The shear modulus, G can be calculated as: 

G  =  zx

zx

Δτ
Δγ

 (4.9) 

in which zxΔτ  is the shear stress increment and Δγzx is the shear strain increment. A more 

sturdy way to calculate Poisson’s ratio, ν is from Young’s modulus, E and the shear 

modulus, G (assuming the material is isotropic): 

ν  =  E 1
2 G

−
⋅

 (4.10) 

 According to Clough et al. (1981) the confining pressure has an effect on the 

elastic modulus in cemented sand. However, the effect decreases with increasing degree 

of cementation. As no confining pressure and only low vertical stress and low shear stress 

were applied to the specimens in this study, the elastic constants are expected to vary 

very little. To examine the effect of stresses on the elastic constants, two stress dependent 

formulas for the elastic modulus have been tested. The first is a simple equation, where 

Young’s modulus, E and the shear modulus, G vary with the mean normal stress, p:  

E  =  
En

E a
a

pK p
p

⎛ ⎞
⋅ ⋅⎜ ⎟

⎝ ⎠
 (4.11) 
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G  =  
Gn

G a
a

pK p
p

⎛ ⎞
⋅ ⋅⎜ ⎟

⎝ ⎠
 (4.12) 

in which E is Young’s modulus, KE, KG, nE, and nG are constants, p is the mean normal 

stress defined in equation (4.1), pa is atmospheric pressure in the same units as E, G, and 

p. The second stress dependent elastic modulus, was suggested by Lade and Nelson 

(1987): 

Eλ2 '
1 2

E a 2
a a

I JE  =  M p  + R
p p

⎡ ⎤⎛ ⎞
⎢ ⎥⋅ ⋅ ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4.13) 

Gλ2 '
1 2

G a 2
a a

I JG  =  M p  + R
p p

⎡ ⎤⎛ ⎞
⎢ ⎥⋅ ⋅ ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4.14) 

in which ME, MG, λE, and λG are non-dimensional parameters, R is a constant depending 

on Poisson’s ratio and defined in equation (4.19), pa is atmospheric pressure in the same 

units as the stresses used in the calculations of I1 and '
2J . I1 is the first stress invariant 

defined in equation (4.15) and '
2J  is the second stress deviator invariant defined in 

equation (4.17).  

1 xx yy zzI   =  σ'  + σ'  + σ'  (4.15) 

in which xx yy zzσ' ,  σ' ,  and σ'  are the normal stresses defined in Figure 4.6. Applying the 

boundary conditions for the torsion shear test to equation (4.15), produces: 

1 zI   =  σ'  (4.16) 
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( ) ( ) ( )2 2 2'
2 xx yy yy zz zz xx

xy yx yz zy zx xz

1J   =  σ' - σ'  + σ' - σ'  + σ' - σ'  
6

          + τ τ  + τ τ  + τ τ

⎡ ⎤
⎢ ⎥⎣ ⎦

⋅ ⋅ ⋅
 (4.17) 

The normal stresses ( xx yy zzσ' ,  σ' ,  σ' ) and shear stresses ( xy yx yz zy zx xzτ ,  τ , τ ,  τ , τ ,  τ ) used in 

equation (4.17) are defined in Figure 4.6. With the boundary conditions in the torsion 

shear test, equation (4.17) reduces to: 

'  2 2
2 z zx

1J   =  σ'  + τ
3

 (4.18) 

1 + υR  =  6
1 - 2υ

⋅  (4.19) 

υ is Poisson’s ratio which is assumed constant.  

To account for cementation, the normal stresses are translated in the principal 

stress space along the hydrostatic axis: 

ij ij ij aσ   =  σ  + δ a p⋅ ⋅  (4.20)  

in which σij is the stresses to be translated, δij is Kronecker’s delta (δij = 1 for i = j, δij = 0 

for i ≠  j), a is a dimensionless parameter, and pa is atmospheric pressure in the same 

units as σij. This translation affects the calculation of the mean normal stress p, the first 

stress invariant I1, and the second stress deviator invariant '
2J . 

4.4 Experimental Procedures 

4.4.1 Material Tested 

All experiments in this study were conducted on artificially cemented sandstone. The 

sandstone was produced from a mixture of Virginia Beach Sand and Type III Portland 
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cement. The basic properties of Virginia Beach Sand are presented in Table 4.1. The sand 

is mostly made up of quartz with a small amount of feldspar and can be characterized as 

poorly graded. The sand was washed and sieved to ensure clean sand. Particles larger 

than 0.425 mm (Sieve no. 40) and smaller than 0.075 mm (Sieve no. 200) were discarded. 

The grain size distribution curve for the remaining Virginia Beach Sand is shown in 

Figure 4.11. 

4.4.2 Specimen Fabrication 

Three hollow cylinder torsion shear specimens were produced with 6 % cement and a 

water/cement-ratio of 1.5. A void ratio of 0.763 was the target (which is the equivalent of 

a relative density, Dr = 0.20). The low relative density and low cement content were 

chosen to reduce the strength of the artificial sandstone. A low strength was desired due 

to limits on the maximum vertical stress and shear stress available by the torsion shear 

apparatus. 

 The mold for the torsion shear tests, shown in Figure 4.12, consisted of outer and 

inner cylindrical forming jackets with diameters of 22.0 cm and 18.0 cm, respectively. 

The height of the mold was 40.0 cm. The bottom and top of the mold consisted of the 

base and cap ring used in the tests. Before the specimens were cast, the mold was covered 

with paper sheets to prevent the sand/cement/water mixture from sticking to the sides. 

The sand/cement was mixed together and divided into four containers. After the 

appropriate amount of water was added to a container and the contents thoroughly mixed, 

the soil was divided into four equally sized portions. A quarter of a portion was placed in 
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Table 4.1: Properties of Virginia Beach Sand 
Sand Virginia Beach Sand 
Specific gravity, Gs 2.65 
Min. void ratio, emin 0.520 
Max. void ratio, emax 0.824 
D10 (mm) 0.213 
D30 (mm) 0.276 
D50 (mm) 0.312 
D60 (mm) 0.332 
D100 (mm) 0.425 
Coefficient of uniformity, Cu 1.56 
Coefficient of curvature, Cc 1.08 

 

 
Figure 4.11: Grain size distribution curve for Virginia Beach Sand. 
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Figure 4.12: Mold for the hollow cylinder 
torsion shear tests. 
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the mold and compacted before the next portion was added. Thus, a total of 16 layers 

were compacted by dropping an aluminum rod with a fall height of approximately 4 cm 

down to the sand/cement surface. This was done 60 times for each layer. The rod had a 

diameter of 12.7 mm and a mass of 196 g. The time used to cast a specimen was 

approximately 80 minutes. This is larger than the initial setting time for Type III Portland 

cement, which is 45-60 minutes. However, the bottom layers would have received very 

little impact from the compaction of the top layers resulting in a minimum disturbance 

after setting. After the final layer was compacted, a little extra sand/cement-mixture was 

added to smooth the top surface before placing the cap ring on top of the specimen. After 

the specimens were cast they were covered with a plastic bag and allowed to cure for 5 

days before they were removed from the mold, then covered again with plastic and 

allowed to cure for another 55 days. A total of 90 days went by from the specimens were 

cast until the tests started. 

 Three specimens were cast and after the end of curing, the exact height and the 

mass of the specimens were measured. The void ratios were calculated, and can be seen 

in Figure 4.13. They are found to be slightly lower than the target of 0.763. 

4.4.3 Experimental Setup 

Before a test, the specimen was glued to the stainless stell cap and base rings with epoxy. 

This was done to ensure full fixity between the rings and the specimen. The deformations 

(vertical, tangential, and shear) were measured by strain gages glued to the outside 

surface of the specimen. The torsion shear tests were performed with only vertical stress  
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Figure 4.13: Void ratio for torsion shear specimens with indication of average value 
and standard deviation. 
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and torque applied to the hollow cylindrical specimens. The forces were provided by a 

hydraulic system connected to the house line of compressed air and transferred 

individually to the specimen. A schematic of the loading system can be seen in Figure 

4.14. The forces were transferred through a center-shaft and cap plate attached to the cap 

ring (Figure 4.15). The vertical force was measured by a 7 kN load cell and the shear 

forces were measured by two 3.5 kN load cells. A detailed description of the torsion 

shear apparatus is given by Lade (1981). 

4.4.4 Experimental Details 

All tests were carried out in dry conditions at a temperature of 23oC. The tests were 

carried out using stress control with stress rates ranging from 15 kPa/min to 95 kPa/min. 

This was done by loading in steps every 3 minutes. During the third test, a web-camera 

recorded the abrupt failure of the specimen.  

4.4.5 Strain Gages 

When using strain gages on concrete (or cemented sand), it is important that the strain 

gages are at least 5 times longer than the largest grains (Measurement Group 1992). This 

is to make sure it is the average strain that is measured, not local fluctuations between the 

individual particles. With a maximum grain size of 0.425 mm and strain gages with a 

length of 50.8 mm the length of the strain gages were well above the recommended 

length. Two rosettes, each containing three single wire strain gages were attached on 

opposite sides of each specimen. The orientation of the strain gages can be seen in  
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Figure 4.14: Schematic diagram of loading system for torsion shear 
apparatus. a) Side view. b) Top view. After Lade (1981). 
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Figure 4.15: Cross section of hollow cylinder specimen and apparatus. After Lade 
(1981). 
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Figure 4.16. All the strain gages were individually connected in quarter bridges through a 

switch box to a strain indicator box. Sandstone is a relatively poor heat conductor, and to 

avoid correction for temperature changes, the electric charge was applied to each strain 

gage for only approximately 5 seconds when each reading took place.  

 The application of strain gages to porous rock involves some additional problems 

in comparison with metals. By filling the pores with glue, the sandstone stiffens locally 

and higher elastic moduli are measured. To reduce this effect, the pores were first filled 

with baking soda. The glue and baking soda reacts to make a stiff porous filler for the 

pores. The procedure for attaching the strain gages to the specimens required the 

specimens to be cleaned with acid, then neutralized with a base and finally washed with 

water. Therefore, after the specimens had dried, the pores were filled with baking soda 

and a layer of glue was smeared on top of it. The excess material was sanded away with 

fine sandpaper and the specimen surface was therefore smooth for the strain gages to be 

glued onto.  

 The vertical strains, εz are measured directly by strain gage E: 

εz  =  εE (4.21) 

The tangential strains, εθ are measured directly by strain gage B: 

εx  =  εB (4.22) 

The strains obtained from strain gages A and C, and D and F are used to calculate the 

shear strains. The strains in direction of strain gage A and strain gage C (Figure 4.17) can 

be found using Mohr circle in Figure 4.18. The equations describing the strains of strain 

gage A and strain gage C are: 
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Figure 4.16: Orientation of strain gages glued to opposite sides of hollow 
cylinder specimens. 
 

 

 

 
Figure 4.17: Direction of strain gages on 
specimen used to determine shear strain. 
 

Figure 4.18: Mohr circle for strain used to 
determine shear strain. 
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εA  =  ( ) ( )x z x z xz
A A

ε ε ε ε γ  cos 2α   sin 2α
2 2 2
+ −+ ⋅ + ⋅  (4.23) 

εC  =  ( ) ( )x z x z xz
C C

ε ε ε ε γ  cos 2α   sin 2α
2 2 2
+ −+ ⋅ + ⋅  (4.24) 

Subtracting equation (4.23) from equation (4.24) and solving for γxz gives: 

γxz  =  
( ) ( ) ( ) ( )( )

( ) ( )
C A x z C A

C A

2 ε ε ε ε cos 2α cos 2α
sin 2α sin 2α

⋅ − − − −
−

 (4.25) 

As the strain gages are oriented with 45o angles on each side of horizontal and vertical, α 

becomes: 

αA  =  -αC  =  45o (4.26) 

The shear strains, γxz can then be found from equation (4.27): 

γxz  =  2εxz  =  εC - εA (4.27) 

Similarly, the shear strains in the perpendicular direction can be calculated as: 

γzx  =  2εzx  =  εD - εF (4.28) 

4.4.6 Correction for Transverse Sensitivity 

Strain gages measure the strains in one primary direction, but are sensitive to strains in 

other directions as well. To correct the strains, εii for transverse sensitivity, the strains in 

the same plane and in perpendicular direction, εjj must be known. The correction for 

transverse sensitivity can then be calculated from equation (4.29). 

εii corrected  =  εii - jj tε K⋅  (4.29) 

where Kt is the transverse sensitivity of the grid (0.3 % for the strain gages used). These 

corrections were made to all strains discussed above. 
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4.4.7 Test Program 

Unfortunately, only a limited amount of results are available from the first test (TS1) due 

to incorrect setup of the load cells measuring the shear stress. Two results are available; 

an unintentional loading to tensile failure during setup of the specimen, and shearing to 

failure following the stress path shown in Figure 4.19. The tensile failure took place 

along a horizontal band approximately 2 cm from the top of the specimen. After the top 

of the specimen was filed down to a smooth horizontal surface, the top ring was again 

glued on to the specimen and the tests continued. 

 The stress paths followed in test TS2 and TS3 can be seen in Figure 4.20 and 

Figure 4.21 respectively. Test TS2 started out with unconfined vertical loading, during 

which an unloading-reloading cycle was performed. Three loops with increasing 

magnitude were performed. The first two loops were going inside the potential yield 

surface, and the third loop was going outside the potential yield surface. Following the 

third loop, the vertical stress, σz was reduced to 385 kPa and the specimen was sheared to 

failure. In test TS3 three loops of approximately the same magnitude as in test TS2 were 

performed, but in test TS3, the first two loops were going outside the potential yield 

surface and the third loop was going inside the potential yield surface. Finally the 

specimen was sheared to failure at a vertical stress, σz of 620 kPa. 

 When reducing the shear stress, τzθ the hydraulic system did not decrease the 

force instantaneously. Therefore approximately 8 kPa of shear stress were still applied to 

the specimen when the vertical stress, σz was changed. The 8 kPa would then slowly drop 

towards zero resulting in both change in vertical stress and shear stress. This in not 
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Figure 4.19: Stress path for test TS1.  

 

Figure 4.20: The stress path followed for test TS2 consist of three loops (two inside 
and one outside) and then shearing to failure.  
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Figure 4.21: The stress path followed for test TS3 consist of three loops (two outside 
and one inside) and then shearing to failure. 
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obvious from the stress paths shown in Figure 4.20 and Figure 4.21, but shows up in the 

measured shear strains. 

4.5 Results 

The stresses and strains for the successful part of test TS1 and the two remaining tests 

(TS2 and TS3) can be found in Appendix D. A sketch of the failure mode for each of the 

specimens is also included.  

4.5.1 Failure 

The stresses recorded at failure can be found in Table 4.2. The tensile failure in test TS1 

should only be taken as a minimum tensile strength as nothing was done to prevent 

progressive failure due to non uniform loading. Furthermore, the cement used for the first 

specimen (TS1) was from a different batch than the two remaining specimens. This may 

have resulted in a lower strength for the first specimen.  

 In all the tests, failure was abrupt and the specimens broke into multiple pieces. 

The mode of failure for test TS3 can be seen in Figure 4.22. The hatched areas were 

pulverized. Based on the failure mode recorded after the tests, there is no unambiguous 

shear band inclination. To get a better understanding of the failure mode, test TS3 was 

recorded by a web-camera and pictures taken 0.06 seconds apart at failure can be seen in 

Figure 4.23. It should be noted that the bottom three rows of squares were not recorded 

by the web-camera.  

 It is seen that an inclined shear band develops after which several horizontal and 

vertical failure bands follows. Based on the pictures in Figure 4.23, at least one shear  
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Table 4.2: Stresses at failure. 
Test Vertical stress, σz (kPa) Shear stress, τzθ (kPa) 
TS1 - 44.2 0.0 
TS1 88.6 160.1 
TS2 364.0 441.7 
TS3 600.8 562.2 
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Figure 4.22: Failure mode for test TS3. 

 

     
Figure 4.23: Series of subsequent pictures taken at failure of specimen TS3 with 
web-camera.  
 

 

 

a) c) b) 
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band (possibly two) have been recognized in test TS3. The horizontal failure lines could 

arise from tensile failure due to the sudden removal of the stresses at failure. Some of the 

horizontal bands were found to have prints after the rod used for compaction of the 

specimen, thus indicating reduced tensile strength along these lines. 

 Similarly, shear bands in tests TS1 and TS2 have been found and the inclinations 

with respect to vertical are recorded in Table 4.3. The inclination is found to decrease as 

the vertical stress at failure increases. 

4.5.2 Elastic Behavior 

The stress-strain curve for the initial loading and unloading-reloading at the beginning of 

test TS2 can be seen in Figure 4.24. As the vertical strains during the initial loading and 

the strains during unloading-reloading coincide, the material behaves reversible and 

elastic behavior is expected. The strains during the unloading-reloading cycle are linear 

and reversible. Note that this behavior, where the initial Young’s modulus is almost 

identical the unloading-reloading modulus, is different from the behavior experienced in 

other sandstones (described in the beginning of this chapter). 

 The responses from the individual loops are shown in Figure 4.25 and Figure 

4.26. The figures are showing the vertical strains, εz, versus the shear strain, γzx. This 

means, if the artificial sandstone behaves elastic, the response should be loops with 90o 

angles and closed at the end. All loops show these characteristics, thus indicating elastic 

behavior. Both the inside loops and the outside loops are similar implying no yield 

surface is expanding during the tests. 
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Table 4.3: Shear band inclination. 
Test Inclination (o) 
TS1 44.0 
TS2 44.0 and 37.5 
TS3 38.0 and 31.0 

  
 

 
  

Figure 4.24: Stress strain curve for unloading-reloading in test TS2.  
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Figure 4.25: Strains recorded for test TS2. 
a) Inside loop. b) Inside loop. c) Outside 
loop. 
 

Figure 4.26: Strains recorded for test TS3. 
a) Outside loop. b) Outside loop. c) Inside 
loop. 
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 Loop 1 and loop 2 in test TS2 (Figure 4.25 a) and b)) seem to have more vertical 

strain during loading than unloading. This is not due to plastic deformation, but is caused 

by the stresses at the end of the loops not being the same value as the stresses at the 

beginning of the loops. This can be confirmed by examining the stress path for the 

individual loops shown in Figure 4.27. Similarly, loops 1 and 2 in test TS3 are not closed. 

This is due to insufficient stress points, and not caused be plastic strains during vertical 

loading. The stress path for the individual loops in test TS3 can be seen in Figure 4.28. 

 In tests TS2, the shear strains decrease during the vertical reloading at the last leg 

of the first loop and at the first leg of the second loop as seen in Figure 4.25 a) and b). As 

the specimen is being reloaded, the behavior is believed to be a result of the shear stresses 

not being completely removed from the specimen, as discussed in section 4.2.7.  

 Although the stress paths were intended to be the same, the strains in test TS2 are 

slightly larger than in test TS3 indicating specimen TS2 to be softer than specimen TS3. 

How much softer depends on the exact stresses and this aspect is examined closer in 

section 4.3.3 where the elastic constants are calculated. 

4.5.3 Elastic Constants 

It has been found that the best and most consistent results are obtained by calculating the 

elastic constants over the entire straight-line increments in the stress paths, independent 

of how many measurements were made. Poisson’s ratio is calculated for each increment 

using equation (4.8) and the results are plotted as a function of the mean normal stress for 

each increment in Figure 4.29. The diamond symbols represent test TS2 and the square  
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Figure 4.27: Stress path for test TS2. a) 
Inside loop. b) Inside loop. c) Outside loop. 

Figure 4.28: Stress path for test TS3. a) 
Outside loop. b) Outside loop. c) Inside 
loop. 
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Figure 4.29: Poisson’s ratio as a function of the mean stress, p.  
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symbols represent test TS3. There is some scatter for Poisson’s ratio, but an average 

value of 0.23 ± 0.08 is obtained for both TS2 and TS3. 

 Young’s modulus and the shear modulus are calculated for each increment using 

equation (4.7) and equation (4.9), respectively. The calculated moduli are plotted as a 

function of the mean stress, p corresponding to equation (4.11) and equation (4.12). The 

results, shown in Figure 4.30, reveal that both Young’s modulus and the shear modulus 

increase as a function of the mean stress. Specimen TS2 has 15-20 % lower elastic and 

shear modulus than specimen TS3. The parameters K and n used in equation (4.11) and 

equation (4.12) are determined and the results are shown in Table 4.4. The parameter n, 

corresponding to the slope in Figure 4.30, has been forced to have the same value for 

Young’s modulus and the shear modulus.  

 Similarly, the parameters M and λ from equation (4.13) and equation (4.14) have 

been determined for Young’s modulus and the shear modulus (Figure 4.31 and Table 

4.5). The parameter λ has been forced to have the same value for Young’s modulus and 

the shear modulus.  

 In the calculation of the mean normal stress p, the first stress invariant I1, and the 

second stress deviator invariant '
2J , the effect of cementation is modeled by the parameter 

‘a’. The parameter ‘a’ is determined in Chapter 7 for artificial cross-anisotropic sandstone 

with equal amount of cement and with similar void ratio. The value determined in 

Chapter 7 of ‘a’ = 1.95 is used for this soil. 

 Both the simple variation (equation (4.11)), where the elastic moduli vary with p 

and the advanced equation suggested by Lade and Nelson (1987) fits the data. The values  
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Figure 4.30: Young’s modulus, E and shear modulus, G as a function of 
the mean stress, p.  
 
 
 
 

Table 4.4: Parameters K and n determined for Young’s 
modulus and shear modulus. 
Modulus K n 

E 56.6 0.15 
G 20.1 0.15 
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Figure 4.31: Young’s modulus, E and shear modulus, G used for 
determination of parameters M and λ. 
 

  

Table 4.5: Parameters M and λ determined for Young’s 
modulus and shear modulus. 
Modulus M λ 

E 48.0 0.071 
G 17.4 0.071 
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of the coefficient of determination, R2 are generally low (< 0.5) due to the difference in 

the moduli between the two specimens. However, the simple variation gives slightly 

higher R2-values, suggesting a better fit. 

 Using Young’s modulus, E and the shear modulus, G, Poisson’s ratio have been 

calculated using equation (4.10). As the parameters n and λ are the same for both 

Young’s modulus and the shear modulus, Poisson’s ratio does not vary with the stress 

state. Poisson’s ratio from the simple variation and the advanced variation are 0.38 and 

0.41, respectively. These values of Poisson’s ratio are significantly higher than the 

average value of 0.23, determined directly from the measurements. An explanation could 

lie in the compaction during the production of the specimens. The compaction would 

result in anisotropic material, whereas equation (4.10) assumes the material to be 

isotropic. 

4.6 Conclusion 

By applying a combination of normal and shear stresses to a hollow cylinder torsion 

shear specimen, it has been shown that the artificially cemented sandstone behaves truly 

elastic inside the initial cementation yield surface. Furthermore, the isotropic elastic 

parameters have been determined for the artificially cemented sandstone.  

 



5. Experiments on Artificial Cross-Anisotropic 

Sandstone 

5.1 Material Tested 

All experiments in this study were conducted on artificially cemented sandstone. The 

sandstone was produced from a mixture of Virginia Beach Sand and Type III Portland 

cement. The basic properties of Virginia Beach Sand are presented in Table 5.1. The sand 

is mostly made up of quartz with a small amount of feldspar and can be characterized as 

poorly graded. The sand was washed and sieved to ensure clean sand. Particles larger 

than 0.425 mm (Sieve no. 40) and smaller than 0.075 mm (Sieve no. 200) were discarded. 

The grain size distribution curve for the remaining Virginia Beach Sand is shown in 

Figure 5.1. 

 The minimum void ratio was determined by air pluviating 2000 g of sand through 

two no. 4 sieves into a 2000 ml graduated cylinder. By slow deposition of the sand from 

40 cm height, the grains get knocked into a dense state and by measuring the volume the 

minimum void ratio can be calculated. The maximum void ratio was then determined by 

sealing the top of the cylinder and turning the cylinder upside down. This was repeated 

until a constant maximum volume was achieved. 
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Table 5.1: Properties of Virginia Beach Sand 
Specific gravity, Gs 2.65 
Min. void ratio, emin 0.520 
Max. void ratio, emax 0.824 
D10 (mm) 0.213 
D30 (mm) 0.276 
D50 (mm) 0.312 
D60 (mm) 0.332 
D100 (mm) 0.425 
Coefficient of uniformity, Cu 1.56 
Coefficient of curvature, Cc 1.08 

 

 
Figure 5.1: Grain size distribution curve for Virginia Beach Sand. 
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5.2 Specimen Fabrication 

For this study, it was important that the initial yield surface created by cementation was 

located within the limiting capabilities of the equipment, requiring the sandstone to be 

relatively weak. However, the sandstone had to be strong enough to be cored without the 

specimens falling apart. Based on the stress-strain curves from Schnaid et al. (2001), and 

the strength determined by Lade and Overton (1989) a sandstone was produced with a 

relative density of 20 % (corresponding to a void ratio of 0.763) and with 6 % cement 

added to the sand. In addition to the amount of cement and the relative density, the 

water/cement-ratio influences the strength of cemented sand. A higher water/cement-ratio 

reduces the strength. To ensure the sandstone was strong enough to be cored, a series of 4 

trial specimens with a diameter of 35.6 mm and a height of 100 mm were cast. They had 

water/cement-ratios at 0.5, 1.0, 1.5, and 2.0. After extruding the specimens from the 

compaction mold they were wrapped in a plastic bag and allowed to cure for two days 

before the cementation between the grains was examined. This was done to make sure the 

individual grains were cemented properly together, thereby allowing specimens to be 

cored. It was found, that both a water/cement-ratio of 1.0 and 1.5 produced the desired 

strength. However, the consistency of the sand/cement/water mixture with a 

water/cement-ratio of 1.5 was easier to work with during the deposition, and this ratio 

was therefore chosen.  

When producing cross-anisotropic sandstone, the deposition and compaction 

method determines the orientation of the individual grains. According to Oda (1972)b, the 

orientation of the long axis of the grains along with the direction of the normal to the 
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contact points are the dominant factors causing cross-anisotropic behavior. Furthermore, 

during triaxial deformation, the normal to the contact points align themselves parallel to 

the stress direction, and the long axes of the grains align themselves perpendicular to the 

stress direction, causing increased cross-anisotropic behavior. 

Therefore, by applying a uniform load to each layer of the initial mix of sand, 

cement, and water, the sandstone becomes cross-anisotropic. This is illustrated in Figure 

5.2. The sand/cement may be deposited in either wet or dry state. A dry deposition 

method would be to deposit the sand/cement in layers, compact each layer and then spray 

it with water, as done by Tien and Tsao (2000). The method chosen was to deposit the 

wet sand/cement in layers and then compact each layer by a uniform deformation.  

 To produce uniform specimens, the method of undercompaction (Ladd (1978)) 

was used. If each layer is compacted using the same amount of energy, then the 

compaction of each succeeding layer further densifies the soil below it. To prevent this, 

Ladd suggested undercompacting each layer. However, the right amount of 

undercompaction required to obtain a uniform specimen has to be determined 

beforehand. The amount of undercompaction for layer n, Un, is calculated from the 

empirically determined equation (5.1): 

Un  =  Uni ( )ni

t

U- n - 1
n  - 1

⋅  (5.1) 

where Uni is the percent undercompaction for the first layer, n is the number of layer 

being considered, and nt is the total number of layers. 
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Figure 5.2: a) Before compaction the long axes of the grains are in 
random direction. b) After compaction the long axis of the grains 
are aligned primarily perpendicular to the stress direction. 
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 The undercompaction for the first layer in equation (5.1) represents an increase in 

the void ratio. This is illustrated in Figure 5.3 where variation of the void ratio in the 

individual layers after compaction of each layer (dashed line) and after compaction of the 

entire specimen (massive line) is plotted. With no undercompaction (Figure 5.3 a)), the 

bottom layers of the specimen is too dense and the top layer to loose at the end of 

compaction. This is also the case in Figure 5.3 b), where to little undercompaction results 

in the bottom being to dense and the top to loose. However to a lesser extent than in 

Figure 5.3 a). With the right amount of undercompaction (Figure 5.3 c)), a uniform void 

ratio is achieved. Figure 5.3 d) represents a specimen exposed to too much 

undercompaction and as a result the bottom layer becomes too loose, and the top layer 

too dense. When determining the right amount of undercompaction, the variation of the 

void ration between the individual layers should be as small as possible, representing the 

right amount of undercompaction in Figure 5.3 c). 

 According to Ladd (1978) there are several methods of determining the right 

amount of undercompaction, e.g. find the maximum strength during cyclic loading, 

observe the behavior looking for necking or buckling during cyclic loading, find 

nonuniform vertical strains during unconsolidated undrained loading or measure the 

density/void ratio as a function of the specimen height.  

 The method found most suitable for this study was to determine the density/void 

ratio variation after compaction. Using a mold with a diameter of 35.6 mm and a height 

of 100 mm, the soil was compacted in 5 layers. The best method for determining the void 

ratio was obtained by compacting a layer, then putting a sheet of aluminum foil with a  
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Figure 5.3: Void ratio after compaction of each layer (dashed line) and void ratio 
after compaction of the entire specimen (massive line). a) No undercompaction. b) 
To little undercompaction. c) Right amount of undercompaction. d) To much 
undercompaction. 
 

 

Figure 5.4: Extrusion of specimen and part cut to measure the height of the layer. 
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diameter of 34 mm into the mold, before compacting the next layer. The aluminum foil 

was flexible enough to allow the individual grains to move, and strong enough to separate 

the layers after compaction. 

 The specimens were extruded from the mold and a sector was cut out before they 

cured and the final thickness of each layer was measured. The average void ratio for all 

the layers and standard deviation for each amount of undercompaction is shown in Figure 

5.5. The least variation was found with 6 % undercoampaction of the first layer, making 

it the optimum amount of undercompaction and resulting in uniform specimens.  

 Following this determination, two large blocks of artificial sandstone were cast in 

a specially fabricated aluminum mold with dimensions 10.0 cm x 10.3 cm x 30.7 cm. 

This mold was made so it could be disassembled with a minimum of disturbance to the 

block. A sketch of the mold can be seen in Figure 5.6. To prevent the sandstone from 

sticking to the mold, the sides were covered with cooking spray before the blocks were 

cast.  

 The two blocks of sandstone were made using the following procedure: First the 

sand and cement were mixed together and divided into five containers, one for each layer 

in the block. The appropriate amount of water was added to one container and the 

contents were thoroughly mixed before placing it in the mold. To ensure an even 

distribution of the soil, the mold was divided into three equally sized spaces, each 

receiving the same amount of soil. The surface was leveled and a plate with the same size 

as the mold was placed on the soil surface. A uniform load was then applied to compact it 

to the predetermined thickness. Before placing the next layer in the mold, the surface was 
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Figure 5.5: The mean value and standard deviation of void ratio as a function of the 
amount of undercompaction. 
 

 

 

 
 Figure 5.6: Sketch of mold used for fabrication 

of artificial anisotropic sandstone. 
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scarified to increase the contact between the soil layers. The whole process of making the 

sandstone block from the beginning when water was added to the first sand/cement-

mixture till the final layer was in place took no more than 50 minutes. This is within the 

initial setting time for Type III cement which sets in 45-60 minutes.  

 After compacting the final layer, the vertical pressure was removed and the block 

was covered by a plastic bag and allowed to cure for 30 days. After 30 days the mold was 

disassembled and the sandstone block was removed and 8 horizontal and 8 vertical 

specimens were cored from each of the two blocks for a total of 32 specimens. Another 

90 days went by before the triaxial testing started. The specimens were cored with a 

diameter of 36.5 mm and the ends were then trimmed to give the specimens a height of 

97.6 mm. The average height to diameter ratio was 2.67 ± 0.02. The variation 

corresponds to a difference in height of approximately one average grain diameter. The 

mass of the specimens were determined and the void ratios were calculated, as seen in 

Figure 5.7. 

 The void ratios are found to be a little higher than the target of 0.763. This could 

be caused by the final height of the entire block being measured with the compaction load 

applied to the specimen. After the load was removed, the soil unloaded elastically. The 

averages of the void ratios of the vertical and horizontal specimens are close to each 

other, but with a variation in the horizontal specimens that is larger than that for the 

vertical specimens. The greater variation in the void ratio in the horizontal specimens 

indicates that the blocks were not completely uniform. A systematic variation in the void 

ratio depending on the location in the block was not found. This indicates that the under- 
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Figure 5.7: Void ratio for a) vertical specimens and b) horizontal specimens with 
indication of average values and standard deviations determined for all specimens from 
the two blocks. 
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compaction is not the source of the variation. Neither do the boundary conditions from 

the mold seem to cause the variation. Significant differences between the void ratios from 

block I and block II were not found. The possibility exists that local variations in void 

ratio could cause the variations depending on where the specimens were cored relative to 

the compaction layers. This scenario is illustrated in Figure 5.8. The difference between 

specimen A and specimen B is less than 5 mm. Unfortunately, the exact location where 

the specimens were cored are not known to the extent required for confirmation of this 

possibility.  

5.3 Experimental Setup 

5.3.1 Triaxial Compression Tests 

The triaxial tests were carried out in a high pressure triaxial cell. A sketch of the cell can 

be seen in Figure 5.9. The specimen was placed between two filter stones to ensure 

drainage during the tests. Due to membrane puncture at higher confining pressures, a 

minimum of two rubber membranes with silicone grease in between separated the 

specimens from the cell water. The total number of membranes used, depended on the 

confining pressure in the test. At the highest confining pressures, four membranes were 

used. O-rings sealed the membranes at the cap and base. All specimens were saturated by 

the CO2-method to enable measurement of volume changes during testing as described in 

section 5.4.2.  

 In tests at low confining pressures (0.5 MPa and below), the pressure was 

delivered from the house line of compressed air with a maximum pressure of 690 kPa. At  
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Figure 5.8: For void ratio variations within each compacted layer as 
indicated, specimen A would have a lower void ratio than specimen B. 
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Figure 5.9: High pressure triaxial cell. 
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high confining pressures (above 0.5 MPa), the pressure was delivered from a tank of 

nitrogen able to produce a maximum pressure of 15.8 MPa. A deformation controlled 

loading machine with a maximum capacity of 100 kN delivered the vertical force. The 

vertical force was measured by a load cell with a capacity of 44.5 kN. An electronic dial 

gage measured the vertical deformation between the piston and the top of the cell. A 

burette type volume change device connected to the top and bottom drainage lines 

measured the volumetric change. During the tests, the confining pressure, the vertical 

load, and the back pressure were recorded along with the vertical deformation and 

volume change. 

5.3.2 Isotropic Compression Tests 

The isotropic compression tests were carried out in the same cell and with the same setup 

as the triaxial tests. However, the 19.05 mm ( 3
4 '' ) diameter piston and the seal for this 

piston were exchanged with a 3.15 mm ( 1
8 '' ) diameter rod and a corresponding smaller 

seal in the cap plate of the triaxial cell. This was to achieve as close to isotropic 

compression as possible, i.e. without significant correction for piston uplift as for the 

larger piston. The much smaller piston uplift allowed for measurement of the vertical 

deformation of the specimen. 

5.3.3 Brazilian Tests 

In the Brazilian tests the cylindrical specimens were placed between two aluminum 

blocks as shown in Figure 5.10. The upper block was attached to a load cell and the lower  
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Figure 5.10: Experimental setup for Brazilian 
tests. 
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block was placed on a steel ball. This was done to ensure freedom for movement of the 

lower block in all directions. If the surfaces of the specimens were not perfect, the lower 

block could move, thereby allowing the lower block to apply a uniform line load and 

avoiding progressive failure. During the test the load was monitored. The maximum load 

and time to failure were recorded. Failure occurred by vertical splitting of the cylindrical 

specimens as indicated in Figure 5.10.  

5.4 Details of Experimental Procedures 

5.4.1 Test Temperature 

All tests were carried out at temperatures between 24 oC and 27 oC. 

5.4.2 Saturation 

After the specimen was placed in the triaxial cell and the confining pressure was set to 50 

kPa, the specimen was slowly flushed from the bottom with carbon dioxide for 20 

minutes. As carbon dioxide is heavier than atmospheric air, carbon dioxide replaces the 

air in the specimen. Finally the specimen is flushed from the bottom with deaired water. 

One volume of deaired water can dissolve approximately one volume of carbon dioxide 

gas at room temperature. If pockets of carbon dioxide still exist in the specimen, the 

subsequent application of a back pressure of 200 kPa dissolves the carbon dioxide in the 

water. This results in a very high degree of saturation. After saturation the pore pressure 

coefficient, B, was measured to check that the saturation was successful. The stiffness of 

the material determines the maximum B-value corresponding to full saturation. A soft 
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material produces a high B-value close to 1.00, and the stiffer the material, the lower the 

B-value. All specimens were tested with B-values between 0.84 and 0.95 which was 

found to be satisfactory for cemented soil. However, all tests were completely drained 

tests and full saturation is not required for satisfactory volume change measurements. 

 When carbon dioxide dissolves in deaired water, some of the carbon dioxide 

reacts with the water to form the following equilibrium: 

CO2(aq) + H2O(l)    H2CO3(aq) (5.2) 

in which (aq) stands for aqua, meaning both carbon dioxide (CO2) and carbonic acid 

(H2CO3) are dissolved in water. The H2O(l) is water where the (l) indicate it being in the 

liquid state. The carbonic acid is a weak acid and can dissolve e.g. calcium carbonate or 

magnesium carbonate. These materials could be present from shell fragments in the 

beach sand. The carbonic acid can also dissolve Portland cement. In concrete this is 

known as carbonation. To avoid this reaction, the specimens were flushed with 2-3 pore 

volumes of deaired water, so the water in the specimen contained as little dissolved 

carbon dioxide as possible. 

 Before the Brazilian tests were performed, the specimens were placed in a tank 

with deaired water and vacuum were applied to the tank. After 15 minutes of vacuum, 

when no further air bubbled from the specimens, vacuum was removed and the 

specimens were moved from the water to the test setup. No more than 15 minutes 

occurred between a specimen was removed from the water to failure of that specimen. 

That time was kept as short as possible to keep the specimens from drying out.  
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5.4.3 Loading Rates 

All the isotropic loading (both in the real isotropic tests and in the triaxial tests before 

shearing) was carried out under stress control with a rate of approximately 240 kPa/min. 

This was done by loading in steps of approximately 480 kPa every 2 minutes. The triaxial 

shearing, the K0-loading, and the Brazilian tests were carried out under deformation 

control with a strain rate of 0.10 %/min. In the Brazilian tests the reference height was the 

diameter. 

5.4 Testing Program 

Of the 32 specimens cored from the two blocks, 22 were used for triaxial tests, 4 were 

used for isotropic compression tests, 4 were used for Brazilian tests and 2 were used for 

K0-tests. The stress paths for the triaxial and isotropic tests are shown in Figure 5.11. The 

exact confining pressures for each test can be found in Appendix D along with the test 

results. After each of the four isotropic tests were finished, the specimens were still intact 

with partly broken cementation, so the specimens were used for a second test (2 Brazilian 

and 2 triaxial). The reason that the initial “isotropic” compression paths of the triaxial 

specimens are located below the hydrostatic axis is described in section 5.5.3.  

5.5 Corrections 

5.5.1 Correction for Membrane Penetration 

In the isotropic and the K0-tests where the confining pressure changes during the test, the 

measured volume change requires correction for membrane penetration. According to  
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Figure 5.11: Stress paths for isotropic and triaxial shear tests. 
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Frydman et al. (1973), the volume change due to membrane penetration, ΔVm, can be 

calculated as: 

ΔVm  =  Δνm ⋅  Am (5.3) 

where Am is the area of the membrane and the membrane penetration per area, Δνm, may 

be determined from: 

Δνm  =  S ⋅ log
0

p
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (5.4) 

in which p is the confining pressure and p0 is the confining pressure at the start of the test. 

The variable S can be determined as a function of the mean grain size, D50: 

S  =  0.0124 + 0.0135 ⋅ log ( )50D  (5.5) 

5.5.2 Area Correction 

In all the triaxial tests the cross-sectional area is corrected as the tests progresses: 

A  =  0

0

V ΔV
H ΔH

−
−

  (5.6) 

A is the cross-sectional area of the specimen, and V0 and H0 are the initial volume and 

initial height of the specimen, respectively. ΔV is the change in volume and ΔH is the 

vertical deformation. Equation (5.6) assumes that the specimens deform uniformly as 

right cylinders during the tests.  

5.5.3 Piston Correction 

During the isotropic part of the triaxial tests the vertical confining pressure was reduced 

due to piston uplift. The area of the piston takes up 25 % of the area of the cap, resulting 
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in a similar reduction in the vertical confining pressure. As a result of this, shearing starts 

below the hydrostatic axis, as seen in Figure 5.11. To be able to apply as close to 

isotropic compression as possible, a thin rod that only reduced the area by 3 % was used. 

This rod was used to gage the vertical compression of the specimen during isotropic 

compression.  

5.5.4 Correction for Elastic Anisotropy in Brazilian Tests 

In a cross-anisotropic material with specimens cored vertical and horizontal, there are 

three principal material orientations of the specimens. Figure 5.12 shows the three 

orientations where a) is from a vertically cored specimen, and b) and c) are from 

horizontally cored specimens.  

 Normally the material is assumed to be isotropic and the tensile stress at the disc 

center is calculated as: 

t
Pσ   =  -

π R t⋅ ⋅
 (5.7) 

Where σt is the tensile stress, P is the applied force, R is the radius of the specimen and t 

is the thickness of the specimen. The compressive stress at the disc center, σc is three 

times larger than the tensile stress:  

c t
Pσ   =  3   =  -3 σ

π R t
⋅ ⋅

⋅ ⋅
 (5.8) 

Equation (5.7) and (5.8) were applied to the results from the vertical specimens (Figure 

5.12 a)).  
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Figure 5.12: Possible specimen orientations for Brazilian tests on cross-anisotropic 
material. 
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 Claesson and Bohloli (2002) developed an approximate equation for the principal 

stresses at the disc center of a cross-anisotropic material. The equations were derived 

from an analytical solution and were compared with results from tests on gneiss. The 

material is assumed to be linear elastic until failure, and the stress conditions at the disc 

center are based on the cross-anisotropic elastic parameters. The tensile stress, σt and the 

compressive stress, σc are found from equation (5.9) and equation (5.10). For isotropic 

elastic material equation (5.9) and equation (5.10) reduce to equation (5.7) and equation 

(5.8), respectively. 

( )
cos(2 θ)

v4t
h

EP cos(4 θ)σ     -  b - 1
π R t E 4

⋅⎡ ⎤⎛ ⎞ ⋅⎢ ⎥≅ ⋅ −⎜ ⎟⎜ ⎟⋅ ⋅ ⎢ ⎥⎝ ⎠⎣ ⎦
 (5.9) 

( )
cos(2 θ)

h4c
v

E3 P cos(4 θ)σ     + b - 1
π R t E 4

⋅⎡ ⎤⎛ ⎞⋅ ⋅⎢ ⎥≅ ⋅ ⎜ ⎟⎜ ⎟⋅ ⋅ ⎢ ⎥⎝ ⎠⎣ ⎦
 (5.10) 

As in equation (5.7), P, R, and t are defined as the applied force, the radius and the 

thickness of the specimen. Ev and Eh are the vertical and horizontal elastic moduli. θ is 

the angle between the bedding planes and the direction of the applied force. θ is defined 

to be zero when the applied force is perpendicular to the bedding planes. Therefore, in 

Figure 5.12: b), θ is equal to 90o and in Figure 5.12: c), θ is equal to 0o. The parameter b 

is defined as: 

v h hv

hv h

E E 21b  =   - 
2 G E

ν⋅ ⎛ ⎞
⋅⎜ ⎟
⎝ ⎠

 (5.11) 

Again Ev and Eh are the vertical and horizontal elastic moduli, νhv is Poisson’s ratio in the 

vertical direction when loading occur in the horizontal direction. Ghv is the shear modulus 
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in any vertical plane. This shear modulus cannot be found from triaxial tests, but 

according to Talesnick and Ringel (1999) a good approximation is:  

( )
h v v h

hv
v vh h v

E E 2 E  - EG   =  
E 1 + 2 ν  + E E

⋅ ⋅⋅
⋅ ⋅

 (5.12) 

Where Ev and Eh are the vertical and horizontal elastic moduli and νvh is Poisson’s ratio in 

the horizontal direction when loading occurs in the vertical direction. 

5.5.5 Correction for Interface Compression 

After completing the tests on the anisotropic sandstone, it was realized that a substantial 

amount of the measured deformation arose from interface compression at the ends of the 

specimens. Near the ends of the sample, the cementation either broke or the grains were 

crushed. Due to the weak cementation, the trimming of the ends could have compromised 

the strength of the cementation. The result is an increased amount of strain in the major 

principal direction and an increased volumetric contraction.  

 The deformation measured in the triaxial setup can be separated into four 

individual parts, as shown in Figure 5.13. The compression of the metal cap/base is 

considered negligible compared to the compression of the specimen and interfaces. The 

four parts contributing to the deformation are the interface between the cap/base and the 

filter stone, aδ , the deformation of the filter stone, bδ , the interface between the filter 

stone and the specimen, cδ , and the deformation of the specimen dδ . 

The deformation of the specimen, dδ is used in calculation of the strains, and can be 

calculated from:  
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Figure 5.13: Deformation of 
individual parts in triaxial setup.  
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d measured corδ   =  δ  - δ  (5.13) 

in which measuredδ is the measured deformation and corδ is a correction due to interface 

compression, which is defined in equation (5.14): 

cor a b cδ   =  δ  + δ  + δ  (5.14) 

in which aδ is the deformation of the interface between the cap/base and the filter 

stone, bδ is the deformation of the filter stone, and cδ is the deformation of the interface 

between the filter stone and the specimen. The volumetric correction due to interface 

compression, ΔVcor is considered a function of the correction factor, corδ : 

ΔVcor  =  corδ  ⋅  A (5.15) 

in which A is the area of the specimen. 

 To determine the individual quantities in the correction factor, three tests with 

different interfaces were performed. Two of the tests were performed on small 

specimens, cored from the remaining part of the two blocks. The interface compression 

was assumed to be independent of the anisotropy in the sample, and only one set of 

correction parameters are obtained. The three setups are depicted in Figure 5.14, where 

the first setup was similar to the triaxial tests. In the second test, the specimen was glued 

to the filter stones and in the third test only the filter stone was tested. All tests were 

performed unconfined, as the interface compression was considered a function of the 

major principal stress only. 

 The result from the first test (Figure 5.14 a)), can be seen in Figure 5.15 along 

with the function used to model the behavior. The relation between the measured defor- 
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Figure 5.14: Tests performed to quantify amount of interface compression. 
a) Specimen with filter stones and cap/base. b) Specimen glued to filter 
stones. c) Filter stone between cap and metal surface. 
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mation and the major principal stress is given in equation (5.16). The relation used could 

fit the data better, but that would result in the correction exceeding the deformation 

measured in the triaxial tests at higher confining pressures. 

( ) 0.45
measured a b c d 1δ  =  δ + δ + δ + δ   =  0.010 σ⋅  (5.16) 

in which measuredδ  is the deformation of specimen and interfaces and σ1 is the major 

principal stress. 

 The result from the test with the specimen glued to the filter stones can be seen in 

Figure 5.16, and the result is modeled using a linear expression: 

a b d 1δ + δ + δ   =  0.0008 σ⋅  (5.17) 

in which aδ ,  bδ ,  and dδ  are defined in Figure 5.13 and σ1 is the major principal stress. 

 The results from the test in Figure 5.14 c) can be seen in Figure 5.17 and is 

modeled using the relation in equation (5.18) and equation (5.19).  

a b 1
πδ  + 0.5 δ   =  0.013 sin σ

1200
⎛ ⎞⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

     for σ1 < 600 kPa (5.18) 

a bδ  + 0.5 δ   =  0.013⋅      for σ1 ≥  600 kPa (5.19) 

in which aδ is the deformation of the interface between the cap/base and the filter 

stone, bδ is the deformation of the filter stone, and σ1 is the major principal stress. The 

deformation is considered constant above 600 kPa. This indicates a high elastic modulus 

for the filter stone, and the deformation, bδ can therefore be considered negligible. 

 Combining the relations in equation (5.16), (5.17), (5.18), and (5.19) results in the 

correction factor for stresses below 600 kPa in equation (5.20) and the correction factor  
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Figure 5.15: Results and modeled behavior for setup a) in Figure 5.14. 
 

 

 

Figure 5.16: Results and modeled behavior for setup a) in Figure 5.14. 
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Figure 5.17: Results and modeled behavior for setup a) in Figure 5.14. 
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for stresses above 600 kPa in equation (5.21). 

( ) 0.45
cor a b c 1 1 1

πδ   =  δ  + δ  + δ   =  0.010 σ  - 0.00008 σ  + 0.013 sin σ
1200
⎛ ⎞⋅ ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

 (5.20) 

( ) 0.45
cor a b c 1 1δ   =  δ  + δ  + δ   =  0.010 σ  - 0.00008 σ  + 0.013⋅ ⋅  (5.21) 

in which σ1 is the major principal stress. The correction in equation (5.21) has a 

maximum deformation of 0.164 mm at a major principal stress of 1550 kPa. Above that 

stress level, no further correction is performed. The maximum correction (0.164 mm) is 

the equivalent of half the average grain size. The correction is only performed during the 

virgin loading until failure, meaning this correction does not affect residual loading or 

unloading/reloading cycles during the test. 

5.6 Discussion 

5.6.1 Corrections Omitted 

The stiffness of the membranes was found to be insignificant compared to the stiffness of 

the specimen, and no correction was performed. The mass of the cap and piston acts as an 

extra pressure on the specimen. However, the O-ring sealing the piston had a very tight 

fit, almost holding the cap and piston by itself. With uplift from the cell water, the extra 

pressure from the cap and piston was found to be negligible. 

5.6.2 Difference in Stiffness and Strength between Triaxial and Torsion Shear Tests 

The elastic modulus during virgin loading of the torsion shear tests was found to be 

higher than the elastic modulus of the triaxial tests. Furthermore, the torsion shear tests 
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had increased strength compared to the triaxial tests. Both triaxial and torsion shear 

specimens had comparable void ratios and cementation. This difference in stiffness and 

strength are the reason for the interface correction discussed in section 5.5.5. Other 

reasons for the difference could be size effects, pore fluids, boundary conditions, and 

method of measurement, all discussed in the following sections.  

 When testing materials with true cohesion, the size of the tested specimen affects 

the strength. According to Weibull (1951) a large specimen contains more flaws than a 

small specimen and the number of critical flaws is therefore greater. This causes the 

strength of a larger specimen to be lower than the strength of a smaller specimen with the 

same shape. The size effect also depends on the failure mode (Tsur-Lavie and Denekamp 

(1982)). For a single fracture plane the size effect is more pronounced than for failure 

distributed uniformly over the volume of material. E.g. the size effect in Brazilian tests is 

more pronounced than in triaxial tests. When comparing results from different types of 

tests the volume of the specimens should be of equal size. The size effect would result in 

the opposite behavior than the one observed in the triaxial and torsion shear specimens. 

Therefore, if size effect is present in the results, it can be considered negligible. 

 Triaxial tests on chalk performed by Risnes et al. (2004), show different strength 

and yield stress, depending on the pore fluids. This is attributed to the zeta-potential of 

the different fluids. When a particle with a negative surface charge is surrounded by 

liquid containing ions, the charge of the particle causes the concentration of positive ions 

to increase at the surface of the particle. It forms a solid positive charged layer called the 

Stern layer. This layer is only 1-2 molecules thick as the positively charged ions repel 
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each other. The concentration of positively charged ions decrease with distance from the 

particle as negatively charged ions start mixing until equilibrium is reached. See Figure 

5.18 a). The zeta-potential is the difference in charge between the Stern layer and the 

diffuse layer. When measuring the zeta-potential, the charge in the Stern layer is assumed 

to vary linearly while the charge in the diffuse layer varies exponentially as shown in 

Figure 5.18 b). As a consequence, a dry specimen is stronger than a saturated specimen. 

Elmofty and Shokir (2003) found quartz to have zeta-potential, thereby indicating that the 

strength of sandstone is reduced by the pore fluids. This would result in a higher strength 

in the torsion shear tests as these were performed dry. 

 However, the effect of zeta-potential on the elastic modulus seems limited. To 

examine this further, an oddly shaped specimen was retrieved from the remaining parts of 

one of the blocks (The cross-sectional area was not constant). The specimen was exposed 

to unconfined loading in both dry and water saturated state. The vacuum procedure used 

for the Brazilian tests (section 5.4.2) was used for saturation. The results can be seen in 

Figure 5.19 where the stress-strain curves are plotted. The same specimen was tested in 

dry state first and then in saturated state. There is no significant difference between the 

results from the saturated and dry results to suggest that the pore fluid influences the 

elastic modulus of the artificial sandstone significantly, although the dry specimen is 

slightly stiffer than the saturated specimen. 

 The boundary conditions in the torsion shear tests differ from the triaxial tests due 

to end restrictions. In the torsion shear tests, the ends are glued to the cap and base rings, 

whereas the triaxial tests are performed with ends butting up to the filter stones with no 
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Figure 5.18: a) A negatively charged particle attracts positively 
charged ions b) The charge as a function of distance from the 
particle. 

 

 
Figure 5.19: Deformation of artificial sandstone 
in dry and water saturated conditions. 
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glue at the ends. There is friction between the specimen and the filter stone in the triaxial 

tests, but compared to the torsion shear experiments the friction is low. According to 

Rowe and Barden (1964), frictionless ends in triaxial tests, reduce both the elastic 

modulus and the strength of the material.  

 In the triaxial tests, the major principal deformation is measured by a digital dial 

gage. In the torsion shear tests, the deformation is measured by strain gauges. Using the 

dial gage increases the deformation measured due to interface compression, resulting in 

apparent lower elastic modulus. The application of strain gages to porous material results 

in the glue penetrating the surface and influencing the properties of material locally. This 

increases the elastic modulus obtained.  

 None of the above discussed reasons are able to completely explain the difference 

in strength and stiffness between the triaxial tests and the torsion shear tests. Weather a 

combination of the above or something different is responsible for the difference remains 

unknown. 

5.6.3 Gas Permeable Membranes 

After all the triaxial tests were completed, it was discovered that the latex rubber 

membranes were permeable to nitrogen. The nitrogen used to produce the confining 

pressure dissolves in the cell water and migrates through the membranes. As the pressure 

in the specimen is lower, the nitrogen show up as air bubbles in the pore fluid, causing 

the measured volume change to be too contractive. Later tests on sand, in the same setup 

and with a similar specimen volume, showed the difference in volume change with and 
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without nitrogen penetration to be about 2.3 % of the volume of the specimen. This was 

for a 9 hour test and with fewer membranes. The rate of nitrogen penetration is believed 

to depend on the confining pressure, number of membranes, and how well the cell was 

filled with water. A higher confining pressure increases the amount of nitrogen dissolved 

in the cell water thereby increasing the rate of penetration, whereas an increase in the 

number of membranes will decrease the rate of penetration. If the bottom of the line 

feeding the confining pressure was filled with water, then the dissolved nitrogen would 

have a longer distance to diffuse before reaching the membranes. However, this issue is 

not considered to by important for the tests on cemented sand, and no correction for this 

potential error in volume change has been performed, because the test time is shorter, and 

a larger number of membranes were used. 

5.6.4 Time Effects 

At the end of isotropic compression and before triaxial loading was initiated, the 

specimens were allowed to creep between 6 and 10 minutes. This was done to make sure 

the membranes were not leaking, and to allow time to change the setup from the stress 

controlled isotropic compression to the deformation controlled loading. During creep, the 

yield surface moves out causing the specimen to be a little overconsolidated. The effect 

would show up in the first measurements during shearing as a reduction in the strains and 

consequent stiffer response, but this was found to be insignificant, 

 Another type of time effect (which did not affect the results) was observed in the 

Brazilian tests. After the maximum stress had been reached, the rupture was not always 
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visible in the specimen. Rather than wait for the crack to occur, the deformation rate was 

increased by a factor of approximately 30. This typically resulted in an increase in the 

stress, sometimes beyond the maximum reached in the test. This shows the effect of the 

deformation rate on the strength of the sandstone. Tests performed at a faster rate would 

consequently be stronger. 

5.6.5 Reduction of Membrane Penetration 

In the last test (V13) an attempt was made to try a procedure to reduce the membrane 

penetration, as shown in Figure 5.20 (Lo et al. 1989). This was done by smearing a thick 

layer of liquid rubber latex on the specimen. After the latex had dried the normal 

procedure with positioning of membranes and silicone grease was used.  

 In this test, the specimen was exposed to K0-conditions, where the ratio between 

the vertical and the volumetric strains were kept constant by changing the confining 

pressure. The test was terminated at a confining pressure of 8.8 MPa.  

 After the test the membranes were removed and the specimen surface was 

examined. It was found that the rubber latex had been pushed into the specimen. At the 

high pressures employed in the test, the rubber latex behaved as a relatively soft 

substance and it filled the outer 1-2 mm of the specimen, as shown in Figure 5.21 b). This 

means, that instead of reducing the membrane effect, the rubber latex increased it. How 

much the rubber latex affected the volume change depends on the thickness of the initial 

layer, which in this test in unknown.  
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Figure 5.20: a) Membrane at the beginning of a test. b) At high pressures, the membrane 
is pressed into the voids between the grains. c) Rubber latex filling the outer voids, 
preventing membrane penetration. 
 

 

   
Figure 5.21: a) Rubber latex layer peeled off dummy specimen. b) After K0-test at 
high confining pressures, the rubber membrane is pushed into the voids of the 
specimen. 
 

 

 

 a)              b) 
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 The suggested procedure might be successful at low confining pressures where 

the latex is still rigid and therefore acts as a membrane. If the latex is only smeared on the 

specimens in a thin layer, just thick enough to fill the gaps, the procedure might also 

work. However, this method was not successful for the high pressure tests performed in 

this investigation.  

 



6. Behavior of Cross-Anisotropic Sandstone 

Based on the observed behavior of cemented sand four stages of cementation are 

suggested to describe the state of the sand cement matrix. No quantifications have been 

made except observations of the specimens at the end of each test. The four stages are 

illustrated in Figure 6.1. In stage I, there is full cementation between the grains. This is 

the initial state of the cemented sand, and it relates to the elastic behavior inside the 

cementation yield surface. Stage II is the behavior experienced between the cementation 

yield surface and the broken cementation yield surface. During stage II the tensile 

strength is reduced and eventually lost. Furthermore, the original structure of the sand 

cement matrix is mostly intact. In stage III, further bond breaking takes place and most of 

the original structure is lost. Individual grains move around while clusters of grains are 

still cemented together. During stage IV, only few clusters of grains remain cemented 

together. The structure at this stage is close to that of the uncemented sand where grain 

crushing and friction between the grains controls the behavior. Stage IV is observed in 

the specimens that reached the critical state line at failure. The locations of all four stages 

are shown in the pq-stress space in Figure 6.2.  

6.1 Isotropic Compression 

Four isotropic compression tests were performed on two vertical and two horizontal 

specimens, one vertical and one horizontal from each of the two blocks of the artificial 

cross-anisotropic sandstone. The tests were performed to confirm the reproducibility of  
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Figure 6.1: Four stages of decementation: a) Stage I; Full cementation. b) Stage II; loss of 
cohesion. c) Stage III; loss of original structure. d) Stage IV; Sand behavior. 
 

 

 
Figure 6.2: Location of the four stages of sand-cement matrix in the pq-stress space.  
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the artificial sandstone in the two blocks. The results of the tests can be seen in Figure 6.3 

where the volumetric strain is plotted as a function of isotropic stress. The specimens 

from block I are plotted with the filled symbols and the specimens from block II are 

plotted with the open symbols. During isotropic compression, the volumetric response 

should be independent of the orientation of the specimen, meaning all tests should exhibit 

identical results. The stress-strain curves from three of the specimens (V4, H3, and H9) 

are similar, with a break in the curve at an isotropic stress of 4-6 MPa. The stress-strain 

curve from V9 does not have this break, but rather consists of a smooth curve. However, 

the void ratio of V9 is lower than those of the remaining specimens, which is a possible 

cause of the different results. The overall similarities are taken to indicate that the 

sandstone from the two blocks can be expected to behave similarly when the void ratios 

are comparable. 

 The results from the isotropic tests may also be used to indicate whether the 

corrections performed for membrane penetration are accurate. These corrections were 

explained in detail in chapter 5. The volumetric strain can be calculated as: 

εvol  =   εv + 2 ⋅ εh (6.1) 

where εv is the major principal strain from the vertical specimens and εh is the major 

principal strain from the horizontal specimens. Due to the different behavior of specimen 

V9, the result from this test is omitted in the calculations. The average volumetric strain 

from V4, H3, and H9 is determined and the volumetric strain is calculated using equation 

(6.1). The results are compared in Figure 6.4. There is a good overall agreement between 

the two ways of obtaining the volumetric strain indicating the corrections are accurate.  
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Figure 6.3: Volumetric strain as a function of confining pressure for isotropic tests on 
artificial cross-anisotropic sandstone. 
 

 

 
Figure 6.4: Comparison of volumetric strain obtained from volume change device and 
from major principal strain. 
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However, the calculated volumetric strain does not show the break in the curve that the 

average volumetric strain does. 

6.1.1 Cementation Yield Surface from Isotropic Compression 

The break on the stress-strain curve during the isotropic compression tests indicates the 

location of the initial yield surface due to cementation. When the stresses exceed this 

yield surface, the cementation starts breaking, and permanent damage (plastic work) 

takes place. From Figure 6.4 the cementation yield surface is determined to be at an 

isotropic stress of approximately 4-6 MPa. By plotting the void ratio as a function of the 

isotropic stress in a semi logarithmic coordinate system, a more precise determination of 

the cementation yield stress can be obtained. This is demonstrated in Figure 6.5, where 

the yield stress for test H3 is determined. The elastic part and the plastic part of the curve 

are each fitted with a straight line, and the yield stress is located where the two lines 

intersect. For test H3, the yield stress is determined to be 4.5 MPa. 

 This procedure has been used for the four isotropic compression tests and for the 

isotropic loading in the triaxial compression tests. The determined yield stress can be 

seen in Figure 6.6 as a function of the void ratio. The cementation yield surface is 

determined to intersect the hydrostatic axis at an average value of 4.3 MPa ( cy aσ p  =  

42.4). 

 As discussed in section 2.1.5, the cementation makes the transition from elastic to 

plastic more abrupt due to the initial cementation yield surface. This behavior can also be 

observed here. During the isotropic compression test shown in Figure 6.5, specimen H3  
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Figure 6.5: Determination of initial yield surface for specimen H3. 

 

 
Figure 6.6: Isotropic yield stress as a function of initial porosity. 
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was loaded to 9.7 MPa. After unloading, the specimen was reloaded and the reduction in 

void ratio as a function of the isotropic stress can be seen in Figure 6.7 The transition 

from elastic to plastic is much smoother than during the first loading due to the gradual 

breaking of cementation. Using the procedure described in the previous section to 

determine the yield surface for the reloading is associated with more scatter. However, 

the new yield surface is determined to lie at 9.2 MPa which is 0.5 MPa lower than the 

initial loading would indicate. Breaking the cementation causes the cementation yield 

surface to become a regular yield surface, which can be determined upon reloading. 

6.2 Triaxial Tests 

6.2.1 Stress-Strain Relation 

The stress-strain relations and the volume changes of the vertical and horizontal triaxial 

specimens are potted in Figure 6.8 and Figure 6.9, respectively. Unloading reloading 

cycles performed during the tests have been omitted in the plots. The horizontally cored 

specimens show more scatter than the vertically cored specimens. The scatter can arise 

from the greater variation of void ratio in the horizontally cored specimens determined in 

section 5.3.1.  

  The tests performed at confining pressures of 9.9 MPa and 14.0 MPa were 

terminated before failure. This was due to limits on the major principal strain, where 

approximately 25 % was the maximum.  

 At low confining pressures, the volumetric strain shows dilation, and as the 

confining pressure increases only contraction takes place. The transition from contraction  
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Figure 6.7: Initial isotropic loading and isotropic reloading of specimen H3. 
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Figure 6.8: Behavior of vertically cored cross-anisotropic sandstone in triaxial 
compression. a) Stress-strain relations. b) Volume change relations. 
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Figure 6.9: Behavior of horizontally cored cross-anisotropic sandstone in triaxial 
compression. a) Stress-strain relations. b) Volume change relations. 
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to dilation takes place before failure, indicating the cementation starts breaking prior to 

failure. 

 In vertical and horizontal direction, the two tests performed at confining pressures 

of 9.9 MPa and 14.0 MPa show almost identical volumetric responses. Similar behavior 

was observed at high pressure compression and extension tests on Cambria sand 

(Yamamuro and Lade 1996). The explanation for the behavior in the tests on the Cambria 

sand was related to the isotropic compression prior to shearing. During isotropic 

compression, the volume was reduced thereby causing less volume change during 

shearing. This can explain the volumetric behavior experienced here. 

6.3 Failure 

6.3.1 Failure Mode 

The failure mode of the Brazilian tests was by splitting. All specimens failed by a fracture 

directly through the middle, from one force point to the other. No double fracture lines 

were observed.  

 The failure mode of the triaxial specimens can be divided into four categories 

(Figure 6.10). At low confining pressures (50 kPa and 150 kPa) the specimens failed by 

splitting as shown in Figure 6.10 a). The fracture line did not run directly down through 

the specimen, but started perpendicular to either the top or bottom face of the specimen 

and then diverted towards the vertical surface. In the tests with confining pressures from 

500 kPa to 2.0 MPa, two kinds of failure modes were observed. Either a shear band 

developed (Figure 6.10 b)), or a part of the specimen plastically deformed (Figure 6.10 
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Figure 6.10: Failure mode for triaxial tests. a) Splitting of specimen. b) 
Shear band and partial plastic deformation of specimen. c) Partial plastic 
deformation of specimen. d) Full plastic deformation of specimen. 
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c)). One did not always exclude the other. In some tests both a shear band and partial 

plastic deformation were observed. At the highest confining pressures (4.0 MPa and 

above), the specimens failed by plastic deformation (Figure 6.10 d)) and after the tests the 

specimens also showed horizontal fracture bands. Pictures taken of the specimens, 

representing the different failure modes are shown in Figure 6.11. 

 Some of the horizontal bands experienced at high confining pressures were not 

visible before the inner membrane was removed from the specimen. The removal of the 

final membrane is believed to have amplified the visible damage and may have caused 

some of the fractures. Furthermore, the tests were performed until 20-25 % strain, and the 

membranes around the specimen were buckling due to the large strains. Horizontal 

splitting due to removal of vertical deviator stress while the cell pressure is still present 

will result in an extension stress condition because the piston uplift results in lower 

vertical stress than horizontal stress.  

6.3.2 Tensile Strength 

The tensile strength obtained from Brazilian testing is not directly comparable with the 

unconfined tensile strength. This can be realized from Figure 6.12 where the three 

possible orientations of the Brazilian disks are placed in the principal stress space. Also 

shown is the vertically and horizontally cored specimens tested in unconfined 

compression and extension. It can be seen that two orientations of the disks relate to the 

tensile strength of the horizontally cored triaxial specimens and one orientation relate to 

the vertically cored triaxial specimen. Unfortunately, the two orientations tested in this  
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Figure 6.11: Failure mode for triaxial tests. a) Splitting of specimen at low confining 
pressure (50 kPa - 150 kPa). b) Shear band and partial plastic deformation (500 kPa - 
2.0 MPa). c) Partial plastic deformation (1.0 MPa - 2.0 MPa). d) Plastic deformation of 
specimen at high confining pressures (4.0 MPa <), (Horizontal fractures lines possible 
developed during unloading). 

 

 

 

 

 

 

 

 

 

 

 

 

                                     a)                       b)                       c)                      d) 
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Figure 6.12: Location of Brazilian tests, unconfined compression tests, and 
unconfined extension tests in principal stress space. 
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study are the two orientations related to the horizontally cored triaxial specimens. 

  A total of 14 Brazilian tests were completed, and the results are presented in 

Figure 6.13 as a function of the void ratio. There seems to be a tendency towards a lower 

tensile strength as the void ratio increases. This tendency is more pronounced for the 

horizontally cored specimens than the vertically cored specimens. The average void ratio 

for all the specimens (triaxial and Brazilian) was 0.774. If this void ratio is used to 

determine the Brazilian tensile strength, a value of approximately 0.168 MPa is obtained. 

The difference in strength between the vertically cored specimens and the horizontally 

cored specimens lie within the scatter of the results, and no distinction in tensile strength 

between the two directions is made. 

 After the completion of the isotropic compression tests, the specimens were still 

intact. One vertically cored specimen and one horizontally cored specimen were each cut 

into three disks and the Brazilian tensile strength was determined. The purpose was to 

determine the reduction in tensile strength due to degradation of the cementation during 

isotropic loading. The results of the Brazilian tests on the isotropically loaded specimens 

are shown in Figure 6.14 as a function of the void ratio. Again, the void ratio of 0.774 is 

used as a reference point to determine the strength. A Brazilian strength of 0.014 MPa is 

obtained. 

 During isotropic loading, the specimens were loaded to 13.3 MPa ( c aσ p  = 131) 

which resulted in a reduction of the Brazilian tensile strength of 92 %. This is illustrated 

in Figure 6.15 where the Brazilian tensile strength of the sandstone is plotted as a 

function of the isotropic stress. Note the scale of the vertical axis is hundred times smaller  
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Figure 6.13: Variation of Brazilian tensile strength as a function of void ratio. The 
average void ratio of 0.774 corresponds to a Brazilian tensile strength of 0.168 MPa. 
 

 

Figure 6.14: Variation of Brazilian tensile 
strength as a function of void ratio for 
specimens preloaded to isotropic stress of 
13.3 MPa. The average void ratio of 0.774 
corresponds to a Brazilian tensile strength 
of 0.014 MPa. 
 

Figure 6.15: Tensile strength as a 
function of preloaded isotropic stress. 
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than the scale of the horizontal axis. The Brazilian tensile strengths after no preloading by 

isotropic stress are given in Figure 6.13. The isotropic tests indicated that the cementation 

yield surface intersected the hydrostatic axis at 4.3 MPa ( cy aσ p  = 42.4). Isotropic 

stresses below 4.3 MPa would result in elastic behavior and no reduction in Brazilian 

tensile strength (Stage I in Figure 6.1). Above 4.3 MPa the cementation starts breaking 

down and at 13.3 MPa, a Brazilian tensile strength of 0.014 MPa is left (Stage II in 

Figure 6.1). The decay is here assumed to vary linear with the isotropic preloading stress. 

The isotropic stress at which the cementation is broken and stage III begins corresponds 

to 14.1 MPa ( c aσ p  = 139.2). 

6.3.3 Triaxial Failure 

The failure points determined from the triaxial tests in vertically cored specimens and 

horizontally cored specimens are shown in Figure 6.16 and Figure 6.17, respectively. At 

low confining pressures, the failure surface is curved, and a detailed inspection reveals 

that the lower part of the curvature consists of a second curvature which is explored in 

detail in section 7.1.2. At high confining pressures the failure surface consists of a 

straight line indicating the critical state line is reached.  

At low confining pressures, the failure surface from the vertically cored 

specimens is the strongest. At high confining pressures the failure surfaces in vertically 

cored specimens and horizontally cored specimens are almost identical indicating the 

cross-anisotropic behavior is reduced as the cementation breaks down. 
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Figure 6.16: Failure points determined for vertically cored specimens. 
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Figure 6.17: Failure points determined for horizontally cored specimens. 
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6.4 Elastic Behavior 

The elastic behavior is determined several times during each test. Figure 6.18 shows the 

three areas where elastic parameters are determined from a typical stress-strain relation. 

The three areas are: a) Initial tangent; b) Small unloading-reloading cycle inside the 

cementation yield surface; c) Full unloading-reloading cycle at large strains, including the 

final unloading.  

The elastic behavior determined from the initial tangent loading is softer than both 

the unloading-reloading cycles inside the cementation yield surface and the unloading-

reloading at large strains. To be able to compare the elastic behavior before and after 

breaking of the cementation, Young’s modulus determined from the unloading-reloading 

cycles is shown in Figure 6.19. There is considerable variation in the results in Figure 

6.19, but the best fit lines indicate the cemented material to be the stiffest, until the 

cementation starts breaking. After the cementation is broken, the specimens are more 

affected by confining pressure. This can be seen by the steeper slope of the best fit. This 

behavior is in accordance with the behavior described in section 2.1.3. However due to 

the low degree of cementation in the artificial sandstone tested here, the difference 

between the fully cemented sandstone and that with broken cementation is small. 

6.5 Cementation Yield Surface 

The procedure described in section 2.1.2 to determine the initial yield stress from the 

stress strain relation was applied here. This is demonstrated in Figure 6.20 and Figure 

6.21 where the yield stresses for a vertically cored specimen with a confining pressure of 

0.48 MPa and a horizontally cored specimen with a confining pressure of 2.0 MPa are  
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 Figure 6.18: Stress-strain curve indicating where elastic parameters are 

determined 
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Figure 6.19: Young’s modulus as a function of the first stress invariant, in cemented state 
and after breaking the cementation. 
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Figure 6.20: Determination of yield stress 
for triaxial test in vertical direction with 
confining pressure of 0.48 MPa. 
 

Figure 6.21: Determination of yield stress 
for triaxial test in horizontal direction with 
confining pressure of 2.0 MPa. 
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determined. In the vertical specimens, the major principal yield stress was determined to 

be 1.93 MPa (= 1.45 MPa + 0.48 MPa). In the horizontal specimens, the major principal 

yield stress was determined to be 2.75 MPa (= 0.75 MPa + 2.0 MPa). This procedure was 

used to determine the initial yield stress for all triaxial tests with confining pressures 

under 6.0 MPa. These initial yield points define the shape of the cementation yield 

surface. 

In section 6.1.1 the hydrostatic yield stress was determined to be 4.3 MPa. The 

yield surfaces intersecting the hydrostatic axis at this confining pressure is shown in 

Figure 6.22 for vertically cored specimens and Figure 6.23 for horizontally cored 

specimens. Furthermore, the initial yield points determined from the triaxial tests is 

shown. The yield surface is much larger for the vertically cored specimens than for the 

horizontally cored specimens, indicating cross-anisotropy.  

6.6 K0-Loading 

During K0-loading of a vertically cored specimen the radial strains should be equal to 

zero. That condition was not entirely met in the K0-test performed due to membrane 

penetration and end effects. The corrections for these conditions are described in Chapter 

5. The corrections for these effects were performed after the test was concluded and as a 

result some radial strains were experienced. Under true K0-conditions, the volumetric 

strains are equal to the axial strains, and the radial strains are equal to zero. This is shown 

in Figure 6.24 where the major principal strain and the volumetric strain are shown. The 

dotted line represents K0-conditions, where the radial strains are equal to zero. At the 

beginning of the test, the loading deviates from the line, but after approximately 2-3 %  
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Figure 6.22: Determined failure points and yield points in vertical direction. 
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Figure 6.23: Determined failure points and yield points in horizontal 
direction. 
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Figure 6.24: Major principal and volumetric strains during K0-
loading.  
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axial strain the test results become almost parallel to the K0-condition. This means that 

the major part of the test is performed under K0-conditions. 

 The stress path related to the strains in Figure 6.24 is shown in Figure 6.25 in the 

p-q stress space. The stress path starts inside the cementation yield surface, where a linear 

path is observed. This path continues until the broken cementation yield surface is 

reached. At the broken cementation yield surface, the stress path changes direction, and 

the stress path is between the broken cementation yield surface and the failure surface. 

This corresponds to the transition from stage II to stage III in Figure 6.1. Finally, the 

stress path changes direction and becomes parallel to the critical state line. It was not 

possible to identify the transition from stage III to stage IV in the K0-loading.  

 The stress path followed during K0-loading is closer to the failure surface than 

observed in the reviewed studies in Chapter 2. This is most likely due to the deviation 

from the K0-condition as shown in Figure 6.24.  

6.7 Triaxial Loading of Isotropically Preloaded Specimens 

After completion of the isotropic compression tests, two specimens were kept in the cell 

and the setup was changed to triaxial loading. The triaxial tests were conducted at a 

confining pressure of 150 kPa for direct comparison with intact triaxial specimens. The 

goal was to observe the effect of preloading the specimens isotropically. During isotropic 

loading some of the cementation breaks. Both specimens were preloaded to a confining 

pressure of approximately 15.7 MPa, which is just beyond the broken cementation yield 

surface at 14.1 MPa. The preloading was carried into to stage III in Figure 6.2, where no 

tensile strength remains. It was speculated that the behavior would change towards lower  
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Figure 6.25: Stress path followed during K0-loading.  
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strength and lower elastic modulus. The stress-strain and volume change behavior for the 

preloaded and intact vertically cored specimens are compared in Figure 6.26. The intact 

specimen is stronger and stiffer than the preloaded specimen. Furthermore, the 

volumetric strain shows increased contraction before dilation. The preloaded and intact 

horizontally cored specimens are compared in Figure 6.27. The preloaded volumetric and 

major principal strains are identical to those for the intact specimen. This indicates very 

little difference in behavior due to preloading. Furthermore, the preloaded specimen is 

stronger than the intact specimen. There is no obvious explanation for the difference in 

behavior for the two horizontal specimens and for the difference between the vertical and 

the horizontal specimens.  
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Figure 6.26: Comparison of intact and preloaded vertical specimens in triaxial 
compression. a) Stress-strain relation. b) Volume change.  
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Figure 6.27: Comparison of intact and preloaded horizontal specimens in 
triaxial compression. a) Stress-strain relation. b) Volume change.  
 

 



7. Parameter Determination for Cross-

Anisotropic Extension to The Single 

Hardening Model 

The cross-anisotropic version of The Single Hardening Model employed in Chapter 8 

requires parameter determination of isotropic parameters on specimens cored in vertical 

and horizontal directions.  

7.1 Failure Parameters 

 The failure criterion in The Single Hardening Model requires determination of 

three parameters. The opening angle is controlled by the parameter η1 and the curvature 

of the failure surface is described by the parameter m. Furthermore, the parameter ‘a’ 

controls the translation of the stress space due to cohesion. 

7.1.1 Parameter ‘a’ 

The parameter ‘a’ is estimated from the Brazilian tensile strength determined in section 

6.3.2. To simplify the predictions, one value of the parameter ‘a’ is assumed for both the 

vertical and the horizontal direction, despite the anisotropy of the material. As a result, 

the origin of the translated coordinate system remains on the hydrostatic axis. 

 As demonstrated in Figure 7.1 the tensile strength obtained from the Brazilian test 

is lower than the value of the parameter ‘a’. First the tensile strength from the Brazilian  
245 
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Figure 7.1: Comparison of Brazilian tensile strength with parameter ‘a’ in The Single 
Hardening Model. a) Octahedral plane. b) Triaxial plane. 
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test, SB is projected along the failure surface to point A (Figure 7.1 a)). Point A is located 

on the triaxial plane in Figure 7.1 b), where a direct comparison with the parameter ‘a’ is 

possible. 

 In section 6.3.2 the Brazilian tensile strength was determined to be 0.168 MPa. 

This corresponds to t aσ p = 1.66. Based on the minimum value of ‘a’ being 1.66 and the 

determination of the parameters η1 and m is section 7.1.2, the value of the parameter ‘a’ 

at failure becomes 1.95.  

7.1.2 Parameters η1 and m 

As discussed in section 6.3.3 the failure surface does not consist of one smooth surface. It 

can be divided into three separate sections, each corresponding to different stages of the 

sand cement matrix. These stages can also be recognized in the parameter determination 

process for the failure surface in The Single Hardening Model. The plots in Figure 7.2 

and Figure 7.3 would normally be used to determine the parameters η1 and m in vertical 

and horizontal direction. If all the failure points can be fitted to one line, the failure 

surface consists of one smooth curvature. Furthermore, if points form a horizontal line it 

corresponds to a straight line in the p-q stress space (or triaxial plane) indicating the 

critical state line is reached. 

 For both vertical and horizontal specimens, the failure points align into three 

separate sections each representing a stage of cementation from Figure 6.1. At low 

confining pressures (stage II) the large slope represent a failure surface with considerable 

curvature. Stage II represents the region between the initial cementation yield surface and  
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Figure 7.2: Failure points for vertically cored specimens.  
 

 

 
Figure 7.3: Failure points for horizontally cored specimens. 
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the broken cementation yield surface. As the confining pressure increases and the 

specimens fail in stage III, the curvature decreases. This is evident from the lower slope 

of the failure points in this stage. At high confining pressures the horizontal alignment of 

the failure points corresponds to the straight critical state line. There is more scatter in the 

failure points for the horizontal specimens than for the vertical specimens. Furthermore, 

the critical state line is reached at a lower confining pressure for the horizontal specimens 

than the vertical specimens. 

 The open symbols in Figure 7.2 and Figure 7.3 are the tests at confining pressures 

of 9.9 MPa and 14.0 MPa, where the tests did not reach failure. The points plotted are the 

maximum stress level reached near 25 % axial strain in the tests. A further increase in 

strength would move the points upwards and slightly to the left. For the tests on vertical 

specimens, this would result in a negative slope, meaning the critical state line curves 

outwards (or the critical state line is reached at confining pressures above the ones tested 

here. 

 The specimens failing in stage II had cementation remaining between the grains, 

and the parameter a = 1.95 is applied to these specimens. The parameter determination in 

the translated stress space is shown in Figure 7.4 and Figure 7.5. Note that a = 1.95 only 

apply to the specimens failing in stage II, including the Brazilian tests which is included 

in Figure 7.4 and Figure 7.5. In the cross-anisotropic extension to The Single Hardening 

Model presented in Chapter 8, the failure parameter m is assumed to have identical 

values in vertically and horizontally cored specimens. During the parameter 

determination for the artificial cross-anisotropic sandstone, the data is fitted for one value 
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Figure 7.4: Determination of failure parameters in translated 
coordinate system for vertically cored specimens failing in stage II 
and stage III.  

 

Figure 7.5: Determination of failure parameters in translated 
coordinate system for horizontally cored specimens failing in stage 
II and stage III. 
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of m in both vertically and horizontally cored specimens. The assumption of constant m 

is in accordance with the data. In vertical direction the failure parameters become m = 

0.78 and η1 = 950 and in horizontal direction m = 0.78 and η1 = 810. Due to the 

parameter ‘a’ changing, the parameters determined for the failure surface, fits both stage 

II and stage III. This means m and η1 are constant in stage II and stage III, only ‘a’ 

changes. 

 In stage IV where the critical state line is reached the failure surface can be 

characterized by one parameter, ηCL, where the parameter ηCL characterize a straight line 

without any curvature. For the vertically cored specimens, ηCL is 15.8 and for the 

horizontally cored specimens ηCL is 16.5. This corresponds to friction angles of 30.8o and 

31.3o, respectively. The vertical and the horizontal values are almost identical indicating 

much of the initial cross-anisotropic fabric is lost during the crushing of the cementation.  

 The softening function developed in section 3.2.3 uses the parameter ηR to control 

the residual strength. In cohesionless soil, the critical state is reached at the residual 

strength. As a result, the parameter ηCL describing the critical stage line should 

correspond to the residual strength at low and intermediate confining pressures. However, 

this behavior is not observed here. The residual strength at low and intermediate 

confining pressures is determined from the stress plateau reached at large strains and does 

not describe a straight line. This curved residual strength surface can be described similar 

to the failure surface. This is shown in Figure 7.6 and Figure 7.7 where the residual 

strength parameters at low and intermediate confining pressures for the vertical and 

horizontal specimens are determined. However, to characterize the residual strength at 
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low and intermediate confining pressures in cemented sand it is necessary to introduce 

the parameter, mR. The parameter mR describes the curvature of the residual strength 

envelope. The parameters determined for the vertically cored specimens are ηR = 415 and 

mR = 0.64. For the horizontally cored specimens, the residual strength parameters are ηR 

= 30 and mR = 0.64. The horizontally cored specimens have lower values of ηR indicating 

more damage to the cementation during loading. The curved residual strength surface 

indicates the structure due to cementation is not completely degraded when the residual 

strength is reached. If completely degraded the residual strength should coincide with the 

critical state line determined at high confining pressures.  

7.2 Elastic Parameters 

The elastic parameters (ν and E) are determined several times during each test. Figure 

6.17 shows the three areas where elastic parameters are determined on a typical stress-

strain relation. The three areas are: a) Initial tangent; b) Small unloading-reloading cycle 

inside the cementation yield surface; c) Full unloading-reloading cycle at large strains, 

including the final unloading.  

7.2.1 Poisson’s Ratio 

Poisson’s ratio is determined from the volume change curves as described in section 

3.1.1. The initial tangent Poisson’s ratio is determined from the initial slope of the 

volume change curve for all the triaxial tests and the results can be seen in Figure 7.8 

where Poisson’s ratio is shown as a function of the first stress invariant. The first stress 

invariant is calculated in the translated coordinate system due to cementation. In the 
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Figure 7.6: Determination of residual strength parameters in vertical 
direction. 
 

 

Figure 7.7: Determination of residual strength parameters in 
horizontal direction. 
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cemented region, the parameter ‘a’ is equal to 1.95 and then decreases as the stresses 

reach the broken cementation yield surface. There is no significant indication of variation 

in Poisson’s ratio as the cementation starts breaking. The average value of Poisson’s ratio 

is 0.11. If distinction is made between the vertically cored specimens and the horizontally 

cored specimens, the vertically cored specimens would have a Poisson’s ratio of 0.10 and 

the horizontally cored specimens would have a Poisson’s ratio of 0.12.  

 Note that Poisson’s ratio determined from the horizontally cored specimens, νhor is 

an average value defined in equation (7.1): 

νhor  =  hh hvν ν
2
+  (7.1) 

in which νhh is Poisson’s ratio in the horizontal plane and νhv is Poisson’s ratio of strain in 

vertical direction to applied strains in horizontal direction. The experimental setup where 

only the major principal strain and the volume change are measured makes it impossible 

to distinguish the two values of Poisson’s ratio experienced on the horizontally cored 

specimens. This would require individually measured radial deformations in the two 

directions parallel and perpendicular to the bedding planes. Poisson’s ratio from the 

vertically cored specimens, νver is defined in equation (7.2): 

νver  =  νvh (7.2) 

in which νvh is Poisson’s ratio of strain in horizontal direction to applied strains in vertical 

direction. 

 Poisson’s ratio determined from small unloading/reloading cycles performed 

inside the cementation yield surface (confining pressure less than or equal to 4.0 MPa) is 

plotted as a function of the normalized first stress invariant in Figure 7.9. The average 
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Figure 7.8: Initial tangent Poisson’s ratio as a function of the first stress invariant. 
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value of Poisson’s ratio is 0.16, and if the results from the vertically cored specimens are 

separated from the horizontally cored specimens, Poisson’s ratio becomes 0.15 and 0.17 

respectively. 

 The unloading-reloading cycles performed at large strains yield higher Poisson’s 

ratio. The results are shown in Figure 7.10 where the average value of Poisson’s ratio is 

0.27. In this stage of the test, much of the cementation is broken and the sand cement 

matrix corresponds to stage III and stage IV in Figure 6.1. As the cementation is broken 

down, the individual grains can move more easily around and Poisson’s ratio increases. If 

the vertically cored specimens are separated from the horizontally cored specimens, 

Poisson’s ratio becomes 0.26 for the vertically cored specimens and 0.28 for the 

horizontally cored specimens. 

 In general, Poisson’s ratio for vertical specimens is smaller than for horizontal 

specimens which suggests anisotropic behavior for the cemented sand. However, the 

difference is within the standard deviation.  

 It was not possible to determine Poisson’s ratio during unloading because plastic 

strains occurred almost immediately upon unloading. The plastic strains might have 

affected Poisson’s ratio during reloading as well. In some tests only one reading occurred 

before plastic strain started. This is illustrated in Figure 7.11 where the dots represent the 

measured strains and the curve represents the actual strains. Line a corresponds to the 

actual Poisson’s ratio and line b shows the higher Poisson’s ratio obtained by not 

measuring enough data points after stress reversal. 
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Figure 7.9: Poisson’s ratio determined inside the cementation yield surface. 
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Figure 7.10: Poisson’s ratio determined during the final unloading-reloading cycle as a 
function of the normalized first stress invariant. 
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Figure 7.11: Plastic deformation occurring 
as part of the initial response due to 
unloading causing too high Poisson’s ratio. 
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7.2.3 Young’s Modulus 

Young’s modulus is determined right after unloading and right after reloading. The 

results showed higher modulus during unloading than during reloading. This could arise 

from creep and is illustrated in Figure 7.12. After unloading from point a in Figure 7.12 

the specimen creeps in the axial direction giving rise to positive strains. As a result, point 

b in Figure 7.12 includes more axial strain than pure elastic unloading would suggest. 

Young’s modulus between point a and point b would therefore be too high. As the 

specimen is further unloaded, the creep becomes insignificant, and Young’s modulus 

calculated between point b and point c yields more realistic results. During some tests, 

the creep was so pronounced that point b corresponded to more strain than point a, 

making Young’s modulus negative. The unloading moduli were therefore rarely 

employed in the modeling of the elastic modulus.  

 The initial tangent Young’s moduli are plotted and the parameters M and λ in the 

elastic model in The Single Hardening Model are determined in Figure 7.13. The 

parameter M becomes 930 and the parameter λ becomes 0.22. If the parameters are 

determined separately for the vertically cored specimens and the horizontally cored 

specimens, M becomes 1630 and 890, respectively. Similarly λ becomes 0.17 and 0.23. 

  Young’s moduli determined during the unloading-reloading cycle performed 

inside the cementation yield surface is shown in Figure 7.14, where the isotropic elastic 

parameters become λ = 0.28 and M = 2265. For cross-anisotropic parameters, λ = 0.28 

and M = 2530 in vertically cored specimens and λ = 0.25 and M = 2950 for horizontally 

cored specimens. 
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Figure 7.12: Creep causing the elastic 
modulus to increase. 

 

 
Figure 7.13: Determination of elastic parameters M and λ during initial tangent loading.   
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 The elastic parameters for the final unloading-reloading cycle are determined in 

Figure 7.15. Assuming the material is isotropic, the parameter M becomes 1055 and the 

parameter λ becomes 0.35. If cross-anisotropy is implied, M becomes 1055 in vertical 

direction and 1070 in horizontal direction. The parameter λ does not change and remains 

0.35 in both directions. At this stage, most of the elastic cross-anisotropic behavior is lost 

and the sand cement matrix corresponds to stage III and stage IV in Figure 6.1. 

  The isotropic elastic parameters are summarized in Table 7.1 and the cross-

anisotropic elastic parameters are summarized in Table 7.2. 

7.3 Work Hardening Parameters 

The plastic work produced during isotropic compression has been calculated to determine 

the parameters C and p in The Single Hardening Model. The plastic work is calculated 

using equation (3.23), reintroduced here in equation (7.3): 

{ }p
p c volW   =  σ dε⋅∫  (7.3) 

where σc is the confining pressure during isotropic compression and p
voldε  is the 

incremental volumetric plastic strain. The plastic strains are calculated by subtracting the 

elastic strains from the measured strains. The elastic strains are calculated using the 

isotropic initial tangent elastic parameters determined in section 7.2.  

The plastic work determined from the isotropic compression tests is shown in 

Figure 7.16 as a function of the first stress invariant, I1. The results from test V9 deviates 

from the remaining isotropic compression tests, due to difference in void ratio. In 

cohesionless materials the relation between the plastic work, Wp and the first stress 

invariant, I1 usually yields a straight line in a double logarithmic coordinate system (a  
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Figure 7.14: Determination of elastic parameters M and λ during unloading-reloading 
inside the cementation yield surface.  

 

Figure 7.15: Determination of elastic parameters M and λ during the final unloading-
reloading cycle.  



 264

 

Table 7.1: Isotropic elastic parameters 
 Initial tangent Cemented Final unloading/reloading 
Poisson’s ratio, ν 0.11 0.16 0.27 
M 1170 2780 1055 
λ 0.20 0.26 0.35 

 

Table 7.2: Cross-anisotropic elastic parameters 
 Initial tangent Cemented Final unloading/reloading
 Vertical Horizontal Vertical Horizontal Vertical Horizontal
Poisson’s ratio, ν 0.10 0.12 0.15 0.17 0.26 0.28 
M 1630 890 2530 2950 1055 1070 
λ 0.17 0.23 0.28 0.25 0.35 0.35 
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Figure 7.16: Plastic work during isotropic compression. 
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deviation being loose silty sand, as discussed in section 3.2.1). As shown in Figure 7.16, 

the relation between the plastic work and the first stress invariant does not follow a 

straight line for the artificially cemented sand.  

 Instead, the procedure described in chapter 3, where the plastic work during 

triaxial compression is used to determine the isotropic work parameters have been 

applied. The result is shown in Figure 7.16 as the straight line with the parameters of C = 

7.8 ⋅10-10 and p = 2.14. The optimum work parameters determined from the triaxial 

compression tests does not describe the work determined from isotropic compression.  

7.4 Plastic Potential Parameters 

Determination of the plastic potential parameters and the yield parameters requires 

loading with plastic work. As the behavior inside the cementation yield surface is 

considered elastic, tests performed with stress paths primarily inside the cementation 

yield surface have not been used for determination of parameters for The Single 

Hardening Model. Furthermore, the parts of the stress-strain relation inside the 

cementation yield surface have been omitted from the parameter determination. The tests 

found most suitable for the yield surface and plastic potential parameters were performed 

at confining pressures of 1.0, 2.0, and 4.0 MPa.  

 Applying the new plastic potential function presented in section 3.2.2 requires 

determination of the parameters μ and b. The parameter μ is determined in Figure 7.17 

and Figure 7.18 for the vertically and horizontally cored specimens, respectively. Note 

that the parameter on the y-axis is the yξ′  from the new plastic potential function: 
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y y 2,0ξ  = ξ  - ψ′  (7.4) 

in which yξ is defined in equation (3.19) and ψ2,0 is defined in equation (3.38).  

The variation in the plastic potential parameters was too small to distinguish the 

vertically cored specimens from the horizontally cored specimens. As a result, the plastic 

potential parameter μ are the same in vertically cored and horizontally cored specimens. 

 The determination of the parameter b is shown in Figure 7.19 and Figure 7.20 for 

the vertically and horizontally cored specimens, respectively. The parameter b becomes 

0.0007 for the vertically cored and the horizontally cored specimens.  

7.5 Yield Parameters 

The parameter h is determined for three tests in vertical direction and two tests in 

horizontal direction. The average value of the parameter h from equation 3.33 was 0.31 in 

vertical direction and 0.15 in horizontal direction. 

 Once the parameter h is known, the relation between the sub-parameter q and the 

stress level S can be plotted to determine the parameter α. This is done in Figure 7.21 and 

Figure 7.22 for vertical and horizontal direction, respectively. The tests in Figure 7.21 

and Figure 7.22 started their stress paths inside the cementation yield surface which is 

why data is absent at low stress levels. The hyperbolic expression used to describe the 

relation between q and S does not fit the data at low stress levels. To simplify the 

parameters both data sets have been fitted with a straight line representing the value of α 

being 1.00. 

The shape of the yield surface in The Single Hardening Model is defined by 

contours of constant plastic work. In section 6.1.1 the hydrostatic yield stress was 
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Figure 7.17: Determination of plastic potential parameter μ for vertically cored 
specimens  
 

 

Figure 7.18: Determination of plastic potential parameter μ for horizontally 
cored specimens  
 

 



 269

 

Figure 7.19: Determination of plastic potential parameter b for vertically cored 
specimens.  
 

 

Figure 7.20: Determination of plastic potential parameter b for horizontally cored 
specimens.  
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Figure 7.21: Determination of yield 
parameter α for vertical specimens. 
 

Figure 7.22: Determination of yield 
parameter α for horizontal specimens. 
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determined to be 4.3 MPa. Using the yield surface parameters determined in the previous 

section, the vertical and horizontal initial cementation yield surface can be determined. 

This is shown in Figure 7.23 for vertically cored specimens and Figure 7.24 for 

horizontally cored specimens. Furthermore, the initial yield points determined in section 

6.5 from the triaxial tests are shown. The translated stress space is employed meaning the 

yield surface intersects with the origin. There is overall good agreement between the 

yield stresses determined from the triaxial tests and the shape of the yield surface from 

the yield parameters in The Single Hardening Model. This is the case in vertically cored 

specimens and horizontally cored specimens. This agreement indicates that the shape of 

the cementation yield surface is consistent with the yield surface described by the 

contours of constant plastic work. As a consequence, one set of parameters can describe 

the shape of the cementation yield surface as well as control the work when the yield 

surface expands.  

The parameters to control the size of the initial cementation yield surface and the 

broken cementation yield surface are the intersection with the hydrostatic axis. The 

parameter describing the cementation yield surface, HC becomes 42.4, and the parameter 

describing the broken cementation yield surface, HB becomes 139.2. Figure 7.25 shows 

the location of HC and HB. 

7.6 Summary of Parameters Determined 

The parameters determined for vertical and horizontal specimens for The Single 

Hardening Model are summarized in Table 7.3. These parameters correspond to the 

behavior in stage II and stage III in Figure 6.1 and Figure 6.2. 
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Figure 7.23: Failure surface and yield surface along with determined initial 
yield stresses in vertical direction. 
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Figure 7.24: Failure surface and yield surface along with determined initial yield 
stresses in horizontal direction. 
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Figure 7.25: Definition of parameters HC and HB. 
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Table 7.3: Parameters determined for The Single Hardening Model. 
Parameter Vertical Horizontal Vertical Horizontal
Stage II II III III 
Elastic, initial     
    ν 0.11 0.11 0.11 0.11 
    M 1170 1170 1170 1170 
    λ 0.20 0.20 0.20 0.20 
Elastic, unloading-reloading     
    ν 0.16 0.16 0.27 0.27 
    M 2780 2780 1055 1055 
    λ 0.26 0.26 0.35 0.35 
Translation of coordinate system     
    a 1.95 1.95 0 0 
Failure     
    η1 950 810 950 810 
    m 0.78 0.78 0.78 0.78 
Residual strength     
    ηR 415 210 415 210 
    mR 0.64 0.48 0.64 0.48 
Hardening     
    C 7.8 ⋅10-10 7.8 ⋅10-10 7.8 ⋅10-10 7.8 ⋅10-10 

    p 2.41 2.41 2.41 2.41 
Yield function     
    h 0.31 0.27 0.31 0.27 
    α 1.00 1.00 1.00 1.00 
Plastic potential function     
    μ 2.64 2.64 2.64 2.64 
    b 0.0007 0.0007 0.0007 0.0007 
Initial yield surface      
    HC 42.4 42.4 42.4 42.4 
    HB 139.2 139.2 139.2 139.2 

 



8. Modeling the Behavior of Artificial Cross-

Anisotropic Sandstone 

The modeling of the behavior of artificial cross-anisotropic sandstone takes place in two 

steps. First, the vertical and horizontal directions are treated as two individual soils, and 

the focus on the modeling is on capturing the transition from brittle to ductile behavior. 

Later, the two results from the two directions are combined into one soil with cross-

anisotropic behavior. This is done with the cross-anisotropic extension to The Single 

Hardening Model.   

8.1 Cementation and Degradation of Cementation 

The cementation is modeled using translation of the stress space along the hydrostatic 

axis. As the cohesion gets reduced during loading, the stress space moves back towards 

the location of the uncemented soil. This concept was used by Nova et al. (2003) to 

model the degradation of the soil structure. In this study it is applied to the yield surface, 

the plastic potential surface, the failure surface, and the surface of constant elastic 

modulus.  

The stresses in the translated stress space are used as input when calculating the 

strains. As the cohesion gets reduced the parameter ‘a’ decreases towards zero. This is 

illustrated in Figure 8.1, where two stress paths during triaxial loading are shown in the 

triaxial plane of the translated coordinate system.  
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Figure 8.1: The stress paths followed during triaxial loading in the 
translated coordinate system. 
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In Figure 8.1, stress path A represents intermediate confining pressures, where the 

cohesion gets reduced to zero before failure. Inside the cementation yield surface, the 

behavior is elastic, and the parameter ‘a’ remains constant. Between the initial 

cementation yield surface and the broken cementation yield surface the cohesion is 

reduced to zero, which is equivalent to changing the direction of the stress path. After the 

cementation is broken, the stress path change direction again and become similar to a 

triaxial test with a lower confining pressure.  

Stress path B in Figure 8.1, represents triaxial tests at low confining pressures, 

and starts with elastic loading inside the cementation yield surface where the parameter 

‘a’ is constant. Between the initial cementation yield surface and the broken cementation 

yield surface the cohesion gets reduced until failure. However, for stress path B, the 

failure surface is inside the broken cementation yield surface and as a result, there is 

cohesion left at failure.  

8.1.1 Cementation Yield Surface 

The shape of the initial cementation yield surface in The Single Hardening Model can be 

captured using the yield surface parameters determined for the yield surface of constant 

plastic work.  

8.1.2 Elastic Behavior 

As described in Chapter 4, the behavior inside the cementation yield surface can be 

characterized as purely elastic. However, in the triaxial tests, the initial tangent modulus 
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and the unloading-reloading modulus were different. The unloading-reloading cycles 

indicated much stiffer material than the initial tangent modulus. To be able to 

successfully predict the stress-strain behavior inside the cementation yield surface using 

only elastic strains, the elastic parameters determined from the initial loading are used. 

 The elastic parameters change as the bonds in the cementation starts breaking. 

After failure, much of the cementation is broken, and the elastic properties have changed. 

However, the elastic strains after failure are significantly smaller than the plastic strains 

and the difference in the predictions by changing the elastic parameters are insignificant. 

Therefore, only the initial set of elastic parameters is applied in the predictions. 

 Finally, as discussed in section 7.2 during the parameter determination for the 

elastic parameters, the difference between the elastic parameters in the vertically and 

horizontally cored specimens are very small. As a result, the isotropic elastic model 

associated with The Single Hardening Model can successfully predict the elastic 

behavior.  

8.2 Cross-Anisotropy 

The cross-anisotropic formulation of The Single Hardening Model employs a 

microstructural tensor to describe the anisotropy. No measurement of cross-anisotropic 

microstructural features such as distribution of voids, fissures, grain contacts or 

cementation is required. The failure surface, the yield surface and the plastic potential 

surface are all formulated in terms of the stress state and a microstructural tensor derived 

from the observed behavior in vertically and horizontally cored specimens. This means 

that the tensor is a measure of the microstructural cross-anisotropy derived from the 
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macroscopic behavior. The formulation used here, follows the work of Pietruszczak and 

Mroz (2000). 

 To formulate the cross-anisotropic microstructural tensor, a vector defining the 

loading direction with respect to the microstructural bedding planes is introduced. The 

generalized loading vector Li is shown in equation (8.1): 

(x) (y) (z)
i x i y i z i x y zL   =  L e L e L e   =  (L , L , L )⋅ + ⋅ + ⋅  (8.1) 

where Lx, Ly, and Lz are defined in equation (8.2), (8.3), and (8.4) as the magnitudes of 

resultant of stresses acting on a small cube with sides aligned with the direction of the 

microstructural anisotropy. The unit vectors (x) (y) (z)
i i ie , e , e are defined by the coordinate 

axes. This is illustrated in Figure 8.2, where the coordinate system and the stresses acting 

on a small cube are shown. The magnitudes of the resultant of the stresses are: 

2 2 2
x xx xy xzL  =  σ τ τ+ +  (8.2) 

2 2 2
y xy yy yzL  =  τ σ τ+ +  (8.3) 

2 2 2
z zx zy zzL  =  τ τ σ+ +  (8.4) 

in which the direction of the normal and shear stresses ( xx yy zzσ ,  σ ,  σ , xy yz zxτ ,  τ ,  τ ) are 

defined in Figure 8.2 where the first suffix refers to the direction of the normal to the 

plane on which the stress act, and the second suffix refers to the direction of the stress 

component itself. The loading direction is defined by a unit vector relative to the material 

axis: 
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Figure 8.2: Loading direction relative to 
microstructural bedding planes in the soil.  
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( ) x y z
x y z 2 2 2

x y z

(L , L , L )
,  ,    =  

L L L+ +
 (8.5) 

where Lx, Ly, and Lz are defined in equation (8.2), (8.3), and (8.4), respectively.  

 Following the formulation of the anisotropic failure surface suggested by 

Pietruszczak and Mroz (2000), the general anisotropic version of an isotropic function in 

The Single Hardening Model is shown in equation (8.6).  

0 ij i jf  =  f 1⎡ ⎤⋅ +Ω ⋅ ⋅⎣ ⎦  (8.6) 

where f is a function of stresses describing either the failure surface or the yield surface. 

The value of the function f changes with the loading direction relative to the 

microstructural anisotropy ( i jand ), and f0 is the average value of the function f over a 

sphere. The variation from the sphere is described by Ωij.  

 According to Pietruszczak and Mroz (2000), equation (8.6) can be expressed as: 

2 2 2
0 1 x 2 y 3 zf  =  f 1⎡ ⎤⋅ +Ω ⋅ +Ω ⋅ +Ω ⋅⎣ ⎦  (8.7) 

where Ω1, Ω2, and Ω3 refers to the variation in the directions of x y z,  ,  and , defined in 

equation (8.5). Due to symmetry, the cross-anisotropic formulation of equation (8.7) 

reduce to equation (8.8). According to Pietruszczak and Mroz (2000), the cross-

anisotropy yields the following conditions: Ω1 = Ω2,  Ω1 + Ω2 + Ω3 = 0, and 2 2 2
x y z+ +  

= 1, resulting in equation (8.8). 

( )2
0 1 zf  =  f 1 1 3⎡ ⎤⋅ +Ω ⋅ − ⋅⎣ ⎦  (8.8) 
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8.2.1 Cross-Anisotropic Failure Surface 

To model the failure in cross-anisotropic sandstone, the procedure outlined by Lade 

(2007, 2008) is followed. The isotropic failure criterion in The Single Hardening Model 

is presented in equation (8.9) and rearranged in equation (8.10) where the parameters η1 

and m are on the right hand side in the equation.  

m3
1 1

n 1
3 a

I If  =  27  =  η
I p

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (8.9) 

in which I1 and I3 are the first and third stress invariant, η1 and m are non-dimensional 

parameters, and pa is atmospheric pressure in the same units as the stresses used in the 

calculations of I1 and I3. Rearranging equation (8.9) yields: 

m3
a1

n 1
3 1

pIf  =  27  =  η
I I

⎛ ⎞ ⎛ ⎞
− ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (8.10) 

The value of the right hand side of equation (8.10) differs depending on the loading 

direction due to the difference in the parameters η1 in vertical and horizontal direction. 

The parameter m is considered independent of the loading direction, which in section 7.1 

was found to be a reasonable assumption. Combining the right hand side of equation 

(8.10) with the cross-anisotropic extension in equation (8.8) yields:  

( )
m

2a
1 0F 1F z

1

pf  =  η  =  f 1 1 3
I

⎛ ⎞ ⎡ ⎤⋅ +Ω ⋅ − ⋅⎜ ⎟ ⎣ ⎦⎝ ⎠
 (8.11) 

The sub-parameter f0F is the average value of the left hand side over a sphere, and Ω1F 

describes the variation from the sphere depending on the loading direction z . If Ω1F 

becomes equal to zero, the material behaves isotropically. The suffix F in f0F and Ω1F 
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indicates the sub-parameters are related to the failure criterion, since similar sub-

parameters are derived for the yield criterion. The input required to determine the cross-

anisotropic failure surface is a vertical and a horizontal set of failure parameters (η1v, η1h, 

and m). The cross-anisotropic failure criterion combines the failure surface in vertical 

direction with the failure surface in horizontal direction into one smooth failure surface. 

This is illustrated in Figure 8.3 where the cross-anisotropic failure surface is shown in the 

octahedral plane along with failure surfaces representing vertical and horizontal 

directions. The cross-anisotropic failure surface is symmetrical around the z-axis. In the 

z-direction and the y-direction, the cross-anisotropic failure surface is equal to the failure 

surfaces in vertical and horizontal direction, respectively. The transition from vertical to 

horizontal takes place in sector I at b-values greater than 0.5 and in most of sector II. The 

definition of b is show in equation (8.13). In sector III, the cross-anisotropic failure 

surface is almost identical to the failure surface in horizontal direction. However, the 

cross-anisotropic failure surface is slightly within the horizontal failure surface.  

 The parameter determination of the sub-parameters foF and Ω1F are incorporated 

into the prediction program. This is done because the degree of anisotropy changes with 

I1 and needs to be determined for each loading step.  

According to Lade (2007, 2008), the loading direction z  can be expressed as a 

function of the major principal stress ratio R and the b-value, defined in equation (8.12) 

and (8.13), respectively. 

1

3

σR  =  
σ

 (8.12) 
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Figure 8.3: The shape of the cross-anisotropic failure surface varies 
between the vertical and horizontal failure surfaces in the octahedral 
plane. 
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2 3

1 3

σ σb  =  
σ σ
−
−

 (8.13) 

in which the σ1, σ2, and σ3 is the major, intermediate and minor principal stresses. The 

loading direction for triaxial compression in sector I (vertically cored specimens, b = 0) 

zv  is expressed in equation (8.14) and the loading direction for triaxial compression in 

sector II and sector III (horizontally cored specimens, b = 0 ) zh  is expressed in equation 

(8.15). 

2
2
zv 2

R  =  
R 2+

 (8.14) 

2
zh 2

1  =  
R 2+

 (8.15) 

In which R is the major principal stress ratio defined in equation (8.12). Furthermore, the 

left hand side of the failure criterion in equation (8.10) can also be expressed in terms of 

the major principal stress ratio R. This is shown in equation (8.16):  

( ) m3
a

n 1
1

R+2 pf   =  27  =  η
R I

⎛ ⎞
− ⋅⎜ ⎟

⎝ ⎠
 (8.16) 

Solving equation (8.16) with respect to R yields the major principal stress ratio. This is 

done using the values of the parameters η1 and m for vertical and horizontal specimens. 

Once the major principal stress ratio R is determined, the loading directions 

corresponding to vertical and horizontal directions can be calculated from equation (8.14) 

and (8.15). Finally, the parameter Ω1F can be calculated using equation (8.17): 

( ) ( )
nv nh

1F 2 2
nh zv nv zh

f - f  =  
f 1 3  - f 1 3

Ω
⋅ − ⋅ ⋅ − ⋅

 (8.17) 
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in which fnv and fnh are the left hand side of equation (8.16) for the vertical and horizontal 

direction, respectively. Once the parameter Ω1F is determined, the parameter f0F can be 

determined from equation (8.18): 

( )
nv

0F 2
1F zv

ff   =  
1 1 3+Ω ⋅ − ⋅

 (8.18) 

8.2.2 Cross-Anisotropic Yield Surface 

The isotropic formulation of the yield function is shown in equation (8.19):  

h3 2
q1 1 1

p 1
3 2 a

I I If   =  ψ   e
I I p

⎡ ⎤ ⎡ ⎤
′ ⋅ − ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (8.19) 

in which I1, I2, and I3 are the first, second and third stress invariants. The parameter ψ1 is 

a function of the parameter m, which is determined to be independent of the loading 

direction. The parameter h varies with loading direction, and two values are known, hv 

and hh corresponding to the vertical and horizontal directions. The parameter q is a 

function of the stress level, S and is defined in equation (8.23). With the two values of h, 

the cross-anisotropic formulation of the yield function becomes: 

( )2
0 1Y zh 1 Ω 1 33 2

' q1 1 1
p 1

3 2 a

I I If   =  ψ   e
I I p

⎡ ⎤⋅ + ⋅ − ⋅⎣ ⎦⎡ ⎤ ⎡ ⎤
⋅ − ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (8.20) 

in which h0 is the average value of the parameter h, and the parameter Ω1Y describes the 

variation of h0 depending on the loading direction z . The vertical and horizontal values 

of the parameter h are determined at failure. The loading direction z  at failure is known 
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from the determination of the cross-anisotropic failure parameters, resulting in 

determination of the yield parameter Ω1Y from equation (8.21): 

( ) ( )
v h

1Y 2 2
h zv v zh

h  - h =  
h 1 3  - h 1 3

Ω
− ⋅ − ⋅

 (8.21) 

Once the parameter Ω1Y is known, the parameter h0 can be calculated as: 

( )
v

0 2
1Y zv

hh  =  
1 1 3+Ω ⋅ − ⋅

 (8.22) 

 Due to q being a function of the stress level, S the shape of the yield function in 

The Single Hardening Model, depends on the shape of the failure surface. This means the 

cross-anisotropic yield surface is a function of the cross-anisotropic failure surface. The 

variation of q with S is shown in equation (8.23).  

( )
α Sq  =  

1 - 1 - α S
⋅

⋅
 (8.23) 

where α is a parameter (determined to be equal in horizontal and vertical direction in 

section 7.4)  and S is the stress level determined from the cross-anisotropic version of the 

failure surface: 

( ) ( )

3
1

3n0
2 2

0 1F' z 0 1F z

I  - 27
IfS  =    =  

η 1 1 3 η 1 1 3

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤⋅ +Ω ⋅ − ⋅ ⋅ +Ω ⋅ − ⋅⎣ ⎦ ⎣ ⎦
 (8.24) 

in which I1 and I3 are the first and third stress invariants, z is the loading direction, η0 and 

Ω1F are cross-anisotropic failure parameters, all described in section 8.2.1.  
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8.2.3 Cross-Anisotropic Hardening 

During hardening, the value of fp varies on a yield surface, depending on the loading 

direction. For a constant amount of plastic work the value of pf ′′  can be expresses as in 

equation (8.20):   

[ ]
( )20

1Y z
h 1 Ω 1 3
p

p
p 1

a

W
f   =  ψ 27 + 3

C p

⎡ ⎤⋅ + ⋅ − ⋅⎣ ⎦⎡ ⎤
′′ ⋅ ⎢ ⎥⋅⎣ ⎦

 (8.25) 

in which ψ1 is a function of the parameter m, Wp is the plastic work, and C and p are 

parameters in the isotropic hardening function. The cross-anisotropic parameters are h0 

and Ω1Y, where h0 is the average value of the parameter h, and the parameter Ω1Y 

describes the variation of h0 depending on the loading direction z . 

 The work hardening relation is shown in Figure 8.4 for the cross-anisotropic 

version of The Single Hardening Model. The work hardening relation for vertically and 

horizontally cored specimens is shown. Depending on the loading direction, the value of 

pf ′′  varies for constant amount of plastic work. This is illustrated for p aW p = 2.0. The 

cross-anisotropic version of work hardening relation corresponds to the value of h = h0. 

8.3 Predictions 

The cross-anisotropic version of The Single Hardening Model presented here, is 

described and implemented into a program capable of predicting strains in drained true 

triaxial tests and torsion shear tests. The tests performed on artificial cross-anisotropic 

sandstone can only be used for back prediction, as the tests were performed in the vertical 

and horizontal triaxial plane. True triaxial tests were not performed on the cross- 
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Figure 8.4: Work hardening relation for cross-anisotropic version of The 
Single Hardening Model. 
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anisotropic cemented sand, so exercising the model outside the vertically and horizontally 

cored specimens is not possible. 

The results of the predictions are shown in Figure 8.5 for the vertically cored 

specimens and in Figure 8.6 for the horizontally cored specimens. At low confining 

pressures, the behavior predicted by The Single Hardening Model shows too much major 

principal strain near failure. This is to be expected, as the failure mechanism was 

splitting, and Single Hardening Model assumes smooth peak failure.  

Generally, The Single Hardening Model captures the stress-strain behavior and 

volume change up to approximately 3 aσ p  = 20. This is the range where the parameters 

are determined and the model predicts the behavior with good accuracy. As the confining 

pressure increases, the state of the soil changes and The Single Hardening Model can not 

predict the observed behavior with accuracy. A new set of parameters would be required 

to predict the behavior at high confining pressures, where most of the cementation is 

broken.  
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Figure 8.5: Observed and predicted behavior of specimens cored in vertical direction. 
a) Stress-stain relation. b) Volume change relation. 
 

 

 



 293

 

Figure 8.6: Observed and predicted behavior of specimens cored in horizontal 
direction. a) Stress-stain relation. b) Volume change relation. 
 

 



9. Summary and Conclusions 

This investigation has highlighted features caused by cementation and cross-anisotropy in 

the behavior of sandstone. Furthermore the behavior of the cross-anisotropic sandstone 

was successfully modeled using an initial cementation yield surface and a cross-

anisotropic extension to The Single Hardening Model.  

9.1 Review of The Single Hardening Model 

 The review of The Single Hardening Model resulted in a new plastic potential 

function, improving the predictions of the volumetric strains at high confining pressures. 

In the new plastic potential function, the parameter ψ2 is replaced by the constant ψ2,0 and 

by a function of the first stress invariant and a new parameter b.   

 The problems rising from ambiguous yield function parameters previously 

determined for loose silty sand has been resolved using a new parameter determination 

procedure for the work hardening parameters. The problem arises when the work 

produced during the isotropic compression test only represents a fraction of the work 

produced during the triaxial compression test. Using the new procedure, yield parameters 

obtained for loose silty sand are unambiguous and back predicting the behavior during 

triaxial compression shows good agreement between the predictions and the test results.  

 A new softening function developed to ensure a smooth transition from hardening 

to softening is presented. The new softening function takes over from the hardening 

relation prior to failure and controls the work until the residual strength is reached. In  
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cohesionless soil the residual strength corresponds to the critical state line, which is 

described by a surface similar to the failure surface. However, only one new parameter, 

ηR is needed to describe the residual strength surface. All other parameters in the new 

softening function can be determined as functions of known parameters.  

 Finally, the enhanced version of The Single Hardening Model was used to predict 

torsion shear tests performed on Santa Monica Beach Sand. There was an overall 

agreement between the predictions and the experiments. Stress paths with different 

combinations of triaxial loading and shearing all yielded good agreement between the 

predictions and the measured strains. 

9.2 Experiments on Sandstone 

 Hollow cylinder torsion shear tests performed on artificially cemented sand 

revealed truly elastic behavior inside the cementation yield surface. By applying a 

combination of normal and shear stresses the elastic nature of the material was unveiled 

by the strains. The response to an increase or decrease in normal stresses was purely 

normal strains and the response to an increase or decrease in shear stresses was purely 

shear strains, indicating truly elastic behavior. Furthermore, the isotropic elastic 

parameters representing the material were determined. 

 The isotropic compression tests on artificial cross-anisotropic sandstone revealed 

the location of the cementation yield surface on the hydrostatic axis. The shape of the 

cementation yield surface was determined from the triaxial compression tests.  

After completion of the isotropic tests, the specimens were used to determine the 

degree of bond breaking taking place during isotropic compression. The tests showed a 
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significant drop in Brazilian tensile strength after preloading the specimens isotropically, 

whereas the results from the triaxial tests were ambiguous.  

 The failure surface was determined from triaxial compression tests and consisted 

of three distinctive sections. At low confining pressures, where the cementation yield 

surface was close to the failure surface, the strength of the sandstone increased in a way 

similar to an overconsolidated soil. However, the cementation yield surface did not 

become the failure surface, as plastic deformation was observed prior to failure. At 

intermediate confining pressures, the failure surface was found to curve towards the 

critical state line, which was reached at high confining pressures. However, due to the 

large reduction in void ratio taking place during the loading prior to failure, a tendency 

towards a critical state line with increasing friction angle was observed.   

 The residual strength envelope at low and intermediate confining pressures was 

curved, and did therefore not correspond to the critical state line determined at high 

confining pressures. This is most likely due to segments of the specimens still consisting 

of grains cemented together and acting as larger particles.  

At low confining pressures, where splitting was observed as the failure 

mechanism, the horizontally cored specimens were the strongest. At intermediate 

confining pressures, the vertically cored specimens were the strongest, and at the critical 

state line, the cross-anisotropy had almost vanquished, since much of the original 

structure was destroyed prior to failure.  

 The elastic behavior followed the same trends as found in previously published 

results on cemented soils. With cementation intact, the sandstone behaved much stiffer 
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than after the cementation was broken. Furthermore, as the cementation breaks down, the 

material becomes more influenced by the confining pressure. The anisotropy index in the 

cemented state revealed a stiffer material in vertical direction than in horizontal direction. 

Finally, the elastic anisotropy was found to decrease as the bonds in the cementation was 

breaking down. 

9.3 Modeling the Behavior of Cross-Anisotropic Sandstone 

To capture the behavior due to cementation the stress space was translated back along the 

hydrostatic axis and an initial cementation yield surface was defined. Inside the initial 

cementation yield surface the behavior of the sandstone was modeled as elastic. The 

breaking of the bonds in the cementation was captured by translating the stress space 

back towards the position of the uncemented sand. The rate of the translation was 

controlled by a second yield surface relating to the stress conditions where the cohesion 

was reduced to zero. 

The parameter determination for The Single Hardening Model revealed that the 

elastic behavior in vertical and horizontal direction could be successfully modeled with 

one set of isotropic parameters. Though elastic cross-anisotropy was observed, the elastic 

strains were significantly smaller than the plastic strains and the precision gained by 

using the cross-anisotropic parameters was insignificant. Similar observations were made 

for the plastic potential parameters, where the vertically and horizontally cored specimens 

yielded almost identical results. 

 It was found that the cross-anisotropic behavior in the artificially cemented 

sandstone could be captured by The Single Hardening Model, if the failure criterion and 
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the yield function were modified by a microstructural tensor. By defining the loading 

direction with respect to the cross-anisotropic planes, it became possible to capture the 

different behavior in the different loading directions.   
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Appendix A: Condition of Irreversibility and Parameter 

Determination for Plastic Potential Function 

Condition of Irreversibility 

The condition of irreversibility and the parameter determination are demonstrated on the 

logarithmic version of the plastic potential function: 

μ3 2
1 1 1 1

p 1 2,0
3 2 a a

I I I Ig   =     + ψ  + b ln 1
I I p p

⎡ ⎤⎛ ⎞ ⎡ ⎤
Ψ ⋅ − ⋅ +⎢ ⎥⎜ ⎟ ⎢ ⎥
⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 (A.1) 

By differentiating with respect to σxx: 

( )

( )

μ-13 2
p 1 1 1 1

1 2,0
xx 3 2 a a a

2 3
1 3 1 yy zz yz zy

1 2
3

2
1 2 1 yy zz 1

2
2 1 a a

g I I I I 1  =  ψ    + ψ  + b ln 1 μ  
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3 I I  - I σ σ  - τ τ
             + ψ  

I

2 I I  + I σ  + σ Ib              
I I + p p
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⋅ − ⋅ + ⋅ ⋅ ⋅⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

⎡ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⋅
⎢⎣

⎤⋅ ⋅ ⋅ ⎡
⎥− + ⋅
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μ
⎤

⎢ ⎥
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 (A.2) 

Rearranging: 

( ) ( )

μ 2
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1 2,0
xx a 3 2 1 1 a
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1 1 yy zz yz zy yy zz2 2
3 3 2 2
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I I I I

b              + 
p I
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⋅Ψ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎤
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 (A.3) 

Rearranging again: 
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( ) ( )

( ) ( )

μ 2
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 (A.4) 

Rearranging again: 

( ) ( )
μ 2 3

p 21 1 1
yy zz 1 yy zz yz2 2
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σ p I I
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 (A.5) 

where 

( ) ( )
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1 1 1
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 (A.6) 

In a similar way the differentiation with respect to σyy and σzz gives: 

( ) ( )
μ 2 3
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zz xx 1 zz xx zx2 2

yy a 2 3
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 (A.8) 

By differentiating the plastic potential function with respect to τyz, τzx and τxy: 

( )
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( )
μ 2 3

p 1 1 1
zx 1 xy yz yy zx2 2

zx a 2 3

g I I I  =  τ  - ψ τ τ  - σ τ
τ p I I

∂ ⎡ ⎤ ⎡ ⎤
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦

 (A.10) 
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( )
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The flow rule: 

pp
ij p
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∂

 (A.12) 

When applying the flow rule, the engineering shear strains are used, resulting in: 
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 (A.13) 

The condition of irreversibility requires: 

p
p ij ijdW   =  σ dε   0⋅ ≥  (A.14) 

Combining equation (A.14) with equation (A.12) gives: 
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As dλp is greater than zero, the condition of irreversibility reduces to: 

p
ij

ij

g
σ   0

σ
∂

⋅ ≥
∂

 (A.16) 
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Where the left hand side becomes: 
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Rearranging:  
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Further reduction yields: 
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Inserting G from equation (A.6): 
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Rearranging: 
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The condition of reversibility becomes: 
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resulting in  

μ > 0 (A.23) 

and  

b > o (A.24) 

and  

gp > 0 (A.25) 

It further follows: 

( )2,0 1ψ     - 27 ψ 3≥ ⋅ +  (A.26) 

By applying the same calculations as above to the linear version (equation (A.27)) and 

the cubic root version (equation (A.28)) of the plastic potential functions the following 

results are achieved.  
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I I I Ig   =     + ψ  + b
I I p p

⎡ ⎤ ⎡ ⎤
Ψ ⋅ − ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (A.27) 

1 μ3 2 3
1 1 1 1

p 1 2,0
3 2 a a

I I I Ig   =     + ψ  + b
I I p p

⎡ ⎤
⎛ ⎞ ⎡ ⎤⎢ ⎥Ψ ⋅ − ⋅⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

 (A.28) 

Equation (A.6) is changed to 

( ) ( ) ( )
2
1 1

1 2,0
3 2 1 a

I I 1 bG  =  ψ μ 3 μ 2 ψ μ μ 1
I I I p

⋅ + ⋅ − + ⋅ + ⋅ ⋅ + + ⋅  (A.29) 

for the linear version and 

( ) ( )

( ) ( )

1
2 3
1 1 1

1 2,0
3 2 a 1

2 1
3 3

1 a

I I I 1G  =  ψ μ + 3   μ + 2  + μ ψ  + b
I I p I

b        
3 I p

⎛ ⎞
⎛ ⎞⎜ ⎟⋅ ⋅ − ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

+
⋅

 (A.30) 

for the cubic root version. The condition of irreversibility yields: 

μ+1

1
p

a

Iμ g b   0
p

⎛ ⎞
⋅ + ≥⎜ ⎟

⎝ ⎠
 (A.31) 

for the linear version and 

( ) ( )

μ+1

1
p 2 1

a3 3
1 a

Ibμ g   0
p3 I p

⎛ ⎞
⋅ + ≥⎜ ⎟

⎝ ⎠⋅
 (A.32) 

for the cubic root version. 

Parameter Determination 

The parameter determination from triaxial testing gives the following stress conditions: 
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xyτ   =  yzτ   =  zxτ   =  0 (A.33) 

xxσ   =  yyσ   =  3σ  (A.34) 

zzσ   =  1σ  (A.35) 

The incremental plastic strain ratio: 

p
3

p p
1

dεν   =  -
dε

 (A.36) 

Inserting the plastic strains from equation (A.13) under the stress conditions in equation 

(A.33), equation (A.34), and equation (A.35), yields: 

( )

( )

2 3
1 1

3 1 1 3 12 2
2 3

p 2 3
1 1

3 3 1 3 32 2
2 3

I IG - σ  + σ  - ψ σ σ
I Iν   =  -
I IG - σ  + σ  - ψ σ σ
I I

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
 (A.37) 

Inserting G from equation (A.6) and rearranging: 

( ) ( )

( ) ( )

( )

2
1 1 1

1 p p 2,0 p
3 2 a 1

2 3 2
1 1 1

p 3 3 p 1 3 3 p 12 2
1 a 2 3 3

1 1
2,0

2 a 1

I I I 1ψ μ + 3 ν   μ + 2 ν  + μ ψ  + b ln 1 ν
I I p I

I I Ib ν - σ  + σ ν  - ψ σ σ ν  + ψ μ + 3  
I + p I I I

I I 1 b μ + 2  + μ ψ  + b ln 1
I p I I

⎛ ⎞⎛ ⎞
⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛ ⎞⎛ ⎞
− ⋅ ⋅ ⋅ + ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )
2
1

3 12
1 a 2

3
1

1 3 12
3

I - σ  + σ  
+ p I

I- ψ σ σ   =  0
I

⋅

⋅ ⋅ ⋅

 (A.38) 

Rearranging: 
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2 2
1 1 1 1

1 p 1 p p p 2,0 p
3 3 2 2 1

2 3
21 1 1

p p 3 p 1 3 p2 2
a 1 1 a 2 3

2 2
1 1 1 1

1 1 2,0
3 3 2 2 1

I I I I 1ψ μ ν + ψ 3 ν   μ ν  2 ν  + μ ψ ν  
I I I I I

I I I1 b+ μ b ln 1 ν   ν  - 2 σ ν  - ψ σ ν
p I I + p I I

I I I I 1+ ψ μ  + ψ 3   μ   2  + μ ψ
I I I I I

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅

⎛ ⎞
⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅

( )
2 3

1 1 1
3 1 1 3 12 2

a 1 1 a 2 3

 

I I I1 b+ μ b ln 1    - σ  + σ  - ψ σ σ   =  0
p I I + p I I

⎛ ⎞
⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

 (A.39) 

Rearranging: 

( )

( )

( ) ( )

2
1 1 1

p 1 2,0
3 2 1 a 1

2
1 1

p 1
3 2 1 a

2 3
21 1

3 p 3 1 1 3 p 3 12 2
2 3

I I I1 1μ 1 + ν ψ  - ψ + b ln 1
I I I p I

I I b 1 + ν ψ 3  - 2
I I I + p

I I  2 σ ν  + σ  + σ ψ σ ν  + σ σ
I I

⎡ ⎤⎛ ⎞
⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤

+ ⋅ ⋅ ⋅ ⋅ +⎢ ⎥
⎣ ⎦

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

 (A.40) 

By multiplying by I1, equation (A.40) can be reduced to: 

( ) ( ) ( )

2
1 1 1

1 2,0
3 2 1 a 1

2 3
21 1

3 p 3 1 1 3 p 3 12 2
2 3 p

2
1 1

1
3 2 1 a

I I I1 1ψ  - ψ + b ln 1   =  
I I I p I

I I 12 σ ν  + σ  + σ ψ σ ν  + σ σ
I I μ 1 + ν

I I1 b- 3 ψ  - 2
μ I I I + p

⎛ ⎞
⋅ + ⋅ ⋅ + ⋅⎜ ⎟

⎝ ⎠
⎡ ⎤

⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⋅⎣ ⎦

⎡ ⎤
⋅ ⋅ ⋅ ⋅ +⎢ ⎥
⎣ ⎦

 (A.41) 

By defining the sub-parameters ξx and ξy, equation (A.41) becomes: 

( )
1

y x
a 1 a

I1 1ξ   =  ξ b ln 1
μ p μ I + p

⎡ ⎤⎛ ⎞
⋅ − + +⎢ ⎥⎜ ⎟ ⋅⎢ ⎥⎝ ⎠⎣ ⎦

 (A.42) 

in which 

3 2
1 1

y 1 2,0
3 2

I Iξ   =  ψ ψ
I I

− +  (A.43) 
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and 

( ) ( )
3 4 3 2

p p 21 1 1 1
x 1 3 3 1 1 3 3 1p 2 2

2 3 3 2

I I I I1ξ   =  σ σ 2ν σ ψ σ σ ν σ 3ψ 2
1+ν I I I I

⎡ ⎤
+ + + + − +⎢ ⎥

⎣ ⎦
 (A.44) 

The parameter b can then be calculated as: 

  

( )

x y

1

a 1 a

1 ξ ξ
μb  =  

I 1ln 1
p μ I + p

⋅ −

⎛ ⎞
+ +⎜ ⎟ ⋅⎝ ⎠

 (A.45) 

By applying the same calculations as above to the linear version (equation (A.27)) and 

the cubic root version (equation (A.28)) of the plastic potential functions the following 

results are achieved. For the parameter determination, the relation between ξy and ξx 

becomes: 

1
y x

a

I1 1ξ   =  ξ b 1
μ p μ

⎛ ⎞
⋅ − ⋅ ⋅ +⎜ ⎟

⎝ ⎠
 (A.46) 

for the linear version and 

( ) ( )
1

y x 2 1
a 3 3

1 a

I1 1ξ   =  ξ b ln 1
μ p μ 3 I p

⎡ ⎤⎛ ⎞⎢ ⎥⋅ − + +⎜ ⎟⎢ ⎥⎝ ⎠ ⋅ ⋅⎢ ⎥⎣ ⎦

 (A.47) 

for the cubic root version. 



 308

Appendix B: Determination of Parameters for the 

Softening Function  

The suggested softening function: 

( ) SS
DB''

ps S p S p p,95 Sf   =  A W exp C W W  + E⎡ ⎤⋅ ⋅ ⋅ −⎢ ⎥⎣ ⎦
 (B.1) 

Differentiating equation (B.1) with respect to Wp yields: 

( )

( )

S S S

S

''
D -1ps B B -1

S S p p,95 p S p S
p

D

S p p,95

df
  =  C D W W W B W A

dW

               exp C W W

⎡ ⎤⋅ ⋅ − ⋅ + ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤⋅ ⋅ −⎢ ⎥⎣ ⎦

 (B.2) 

The five boundary conditions for the softening function described in section 3.2.3 are: 

'' ''
ps p,rf  f→  for pW  → ∞  (B.3) 

'' ''
ph p,95 ps p,95f (W )  =  f (W )  (B.4) 

'' ''
ph p,95 ps p,95

p p

df (W ) df (W )
  =  

dW dW
 (B.5) 

''
ps p,peak

p

df (W )
  =  0

dW
 (B.6) 

'' ''
ps p,peak ph,ff (W )  =  f  (B.7) 

 Applying the first boundary condition described in equation (B.3), gives: 

( ) SS
DB''

ps S S p,95 Sf   =  A exp C W  + E⎡ ⎤⋅∞ ⋅ ⋅ ∞ −⎢ ⎥⎣ ⎦
 (B.8) 

for CS < 0 the first term goes towards zero, resulting in: 
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''
ps Sf   E→    for   pW  → ∞  (B.9) 

It further follows that: 

ES  =  ''
p,rf  (B.10) 

 For equation (B.10) to be true, the constant C must be negative. Under which 

conditions C in negative is discussed at the end of this appendix. 

 Applying the second boundary condition, in equation (B.4): 

'' ''
ph p,95 ps p,95f (W )  =  f (W )  (B.11) 

Inserting equation (B.1): 

( ) SS
DB''

ph,95 S p,95 S p,95 p,95 Sf   =  A W exp C W W  + E⎡ ⎤⋅ ⋅ ⋅ −⎢ ⎥⎣ ⎦
 (B.12) 

Reducing: 

SB''
ph,95 S p,95 Sf   =  A W  + E⋅  (B.13) 

Rearranging: 

AS  =  
S

''
ph,95 S

B
p,95

f E
W

−
 (B.14) 

 The third boundary condition, in equation (B.5): 

'' ''
ph p,95 ps p,95

p p

df (W ) df (W )
  =  

dW dW
 (B.15) 

Inserting equation (B.2): 

( )

( )

S S S

S

''
D -1ph,95 B B -1

S S p,95 p,95 p,95 S p,95 S
p

D

S p,95 p,95

df
  =  C D W W W B W A

dW

                exp C W W

⎡ ⎤⋅ ⋅ − ⋅ + ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤⋅ ⋅ −⎢ ⎥⎣ ⎦

 (B.16) 
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Reducing: 

S

''
ph,95 B -1

S S p,95
p

df
  =  A B W

dW
⋅ ⋅  (B.17) 

Inserting equation (B.14) in equation (B.17) gives: 

S

S

'' ''
ph,95 ph,95 S B -1

S p,95B
p p,95

df f E
  =  B W

dW W
−

⋅ ⋅  (B.18) 

Reducing: 

'' ''
ph,95 ph,95 S

S
p p,95

df f E
  =  B

dW W
−

⋅  (B.19) 

Rearranging: 

''
ph,95

p,95
p

S ''
ph,95 S

df
W

dW
B   =  

f E

⋅

−
 (B.20) 

 Applying the fourth boundary condition, defined in equation (B.6), gives:  

''
ps p,peak

p

df (W )
  =  0

dW
 (B.21) 

Inserting equation (B.2): 

( )
( )

S S S

S

D -1 B B -1
S S p,peak p,95 p,peak S p,peak S

D

S p,peak p,95

0  =  C D W W W B W A

         exp C W W

⎡ ⎤⋅ ⋅ − ⋅ + ⋅ ⋅⎢ ⎥⎣ ⎦
⎡ ⎤⋅ ⋅ −⎢ ⎥⎣ ⎦

 (B.22) 

Rearranging: 

( ) S S S
D -1 B B -1

S S p,peak p,95 p,peak S p,peak0  =  C D W W W B W⋅ ⋅ − ⋅ + ⋅  (B.23) 

Reducing: 
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( ) SD -1

S S p,peak p,95 p,peak S0  =  C D W W W B⋅ ⋅ − ⋅ +  (B.24) 

Rearranging: 

( ) S

S
S D -1

S p,peak p,95 p,peak

 BC   =  
D W W W

−

⋅ − ⋅
 (B.25) 

 Applying the fifth boundary condition, defined in equation (B.7), gives: 

'' ''
ps p,peak ph,ff (W )  =  f  (B.26) 

Inserting equation (B.1): 

( ) SS
DB''

ph,f S p,peak S p,peak p,95 Sf   =  A W exp C W W  + E⎡ ⎤⋅ ⋅ ⋅ −⎢ ⎥⎣ ⎦
 (B.27) 

Inserting equation (B.25) in equation (B.27), gives: 

( )
( )

S

S

S

D

S p,peak p,95B''
ph,f S p,peak SD -1

S p,peak p,95 p,peak

B W W
f   =  A W exp  + E  

D W W W

⎡ ⎤− ⋅ −
⎢ ⎥⋅ ⋅
⎢ ⎥⋅ − ⋅⎣ ⎦

 (B.28) 

Reducing: 

( )
S

S p,95 p,peakB''
ph,f S p,peak S

p,peak S

B W W 1f   =  A W exp  + E  
W D

⎡ ⎤⋅ −
⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥⎣ ⎦

 (B.29) 

Rearranging: 

( )
S

''
S p,95 p,peakph,f S

B
S p,peak p,peak S

B W Wf E 1  =  exp
A W W D

⎡ ⎤⋅ −−
⎢ ⎥⋅

⋅ ⎢ ⎥⎣ ⎦
 (B.30) 

Rearranging: 

( )

S

S p,95 p,peak
S ''

ph,f S
p,peakB

S p,peak

B W W
D   =  

f E
ln W

A W

⋅ −

⎡ ⎤−
⋅⎢ ⎥⋅⎢ ⎥⎣ ⎦

 
(B.31) 
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 In summary, the five constants, ES, BS, AS, DS, and CS are defined in equation 

(B.32), (B.33), (B.34), (B.35), and (B.36), respectively.  

ES  =  ''
p,rf  (B.32) 

''
ph,95

p,95
p

S ''
ph,95 S

df
W

dW
B   =  

f E

⋅

−
 (B.33) 

AS  =  
S

''
ph,95 S

B
p,95

f E
W

−
 (B.34) 

( )

S

S p,95 p,peak
S ''

ph,f S
p,peakB

S p,peak

B W W
D   =  

f E
ln W

A W

⋅ −

⎡ ⎤−
⋅⎢ ⎥⋅⎢ ⎥⎣ ⎦

 
(B.35) 

( ) S

S
S D -1

S p,peak p,95 p,peak

 BC   =  
D W W W

−

⋅ − ⋅
 (B.36) 

 By definition, the plastic work produced at peak is higher than the plastic work 

produced at cut-off. The value of the hardening function at failure is also higher than the 

value at cut-off.  

 The definition of AS in equation (B.34) and the definition of ES in equation (B.32) 

are substituted into the natural logarithm in equation (B.35). For DS to be positive, the 

natural logarithm used in equation (B.35) has to have an input smaller than one: 

S

S

'' ''
ph,f p,r

'' ''
ph,95 p,r B

p,peakB
p,95

f f
0  <    <  1

f f
W

W

−
−

⋅
 

(B.37) 

Rearranging: 



 313

SB'' ''
ph,f p,r p,95
'' ''
ph,95 p,r p,peak

f f W
0  <    <  1

f f W
⎛ ⎞−

⋅⎜ ⎟⎜ ⎟− ⎝ ⎠
 (B.38) 

As the residual value, ''
p,rf  goes towards the cut-off value, ''

ph,95f  the first term and BS goes 

toward infinity: 

'' ''
ph,f p,r'' ''

p,r ph,95 '' ''
ph,95 p,r

f f
For f   f ,       

f f
−

→ → ∞
−

 (B.39) 

'' ''
p,r ph,95 SFor f   f ,     B   → → ∞  (B.40) 

Since the fraction in the second term of equation (B.38) is less than one, the input for the 

natural logarithm is also less than one. This means DS is positive as long as the residual 

value, ''
p,rf  is less than the cut-off value, ''

ph,95f . 

Combining equation (B.20) and equation (B.10) with equation (B.25) yields: 

( ) S

''
ph,95

p95
p

'' ''
ph,95 p,r

S D -1

S p,peak p,95 p,peak

df
W

dW
 

f f
C   =  

D W W W

⋅
−

−

⋅ − ⋅
 

(B.41) 

Rearranging: 

( ) ( ) S

''
ph,95

p95
p

S D -1'' ''
ph,95 p,r S p,peak p,95 p,peak

df
W

dW
C   =   

f f D W W W

⋅
−

− ⋅ ⋅ − ⋅
 (B.42) 

Again, as long as the residual value is lower than the cut-off value, CS is negative, as 

required by equation (B.10). 



 314

Appendix C: Predictions Using New Plastic 

Potential Function and New Softening 

Function 

Two new plastic potential functions have been compared with the original function. First 

the linear version is compared with the original version, and then the logarithmic version 

is compared with the original version. Finally the cubic root version is compared with the 

original version. These comparisons are done for F1-Sand, L1-Sand, L2-Sand, and L8-

Sand.  

 Predictions with the new softening function are compared with the original 

softening function using the linear version of the plastic potential. Again, the predictions 

are performed on F1-Sand, L1-Sand, L2-Sand, and L8-Sand.  
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F1-Sand 

 

 
Comparison of original and linear plastic potential function for F1-Sand at low confining 
pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and linear plastic potential function for F1-Sand at high confining 
pressures. a) Stress-strain. b) Volume change. 
 

 

 

 



 317

L1-Sand 

 

 
Comparison of original and linear plastic potential function for L1-Sand at low confining 
pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and linear plastic potential function for L1-Sand at high confining 
pressures. a) Stress-strain. b) Volume change. 
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L2-Sand 

 

 
Comparison of original and linear plastic potential function for L2-Sand at low confining 
pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and linear plastic potential function for L2-Sand at high confining 
pressures. a) Stress-strain. b) Volume change. 
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L8-Sand 

 

 
Comparison of original and linear plastic potential function for L8-Sand at low confining 
pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and linear plastic potential function for L8-Sand at high confining 
pressures. a) Stress-strain. b) Volume change. 
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F1-Sand 

 

 
Comparison of original and logarithmic plastic potential function for F1-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and logarithmic plastic potential function for F1-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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L1-Sand 

 

 
Comparison of original and logarithmic plastic potential function for L1-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and logarithmic plastic potential function for L1-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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L2-Sand 

 

 
Comparison of original and logarithmic plastic potential function for L2-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and logarithmic plastic potential function for L2-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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L8-Sand 

 

 
Comparison of original and logarithmic plastic potential function for L8-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and logarithmic plastic potential function for L8-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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F1-Sand 

 

 
Comparison of original and cubic root plastic potential function for F1-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and cubic root plastic potential function for F1-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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L1-Sand 

 

 
Comparison of original and cubic root plastic potential function for L1-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and cubic root plastic potential function for L1-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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L2-Sand 

 

 
Comparison of original and cubic root plastic potential function for L2-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and cubic root plastic potential function for L2-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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L8-Sand 

 

 
Comparison of original and cubic root plastic potential function for L8-Sand at low 
confining pressures. a) Stress-strain. b) Volume change. 
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Comparison of original and cubic root plastic potential function for L8-Sand at high 
confining pressures. a) Stress-strain. b) Volume change. 
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F1-Sand 

 

 
Comparison of original and new softening function for F1-Sand at low confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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Comparison of original and new softening function for F1-Sand at high confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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L1-Sand 

 

 
Comparison of original and new softening function for L1-Sand at low confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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Comparison of original and new softening function for L1-Sand at high confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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L2-Sand 

 

 
Comparison of original and new softening function for L2-Sand at low confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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Comparison of original and new softening function for L2-Sand at high confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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L8-Sand 

 

 
Comparison of original and new softening function for L8-Sand at low confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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Comparison of original and new softening function for L8-Sand at high confining 
pressures. With linear version of plastic potential function. a) Stress-strain. b) Volume 
change. 
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Appendix D: Test Data 
Data from triaxial, isotropic, K0, Brazilian, and torsion shear tests. 
 
Triaxial tests 
     

Vertical tests  Horizontal tests 
V3 σ3 = 0.05 MPa  H2 σ3 = 0.05 MPa 
V10 σ3 = 0.05 MPa  H10 σ3 = 0.05 MPa 
V5 σ3 = 0.14 MPa  H4 σ3 = 0.14 MPa 
V1 σ3 = 0.48 MPa  H5 σ3 = 0.15 MPa 
V6 σ3 = 1.0 MPa  H1 σ3 = 0.48 MPa 
V7 σ3 = 2.0 MPa  H8 σ3 = 1.0 MPa 
V8 σ3 = 4.0 MPa  H7 σ3 = 2.0 MPa 
V14 σ3 = 6.0 MPa  H6 σ3 = 4.0 MPa 
V15 σ3 = 9.9 MPa  H13 σ3 = 4.0 MPa 
V16 σ3 = 14.0 MPa  H16 σ3 = 5.9 MPa 
V9* σ3 = 0.15 MPa  H14 σ3 = 9.9 MPa 

   H15 σ3 = 14.0 MPa 
   H9* σ3 = 0.15 MPa 
Isotropic tests 
     

Vertical tests  Horizontal tests 
V4* (Brazilian)  H3* (Brazilian) 
V9* (Triaxial)  H9* (Triaxial) 

 
K0-tests 
     

Vertical tests    
V11     

V13**     
 
Brazilian tests 
     

Vertical tests  Horizontal tests 
V2   H11  
V12   H12  
V4*   H3*  

 
Torsion shear tests 
     

TS1     
TS2     
TS3     

 
*The cementation was not broken after the isotropic tests, so the specimens were used for 
a second test. 
**No volume change correction on this test, due to the extra layer of rubber latex. 
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Specimen V3  Porosity  43.7 %  
Cored from block I  Void ratio  0.777   
Orientation Vertical       
Initial height 9.760 cm Back pressure  98 kPa  
Initial diameter 3.676 cm Saturation index, B 0.91   
Initial mass 156.2 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.048 0.036 0.000 0.000   
  240 0.048 0.202 0.325 0.239   
  300 0.048 0.317 0.393 0.279   
  360 0.048 0.474 0.457 0.307   
  420 0.048 0.593 0.509 0.324   

Unloading 480 0.048 0.383 0.494 0.318   
  540 0.048 0.143 0.426 0.279   
Reloading 600 0.048 0.195 0.485 0.311   

  660 0.048 0.536 0.536 0.344   
Triaxial loading 720 0.048 0.766 0.600 0.355   

  780 0.048 0.920 0.682 0.357   
  840 0.048 1.027 0.781 0.341   
  900 0.048 1.142 0.869 0.300   
  960 0.048 1.210 0.964 0.202   
  1080 0.048 1.082 1.176 -0.123   
  1320 0.049 0.874 1.594 -0.791   
  1620 0.048 0.716 2.106 -1.493   
  2220 0.049 0.599 2.729 -2.103   
  2580 0.049 0.516 3.335 -2.603   
  3000 0.049 0.461 4.054 -2.986   
  3600 0.049 0.441 5.021 -3.284   
  4200 0.050 0.441 6.033 -3.511   
  4920 0.049 0.459 6.887 -3.583   
  5280 0.049 0.473 7.474 -3.693   

Unloading 5340 0.050 0.258 7.425 -3.648   
  5400 0.049 0.166 7.331 -3.492   
  5520 0.049 0.118 7.126 -3.239   
  5640 0.049 0.093 6.931 -3.057   
  5700 0.049 0.088 6.826 -2.986   
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Specimen V10  Porosity  42.5 %  
Cored from block II  Void ratio  0.739   
Orientation Vertical       
Initial height 9.766 cm Back pressure  98 kPa  
Initial diameter 3.644 cm Saturation index, B 0.92   
Initial mass 157.0 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.049 0.037 0.000 0.000   
  120 0.049 0.262 0.048 0.009   
  180 0.049 0.528 0.089 0.025   
  240 0.049 0.785 0.155 0.078   
  300 0.049 1.033 0.231 0.098   
  360 0.049 1.282 0.320 0.087   
  420 0.049 1.462 0.399 0.060   
  480 0.049 1.538 0.493 -0.026   
  540 0.049 1.542 0.594 -0.158   
  600 0.050 1.509 0.699 -0.310   
  720 0.050 1.345 0.903 -0.725   
  900 0.050 1.147 1.225 -1.445   
  1140 0.050 0.967 1.630 -2.336   
  1440 0.050 0.800 2.141 -3.312   
  1920 0.050 0.612 2.940 -4.401   
  2400 0.050 0.520 3.742 -5.015   
  3000 0.050 0.494 4.740 -5.431   

Unloading 3120 0.050 0.240 4.704 -5.378   
  3180 0.049 0.116 4.618 -5.207   
  3360 0.049 0.067 4.421 -4.797   
Reloading 3420 0.049 0.183 4.495 -4.797   
  3540 0.049 0.365 4.683 -4.910   

Triaxial loading 3660 0.049 0.482 4.868 -5.042   
  3960 0.049 0.511 5.366 -5.306   
  4200 0.049 0.510 5.766 -5.477   
Unloading 4260 0.049 0.218 5.717 -5.444   

  4380 0.049 0.105 5.630 -5.279   
  4500 0.049 0.057 5.424 -4.962   
  4680 0.049 0.037 5.156 -4.665   
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Specimen V5  Porosity  43.9 %  
Cored from block I  Void ratio  0.781   
Orientation Vertical       
Initial height 9.785 cm Back pressure  98 kPa  
Initial diameter 3.678 cm Saturation index, B 0.94   
Initial mass 156.4 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.142 0.107 0.000 0.000   
  60 0.142 0.368 0.027 0.001   
  120 0.142 0.659 0.061 0.036   
  180 0.142 0.967 0.116 0.058   
  240 0.142 1.316 0.183 0.098   
  306 0.142 1.634 0.253 0.116   
  360 0.142 1.820 0.349 0.129   
  420 0.142 1.900 0.442 0.103   
  540 0.142 1.809 0.643 -0.071   
  720 0.142 1.646 0.937 -0.440   
  1020 0.142 1.458 1.437 -0.989   
  1380 0.142 1.290 2.031 -1.487   
  2040 0.143 1.175 2.727 -1.778   
  2520 0.143 1.117 3.528 -2.011   
  3120 0.143 1.052 4.549 -2.367   
  3720 0.143 0.969 5.536 -2.729   
  4680 0.144 0.934 6.741 -2.955   
  5520 0.144 0.946 7.727 -3.084   
  6000 0.144 0.963 8.526 -3.201   
  6600 0.144 0.989 9.534 -3.350   

Unloading 6660 0.144 0.803 9.532 -3.343   
  6720 0.144 0.563 9.495 -3.337   
  6780 0.144 0.341 9.438 -3.278   
  6900 0.144 0.187 9.261 -3.039   
  7080 0.144 0.153 9.063 -2.813   
Reloading 7140 0.144 0.361 9.132 -2.781   
  7260 0.144 0.523 9.302 -2.793   
  7380 0.144 0.750 9.460 -2.845   
  7500 0.144 0.959 9.638 -2.923   
  7680 0.144 1.052 9.938 -3.033   

Triaxial loading 8160 0.144 1.079 10.728 -3.285   
  8640 0.144 1.090 11.519 -3.492   
Unloading 8760 0.144 0.642 11.487 -3.472   

  8820 0.144 0.365 11.433 -3.427   
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  8940 0.144 0.196 11.261 -3.201   
  9120 0.144 0.132 10.987 -2.929   
  9240 0.144 0.111 10.812 -2.800   
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Specimen V1  Porosity 43.6 %  
Cored from block I  Void ratio 0.772   
Orientation Vertical       
Initial height 9.792 cm Back pressure  98 kPa  
Initial diameter 3.670 cm Saturation index, B 0.92   
Initial mass 156.7 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.481 0.361 0.000 0.000   
  120 0.482 0.898 0.126 0.110   
  240 0.481 1.561 0.260 0.219   
  360 0.482 2.128 0.420 0.323   
Unloading 450 0.482 1.625 0.408 0.329   
  570 0.482 1.008 0.368 0.336   
Reloading 660 0.482 1.825 0.431 0.381   

Triaxial loading 780 0.482 2.496 0.597 0.427   
  900 0.482 2.661 0.787 0.453   
  1200 0.482 2.832 1.264 0.368   
  1440 0.482 2.865 1.660 0.251   
  1680 0.482 2.850 2.053 0.115   
  1980 0.482 2.802 2.551 -0.067   
  2340 0.483 2.729 3.165 -0.274   
  2760 0.483 2.636 3.871 -0.489   
  3480 0.483 2.553 4.573 -0.599   
  3960 0.483 2.453 5.378 -0.735   
  4560 0.483 2.364 6.369 -0.826   
  5280 0.483 2.348 7.169 -0.800   
  5880 0.483 2.325 8.159 -0.846   
  6600 0.483 2.339 8.971 -0.820   
  7080 0.483 2.326 9.780 -0.865   
  7560 0.483 2.321 10.570 -0.904   
Unloading 7680 0.483 1.736 10.543 -0.878   
  7740 0.483 1.166 10.483 -0.839   
  7800 0.483 0.862 10.410 -0.774   
  7920 0.483 0.596 10.249 -0.599   
  8220 0.483 0.411 9.878 -0.242   
Reloading 8340 0.483 0.842 10.002 -0.177   
  8460 0.483 1.227 10.169 -0.151   
  8640 0.483 1.777 10.418 -0.196   
  8820 0.483 2.228 10.684 -0.274   

Triaxial loading 9120 0.483 2.414 11.166 -0.391   
  9600 0.483 2.412 11.952 -0.534   
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  10200 0.483 2.374 12.946 -0.677   
Unloading 10320 0.483 1.807 12.916 -0.644   

  10380 0.483 1.236 12.860 -0.612   
  10440 0.483 0.906 12.789 -0.540   
  10560 0.483 0.618 12.635 -0.372   
  10740 0.483 0.446 12.365 -0.125   
  10920 0.483 0.369 12.143 0.063   
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Specimen V6  Porosity  44.5 %  
Cored from block I  Void ratio  0.803   
Orientation Vertical       
Initial height 9.779 cm Back pressure  98 kPa  
Initial diameter 3.679 cm Saturation index, B 0.90   
Initial mass 154.5 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 1.000 0.750 0.000 0.000   
  120 1.000 1.295 0.122 0.098   

  240 1.000 1.889 0.240 0.182   
Unloading 330 1.000 1.027 0.207 0.182   
Reloading 360 1.000 1.086 0.208 0.182   
  390 1.000 1.416 0.227 0.188   

Triaxial loading 480 0.981 2.263 0.308 0.247   
  660 1.030 3.214 0.550 0.428   
  840 1.020 3.926 0.813 0.558   
  1080 1.020 4.404 1.187 0.649   
  1260 0.990 4.423 1.483 0.630   
  1500 1.000 4.462 1.879 0.584   
  1800 1.000 4.439 2.373 0.506   
  2160 1.000 4.392 2.967 0.402   
  2760 1.000 4.357 3.560 0.325   
  3240 1.000 4.279 4.350 0.208   
  3840 1.000 4.195 5.361 0.078   
  4560 0.99 4.116 6.571 -0.039   
  5400 0.99 4.074 7.573 -0.097   
  6000 1.000 4.048 8.555 -0.169   
  6840 0.991 4.026 9.537 -0.227   
  7320 1.000 4.020 10.335 -0.260   
Unloading 7440 1.000 3.203 10.299 -0.253   
  7500 1.000 2.389 10.244 -0.247   
  7620 1.000 1.520 10.110 -0.149   
  7800 1.000 1.021 9.873 0.052   
  8040 0.971 0.737 9.560 0.260   
Reloading 8160 0.971 1.061 9.588 0.299   
  8280 0.981 1.653 9.702 0.338   
  8460 0.981 2.492 9.934 0.344   
  8700 0.981 3.504 10.27 0.273   
  8880 0.981 3.942 10.552 0.208   

Triaxial loading 9360 0.981 4.109 11.353 0.058   
  9960 0.981 4.090 12.336 -0.052   
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Unloading 10080 0.981 3.253 12.304 -0.045   
  10140 0.981 2.460 12.25 -0.026   
  10260 0.981 1.566 12.118 0.039   
  10440 0.981 1.046 11.878 0.234   
  10740 0.971 0.724 11.487 0.487   

         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         



 356 
 

Specimen V7  Porosity  44.1 %  
Cored from block I  Void ratio  0.790   
Orientation Vertical       
Initial height 9.766 cm Back pressure  98 kPa  
Initial diameter 3.681 cm Saturation index, B 0.91   
Initial mass 155.6 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 2.001 1.500 0.000 0.000   
  120 2.001 2.227 0.098 0.110   
  300 2.001 3.500 0.295 0.285   

Unloading 360 2.001 2.840 0.281 0.304   
  480 2.001 2.627 0.275 0.324   

Reloading 540 2.001 3.334 0.31 0.349   
Triaxial loading 600 2.001 3.984 0.38 0.401   

  720 2.001 4.793 0.539 0.518   
  900 2.001 5.780 0.788 0.686   
  1140 2.010 6.672 1.140 0.887   
  1500 2.010 7.236 1.713 1.087   
  1800 2.020 7.402 2.200 1.184   
  2160 2.020 7.475 2.793 1.314   
  2520 2.040 7.533 3.388 1.424   
  2820 2.040 7.544 3.876 1.508   
  3180 2.000 7.421 4.486 1.586   
  3540 2.000 7.405 5.082 1.663   
  4020 2.000 7.371 5.891 1.799   
  4680 2.000 7.355 6.586 2.019   
  5160 2.000 7.325 7.377 2.052   
  5760 1.991 7.267 8.365 2.311   
  6600 1.991 7.216 9.365 2.608   
  7200 1.971 7.216 10.373 2.848   

Unloading 7260 2.020 6.325 10.349 2.880   
  7320 2.015 5.276 10.290 2.926   
  7440 2.005 3.767 10.165 3.016   
  7620 1.991 2.545 9.932 3.249   
  7860 1.971 1.836 9.609 3.540   
  8100 1.971 1.501 9.306 3.773   

Reloading 8160 1.971 1.869 9.332 3.825   
  8280 1.971 2.668 9.440 3.877   
  8460 1.971 3.970 9.655 3.935   
  8700 1.961 5.464 9.973 3.942   
  8940 1.951 6.667 10.325 3.877   
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Triaxial loading 9240 1.951 7.247 10.796 3.780   
  9840 1.961 7.260 11.786 3.670   
  10440 1.961 7.147 12.778 3.605   

Unloading 10500 1.961 6.263 12.763 3.605   
  10560 1.971 5.254 12.710 3.625   
  10620 1.971 4.406 12.652 3.644   
  10740 1.971 3.233 12.517 3.715   
  10920 1.971 2.310 12.285 3.884   
  11160 1.951 1.736 11.956 4.078   
  11400 1.942 1.460 11.663 4.233   
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Specimen V8  Porosity  44.4 %  
Cored from block I  Void ratio  0.799   
Orientation Vertical       
Initial height 9.734 cm Back pressure  96 kPa  
Initial diameter 3.677 cm Saturation index, B 0.92   
Initial mass 154.0 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.109 0.082 0.000 0.000   
  360 0.491 0.368 0.095 0.503   
  480 0.982 0.736 0.219 0.874   
  600 1.472 1.104 0.309 1.141   
  720 1.962 1.472 0.375 1.354   
  840 2.472 1.854 0.421 1.547   
  960 2.992 2.244 0.484 1.770   
  1080 3.512 2.634 0.529 1.975   
  1200 4.002 3.002 0.576 2.181   

Triaxial loading 0 4.002 3.002 0.000 0.000   
  60 4.002 3.552 0.054 0.059   
  180 4.002 4.335 0.181 0.163   
  300 4.002 5.143 0.325 0.280   
Unloading 480 4.002 4.046 0.300 0.293   
Reloading 600 4.002 5.585 0.406 0.358   

Triaxial loading 660 4.002 6.012 0.487 0.410   
  840 4.002 7.185 0.726 0.572   

  1020 4.003 8.220 0.980 0.748   
  1200 4.003 9.095 1.240 0.898   
  1440 4.003 9.975 1.601 1.093   
  1800 4.003 10.803 2.149 1.340   
  2280 4.003 11.343 2.920 1.606   
  2760 4.003 11.636 3.709 1.925   
  3360 4.003 11.860 4.739 2.179   
  4080 3.993 12.020 5.913 2.406   
  4920 3.983 12.150 7.267 2.667   
  5760 3.993 12.270 8.656 2.927   
  6720 3.983 12.306 10.261 3.245   
  7448 3.983 12.325 11.448 3.467   
  8160 3.993 12.361 12.63 3.668   
  9000 3.973 12.321 14.029 3.902   
  9840 3.974 12.251 15.428 4.117   
  10680 3.973 12.194 16.841 4.338   
  11640 3.973 12.128 18.429 4.611   
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  12240 3.973 12.080 19.423 4.774   
Unloading 12360 3.973 9.260 19.343 4.806   
  12540 3.973 6.322 19.150 4.891   
  12720 3.973 4.774 18.946 5.040   
  12960 3.973 3.708 18.622 5.288   
  13200 3.973 3.169 18.318 5.496   
Reloading 13320 3.973 4.095 18.38 5.561   
  13440 3.973 5.326 18.504 5.632   
  13620 4.003 7.267 18.716 5.717   
  13800 4.003 8.972 18.945 5.749   
  13980 4.003 10.516 19.181 5.769   
  14220 4.003 11.973 19.538 5.769   
  14640 4.003 12.647 20.204 5.795   
Unloading 14700 4.003 11.269 20.185 5.808   
  14760 3.990 9.803 20.134 5.808   
  14880 3.965 7.452 20.013 5.840   
  15060 3.927 5.208 19.817 5.925   
  15300 3.877 3.688 19.504 6.101   
  15660 3.729 2.797 19.133 6.224   

Isotropic unloading 15660 3.729 2.797 19.133 6.224   
  15780 3.337 2.502 19.098 6.227   
  15900 2.944 2.208 19.067 6.228   
  16020 2.483 1.863 19.031 6.214   
  16140 1.973 1.480 18.987 6.184   
  16260 1.492 1.119 18.930 6.127   
  16380 0.992 0.744 18.857 6.039   
  16500 0.492 0.369 18.722 5.859   

         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         



 360 
 

Specimen V14  Porosity  43.7 %  
Cored from block II  Void ratio  0.775   
Orientation Vertical       
Initial height 9.761 cm Back pressure  99 kPa  
Initial diameter 3.627 cm Saturation index, B 0.93   
Initial mass 152.3 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.108 0.081 0.000 0.000   
  360 0.598 0.448 -0.001 0.271   
  480 1.088 0.816 0.040 0.397   
  600 1.578 1.184 0.086 0.530   
  720 2.059 1.545 0.128 0.696   
  840 2.550 1.912 0.166 0.853   
  960 3.060 2.295 0.206 1.011   
  1080 3.550 2.662 0.244 1.171   
  1200 4.039 3.030 0.284 1.357   
  1320 4.530 3.397 0.324 1.599   
  1440 5.020 3.765 0.328 1.898   
  1560 5.020 3.765 0.331 2.058   
  1680 5.520 4.140 0.381 2.346   
  1800 6.010 4.508 0.417 2.690   

Triaxial loading 0 6.011 4.508 0.000 0.000   
  120 6.011 5.651 0.114 0.107   
  300 6.011 7.172 0.317 0.280   
  480 6.011 8.618 0.550 0.467   
  726 6.001 10.339 0.894 0.733   
  1020 6.001 11.900 1.331 1.040   
  1440 6.001 13.342 1.999 1.440   
  2040 6.001 14.532 2.958 1.966   
  2760 6.001 15.408 4.130 2.519   
  3480 6.001 16.010 5.295 3.139   
  4500 6.001 16.609 6.952 3.666   
  5700 5.991 17.236 8.922 4.692   
  6900 5.991 17.667 10.884 5.345   
  8100 5.991 18.006 12.867 6.118   
  9600 5.982 18.350 15.348 7.145   
  11100 5.982 18.614 17.820 7.925   
  12600 5.991 18.679 20.297 8.418   
  13200 6.001 18.632 21.283 8.591   
Unloading 13320 6.001 15.162 21.216 8.618   
  13500 6.001 10.924 21.044 8.665   
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  13740 5.981 7.529 20.767 8.758   
  14040 5.981 5.489 20.388 9.018   
  14280 5.981 4.714 20.109 9.171   
Reloading 14400 5.981 5.728 20.143 9.218   
  14585 5.981 8.313 20.321 9.298   
  14760 5.981 10.776 20.531 9.358   
  15004 5.981 14.004 20.828 9.404   
  15240 5.991 16.683 21.136 9.424   
  15540 6.001 18.704 21.575 9.444   
  15960 6.001 19.410 22.237 9.484   
  16500 6.011 19.425 23.135 9.584   
  17400 6.050 19.315 24.626 9.764   
Unloading 17520 6.050 15.688 24.568 9.784   
  17640 6.050 12.582 24.461 9.804   
  17820 6.030 9.209 24.279 9.871   
  18060 5.991 6.560 23.988 10.018   
  18300 5.981 5.227 23.680 10.164   
  18600 5.981 4.488 23.380 10.317   

Isotropic unloading 18600 5.981 4.486 23.380 10.317   
  18720 5.510 4.133 23.337 10.346   
  18840 5.030 3.772 23.306 10.337   
  18960 4.520 3.390 23.295 10.345   
  19080 4.020 3.015 23.239 10.330   
  19200 3.539 2.654 23.203 10.324   
  19320 3.039 2.279 23.165 10.311   
  19440 2.509 1.882 23.118 10.282   
  19560 2.058 1.544 23.071 10.249   
  19680 1.588 1.191 23.013 10.211   
  19800 1.088 0.816 22.926 10.139   
  19920 0.588 0.441 22.780 10.017   
  20040 0.117 0.088 22.231 9.427   
         
         
         
         
         
         
         
         
         
         
         
         
         



 362 
 

Specimen V15  Porosity  43.4 %  
Cored from block II  Void ratio  0.768   
Orientation Vertical       
Initial height 9.771 cm Back pressure  97 kPa  
Initial diameter 3.635 cm Saturation index, B 0.94   
Initial mass 153.7 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.109 0.082 0.000 0.000   
  360 0.599 0.449 0.040 0.232   
  480 1.089 0.817 0.098 0.370   
  600 1.570 1.177 0.155 0.503   
  720 2.080 1.560 0.209 0.665   
  840 2.570 1.927 0.250 0.814   
  960 3.051 2.288 0.286 1.001   
  1088 3.531 2.649 0.322 1.200   
  1200 4.032 3.024 0.359 1.410   
  1320 4.512 3.384 0.394 1.579   
  1440 5.022 3.766 0.430 1.730   
  1560 5.512 4.134 0.465 1.944   
  1680 5.993 4.494 0.494 2.147   
  1800 6.483 4.862 0.526 2.358   
  1920 6.963 5.223 0.554 2.578   
  2040 7.473 5.605 0.580 2.844   
  2160 7.944 5.958 0.606 3.060   
  2280 8.464 6.348 0.631 3.289   
  2400 8.935 6.701 0.654 3.487   
  2520 9.415 7.061 0.674 3.678   
  2640 9.915 7.436 0.696 3.870   

Triaxial loading 3240 9.905 7.429 0.000 0.000   
  3420 9.905 8.764 0.088 0.093   
  3600 9.905 10.664 0.275 0.259   
  3780 9.905 12.461 0.495 0.438   
  3960 9.895 14.084 0.728 0.637   
  4200 9.886 15.936 1.058 0.902   
  4560 9.886 18.012 1.585 1.346   
  5040 9.886 19.869 2.346 1.903   
  5760 9.886 21.609 3.485 2.626   
  6480 9.886 22.807 4.623 3.581   
  7500 9.886 24.028 6.259 4.503   
  8700 9.876 25.099 8.24 5.544   
  9900 9.876 26.202 10.187 7.401   
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  11100 9.867 27.178 12.154 8.635   
  12600 9.906 28.166 14.618 9.597   
  14100 9.905 28.955 17.095 10.452   
  15600 9.905 29.607 19.571 11.149   
  16800 9.925 30.033 21.543 11.666   
  18000 9.915 30.130 23.661 12.150   
Unloading 18120 9.915 25.720 23.509 12.183   
  18300 9.905 20.101 23.363 12.223   
  18540 9.905 14.506 23.128 12.316   
  18840 9.856 10.353 22.786 12.495   
  19080 9.856 8.492 22.474 12.654   
  19260 9.847 7.687 22.292 12.747   
Reloading 19380 9.847 9.152 22.322 12.800   
  19560 9.915 12.604 22.488 12.886   
  19800 9.915 17.077 22.741 12.972   
  20040 9.905 21.461 23.012 13.032   
  20280 9.905 25.609 23.292 13.079   
  20640 9.915 29.864 23.767 13.145   
  21120 9.915 31.518 24.523 13.258   
  21600 9.925 31.752 25.303 13.384   
  22200 9.925 31.642 26.293 13.543   
Unloading 22320 9.935 27.065 26.248 13.569   
  22500 9.935 21.055 26.106 13.616   
  22740 9.916 15.321 25.895 13.695   
  22980 9.906 11.495 25.634 13.828   
  23280 9.866 8.681 25.276 13.994   
  23820 9.827 7.372 24.948 14.180   

Isotropic unloading 23820 9.827 7.370 24.948 14.180   
  23940 9.415 7.061 24.928 14.191   
  24060 8.837 6.627 24.904 14.208   
  24180 8.395 6.296 24.884 14.215   
  24300 7.964 5.973 24.865 14.222   
  24420 7.493 5.620 24.843 14.225   
  24540 6.964 5.223 24.817 14.225   
  24660 6.454 4.840 24.790 14.219   
  24780 5.983 4.487 24.765 14.219   
  24900 5.473 4.105 24.736 14.216   
  25020 5.002 3.752 24.708 14.213   
  25140 4.522 3.391 24.676 14.207   
  25260 4.022 3.016 24.640 14.199   
  25380 3.512 2.634 24.600 14.188   
  25500 3.041 2.281 24.564 14.173   
  25620 2.561 1.920 24.517 14.153   
  25740 2.070 1.552 24.460 14.123   
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  25860 1.580 1.185 24.379 14.083   
  25980 1.099 0.825 24.254 14.013   
  26100 0.589 0.442 24.024 14.617   
  26220 0.109 0.081 23.316 13.980   
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         



 365 
 

Specimen V16  Porosity  43.6 %  
Cored from block II  Void ratio  0.772   
Orientation Vertical       
Initial height 9.775 cm Back pressure  99 kPa  
Initial diameter 3.628 cm Saturation index, B 0.91   
Initial mass 152.8 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.117 0.113 0.000 0.000   
  360 0.686 0.665 0.030 0.186   
  480 1.185 1.150 0.079 0.285   
  600 1.685 1.635 0.128 0.388   
  720 2.166 2.101 0.171 0.481   
  840 2.656 2.577 0.213 0.600   
  960 3.156 3.062 0.257 0.694   
  1080 3.637 3.528 0.296 0.796   
  1200 4.127 4.003 0.334 0.915   
  1320 4.618 4.480 0.371 1.038   
  1440 5.138 4.984 0.407 1.210   
  1560 5.589 5.421 0.437 1.380   
  1680 6.079 5.897 0.470 1.611   
  1800 6.579 6.382 0.503 1.843   
  1920 7.070 6.858 0.532 2.077   
  2040 7.579 7.352 0.563 2.338   
  2160 8.040 7.799 0.590 2.568   
  2280 8.531 8.275 0.617 2.832   
  2400 9.031 8.760 0.644 3.070   
  2520 9.511 9.226 0.668 3.296   
  2640 10.001 9.701 0.692 3.489   
  2760 10.492 10.177 0.713 3.662   
  2880 10.992 10.663 0.739 3.843   
  3000 11.483 11.138 0.762 4.005   
  3120 11.973 11.614 0.783 4.160   
  3240 12.463 12.089 0.805 4.309   
  3360 13.052 12.660 0.830 4.470   
  3480 13.434 13.031 0.845 4.589   
  3600 14.003 13.583 0.873 4.751   

Triaxial loading 0 13.827 10.370 0.000 0.000   
  180 13.983 12.807 0.158 0.120   
  360 14.111 14.983 0.376 0.286   
  600 14.062 17.391 0.692 0.513   
  900 14.032 19.892 1.123 0.832   
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  1320 14.032 22.418 1.767 1.285   
  1920 14.023 24.896 2.738 1.918   
  2520 14.022 26.677 3.679 2.537   
  3240 14.013 28.294 4.819 3.256   
  4200 14.013 30.078 6.336 4.281   
  5400 14.003 32.000 8.271 5.686   
  6900 14.003 34.131 10.679 7.577   
  8400 13.993 36.119 13.113 9.362   
  9900 13.993 38.004 15.534 10.813   
  11400 13.974 39.714 17.949 12.085   
  12900 13.974 41.388 20.369 13.050   
  14100 13.974 42.746 22.301 13.750   
  15300 13.973 44.209 24.211 14.469   

Unloading 15420 13.954 38.893 24.161 14.522   
  15600 13.954 31.496 24.024 14.589   
  15780 13.935 25.563 23.869 14.655   
  16020 13.935 19.486 23.634 14.802   
  16260 13.935 15.173 23.372 14.968   
  16500 13.944 12.379 23.091 15.155   
  16800 13.944 10.567 22.797 15.368   

Reloading 16920 13.944 11.763 22.802 15.428   
  17040 13.944 14.760 22.864 15.501   
  17220 13.944 19.082 23.025 15.587   
  17460 13.944 24.884 23.271 15.681   
  17700 13.944 30.461 23.527 15.747   
  17940 13.944 35.836 23.798 15.807   
  18240 13.944 41.653 24.166 15.874   
  18600 13.944 45.564 24.665 15.967   
  18960 13.944 47.069 25.208 16.073   
  19440 13.944 47.915 25.963 16.247   
  20040 13.944 48.509 26.920 16.466   

Unloading 20160 13.944 43.022 26.875 16.506   
  20340 13.944 34.728 26.761 16.540   
  20580 13.944 26.399 26.565 16.606   
  20820 13.934 19.982 26.339 16.706   
  21060 13.934 15.444 26.081 16.819   
  21360 13.934 11.864 25.740 16.959   
  21660 13.925 10.406 25.520 17.085   
Isotropic unloading 21840 13.925 10.444 25.520 17.085   
  21960 13.435 10.076 25.479 17.095   
  22080 12.905 9.679 25.459 17.112   
  22200 12.454 9.341 25.442 17.129   
  22320 11.954 8.965 25.421 17.140   
  22440 11.454 8.590 25.396 17.151   
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  22560 10.973 8.230 25.378 17.162   
  22680 10.473 7.855 25.348 17.175   
  22800 9.924 7.443 25.329 17.183   
  22920 9.512 7.134 25.304 17.194   
  23040 9.032 6.774 25.278 17.201   
  23160 8.600 6.450 25.260 17.201   
  23280 8.061 6.046 25.235 17.205   
  23400 7.560 5.670 24.986 17.202   
  23520 7.080 5.310 25.165 17.213   
  23640 6.639 4.979 25.129 17.203   
  23760 6.139 4.604 25.088 17.211   
  23880 5.590 4.192 25.058 17.209   
  24000 5.119 3.839 24.996 17.199   
  24120 4.628 3.471 24.952 17.340   
  24240 4.138 3.103 24.905 17.323   
  24360 3.667 2.750 24.807 17.288   
  24480 3.049 2.287 24.709 17.245   
  24600 2.667 2.000 24.583 17.187   
  24720 2.206 1.654 24.439 17.118   
  24840 1.666 1.250 24.176 16.960   
  24960 1.137 0.853 23.899 16.789   
  25080 0.647 0.485 23.599 16.593   
  25200 0.098 0.073 22.580 15.706   
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Specimen V9  Porosity  42.5 %  
Cored from block II  Void ratio  0.739   
Orientation Vertical       
Initial height 9.749 cm Back pressure  201 kPa  
Initial diameter 3.638 cm Saturation index, B 0.84   
Initial mass 156.2 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 120 0.143 0.140 0.000 0.000   
  240 0.143 0.213 0.170 0.156   
  360 0.143 0.336 0.336 0.276   
  480 0.143 0.526 0.495 0.383   
  660 0.143 0.899 0.718 0.485   
  780 0.143 1.175 0.883 0.506   
  900 0.143 1.426 1.053 0.478   
  1020 0.143 1.592 1.246 0.385   
  1200 0.143 1.692 1.531 0.133   
  1380 0.143 1.645 1.830 -0.199   
  1500 0.143 1.577 2.033 -0.405   
  1620 0.143 1.451 2.239 -0.577   
  1800 0.143 1.300 2.532 -0.736   
  2040 0.143 1.202 2.930 -0.834   
  2280 0.143 1.149 3.337 -0.887   
  2640 0.143 1.143 3.928 -0.946   
  3000 0.143 1.155 4.524 -1.013   

Unloading 3120 0.143 0.782 4.494 -1.013   
  3180 0.143 0.502 4.419 -0.986   
  3300 0.143 0.288 4.275 -0.854   
  3480 0.143 0.164 4.003 -0.615   

Reloading 3600 0.143 0.303 4.044 -0.569   
  3720 0.143 0.559 4.206 -0.535   
  3840 0.143 0.798 4.370 -0.588   

Triaxial loading 3960 0.143 1.054 4.535 -0.661   
  4140 0.143 1.198 4.820 -0.781   
  4440 0.143 1.214 5.317 -0.927   
  4740 0.143 1.200 5.811 -1.033   
  4800 0.143 1.080 5.814 -1.046   

Unloading 4860 0.143 0.811 5.771 -1.046   
  4920 0.143 0.514 5.697 -1.006   
  5040 0.143 0.303 5.558 -0.913   
  5160 0.143 0.203 5.370 -0.761   
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Specimen H2  Porosity  42.6 %  
Cored from block I  Void ratio  0.741   
Orientation Horizontal      
Initial height 9.762 cm Back pressure  98 kPa  
Initial diameter 3.675 cm Saturation index, B  0.91   
Initial mass 159.4 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.048 0.036 0.000 0.000   
  60 0.048 0.127 0.073 0.044   
  120 0.048 0.261 0.129 0.088   
  180 0.048 0.400 0.185 0.141   
  240 0.048 0.547 0.243 0.168   
  300 0.048 0.687 0.303 0.206   
  360 0.048 0.871 0.360 0.225   
Unloading 420 0.048 0.853 0.371 0.225   
  480 0.048 0.502 0.338 0.205   
  540 0.048 0.337 0.334 0.205   
Reloading 600 0.048 0.629 0.366 0.231   
  660 0.048 1.110 0.431 0.245   

Triaxial loading 720 0.048 1.355 0.511 0.249   
  780 0.048 1.520 0.599 0.210   
  900 0.048 1.342 0.816 -0.160   
  1080 0.048 1.053 1.151 -0.900   
  1260 0.048 0.838 1.467 -1.595   
  1440 0.049 0.681 1.782 -2.069   
  1680 0.049 0.575 2.193 -2.471   
  2280 0.049 0.517 2.815 -2.835   
  2760 0.049 0.489 3.616 -3.166   
  3600 0.049 0.471 4.600 -3.529   
  4200 0.049 0.413 5.614 -4.088   
  4800 0.049 0.377 6.611 -4.477   
  5880 0.049 0.386 7.819 -4.704   
  6600 0.050 0.374 8.995 -4.906   
Unloading 6720 0.049 0.211 8.942 -4.795   

  6780 0.049 0.136 8.855 -4.620   
  6900 0.049 0.065 8.677 -4.328   
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Specimen H10  Porosity  40.5 %  
Cored from block II  Void ratio  0.682   
Orientation Horizontal      
Initial height 9.770 cm Back pressure  98 kPa  
Initial diameter 3.623 cm Saturation index, B  0.94   
Initial mass 160.5 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.049 0.036 0.000 0.000   
  60 0.049 0.178 0.035 0.027   
  180 0.049 0.437 0.171 0.145   
  300 0.049 0.821 0.308 0.243   
  420 0.049 1.286 0.465 0.301   
  540 0.049 1.605 0.658 0.246   
  660 0.049 1.325 0.882 -0.161   
  780 0.049 1.164 1.098 -0.629   
  965 0.050 0.987 1.431 -1.337   
  1140 0.050 0.854 1.728 -1.878   
  1320 0.050 0.750 2.031 -2.325   
  1560 0.050 0.636 2.421 -2.712   
  1920 0.050 0.538 3.004 -3.006   
  2280 0.050 0.504 3.603 -3.167   
  2640 0.050 0.504 4.202 -3.314   
  3000 0.050 0.502 4.796 -3.447   
Unloading 3120 0.050 0.267 4.757 -3.434   
  3180 0.050 0.146 4.669 -3.320   
  3300 0.050 0.094 4.568 -3.120   
Reloading 3360 0.050 0.205 4.639 -3.093   
  3420 0.050 0.333 4.721 -3.113   
  3480 0.050 0.461 4.808 -3.153   
  3660 0.050 0.531 5.094 -3.287   
  3900 0.050 0.524 5.494 -3.414   
  4200 0.051 0.508 5.995 -3.554   
Unloading 4320 0.051 0.253 5.945 -3.547   

  4440 0.051 0.087 5.763 -3.334   
  4620 0.051 0.040 5.505 -3.060   
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Specimen H4  Porosity  43.0 %  
Cored from block I  Void ratio  0.754   
Orientation Horizontal      
Initial height 9.723 cm Back pressure  98 kPa  
Initial diameter 3.662 cm Saturation index, B  0.86   
Initial mass 156.5 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.142 0.107 0.000 0.000   
  120 0.142 0.308 0.145 0.105   
  306 0.142 0.577 0.385 0.283   
  480 0.142 0.937 0.614 0.426   
Unloading 540 0.142 0.643 0.613 0.426   
  660 0.142 0.414 0.584 0.406   
Reloading 720 0.142 0.826 0.629 0.433   
  780 0.142 1.064 0.709 0.469   

Triaxial loading 900 0.142 1.365 0.879 0.525   
  960 0.142 1.508 0.974 0.531   
  1020 0.142 1.629 1.065 0.531   
  1140 0.142 1.748 1.253 0.478   
  1260 0.142 1.733 1.458 0.353   
  1440 0.142 1.597 1.764 0.058   
  1680 0.142 1.444 2.162 -0.343   
  1920 0.142 1.274 2.560 -0.671   
  2400 0.142 1.141 2.972 -0.868   
  2760 0.142 1.027 3.590 -1.052   
  3240 0.142 0.982 4.393 -1.19   
  3720 0.142 0.957 5.192 -1.295   
  4440 0.142 0.961 6.001 -1.387   
  5040 0.142 0.935 7.000 -1.525   
  5760 0.142 0.935 8.194 -1.676   
Unloading 5880 0.142 0.528 8.160 -1.669   
  5940 0.142 0.341 8.092 -1.617   
  6000 0.142 0.230 8.015 -1.538   
  6120 0.142 0.146 7.823 -1.374   
Reloading 6240 0.142 0.290 7.870 -1.308   
  6300 0.142 0.448 7.957 -1.288   
  6420 0.142 0.699 8.116 -1.341   
  6542 0.142 0.928 8.291 -1.400   
  6720 0.142 0.982 8.585 -1.499   
  6960 0.142 0.960 8.991 -1.604   
  7440 0.142 0.937 9.793 -1.755   
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Unloading 7560 0.142 0.547 9.749 -1.748   
  7620 0.142 0.347 9.689 -1.702   
  7740 0.142 0.177 9.521 -1.551   
  7980 0.142 0.107 9.203 -1.341   
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Specimen H5  Porosity  45.9 %  
Cored from block I  Void ratio  0.850   
Orientation Horizontal      
Initial height 9.714 cm Back pressure  91 kPa  
Initial diameter 3.662 cm Saturation index, B  0.93   
Initial mass 148.2 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.149 0.112 0.000 0.000   
  60 0.149 0.306 0.035 0.028   
  120 0.149 0.501 0.093 0.073   
  180 0.149 0.643 0.144 0.110   
  240 0.149 0.834 0.210 0.168   
  306 0.149 1.056 0.282 0.195   
Unloading 360 0.149 0.725 0.273 0.189   
  480 0.149 0.457 0.252 0.175   
Reloading 540 0.149 0.926 0.292 0.195   
  600 0.149 1.267 0.371 0.225   

Triaxial loading 660 0.149 1.399 0.464 0.244   
  720 0.149 1.494 0.568 0.244   
  840 0.149 1.545 0.768 0.178   
  960 0.149 1.463 0.986 0.033   
  1080 0.149 1.374 1.200 -0.164   
  1260 0.149 1.306 1.511 -0.480   
  1800 0.149 1.234 2.019 -0.940   
  2160 0.149 1.135 2.621 -1.472   
  2520 0.149 1.038 3.230 -1.867   
  3000 0.149 0.966 4.037 -2.117   
  3485 0.149 0.942 4.855 -2.281   
  4200 0.149 0.925 5.631 -2.425   
  4800 0.149 0.875 6.629 -2.695   
  5520 0.149 0.842 7.437 -2.872   
  6000 0.149 0.800 8.234 -3.050   
  6480 0.149 0.778 9.037 -3.188   
  6720 0.149 0.784 9.428 -3.234   
Unloading 6960 0.149 0.711 9.631 -3.254   
  7080 0.149 0.318 9.508 -3.116   
  7260 0.149 0.169 9.229 -2.734   
Reloading 7380 0.149 0.160 9.121 -2.596   
  7500 0.149 0.423 9.290 -2.583   
  7687 0.149 0.672 9.556 -2.702   
  7860 0.149 0.794 9.837 -2.826   
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  8100 0.149 0.820 10.239 -2.951   
  8460 0.149 0.817 10.822 -3.103   
Unloading 8580 0.149 0.817 11.024 -3.155   

  8700 0.149 0.578 11.007 -3.142   
  8880 0.149 0.249 10.818 -2.899   
  9180 0.149 0.126 10.343 -2.419   
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Specimen H1  Porosity  44.7 %  
Cored from block I  Void ratio  0.807   
Orientation Horizontal      
Initial height 9.760 cm Back pressure  98 kPa  
Initial diameter 3.660 cm Saturation index, B  0.93   
Initial mass 152.3 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 0.482 0.362 0.000 0.000   
  60 0.482 0.587 0.078 0.053   
  120 0.482 0.842 0.136 0.088   
  180 0.482 1.072 0.200 0.141   
  240 0.482 1.342 0.274 0.183   
  300 0.482 1.576 0.347 0.222   
Unloading 360 0.482 1.088 0.318 0.215   
  390 0.482 0.891 0.317 0.215   
Reloading 450 0.482 1.005 0.332 0.228   
  540 0.482 1.832 0.427 0.281   

Triaxial loading 660 0.482 2.264 0.599 0.359   
  840 0.482 2.609 0.874 0.425   
  960 0.482 2.645 1.055 0.412   
  1140 0.482 2.618 1.344 0.346   
  1440 0.482 2.578 1.841 0.215   
  1740 0.482 2.541 2.331 0.078   
  2160 0.482 2.489 3.040 -0.145   
  2880 0.482 2.450 3.839 -0.348   
  3360 0.482 2.396 4.645 -0.590   
  3960 0.482 2.344 5.640 -0.865   
  4680 0.482 2.289 6.829 -1.127   
  5400 0.482 2.265 7.662 -1.238   
  6120 0.482 2.217 8.858 -1.435   
  6960 0.482 2.189 9.867 -1.572   
  7500 0.482 2.175 10.661 -1.644   
Unloading 7560 0.482 1.574 10.631 -1.625   
  7620 0.482 1.092 10.571 -1.559   
  7740 0.482 0.681 10.414 -1.376   
  8040 0.482 0.406 9.979 -0.911   
Reloading 8160 0.482 0.674 10.021 -0.839   
  8280 0.482 1.125 10.160 -0.813   
  8460 0.482 1.624 10.415 -0.885   
  8640 0.482 2.019 10.681 -1.009   

Triaxial loading 8820 0.482 2.170 10.972 -1.120   
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  9120 0.482 2.197 11.462 -1.258   
  9600 0.482 2.174 12.250 -1.435   
  10200 0.482 2.145 13.251 -1.592   
Unloading 10320 0.482 1.508 13.224 -1.553   

  10380 0.482 1.055 13.162 -1.494   
  10500 0.482 0.672 13.006 -1.304   
  10680 0.482 0.476 12.751 -1.029   
  10920 0.482 0.365 12.408 -0.734   
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Specimen H8  Porosity  44.0 %  
Cored from block I  Void ratio  0.785   
Orientation Horizontal      
Initial height 9.732 cm Back pressure  98 kPa  
Initial diameter 3.671 cm Saturation index, B  0.93   
Initial mass 154.7 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 1.010 0.758 0.000 0.000   
  60 1.010 1.093 0.088 0.069   
  180 1.010 1.600 0.205 0.150   
  300 1.010 2.290 0.344 0.248   

Unloading 360 1.010 2.067 0.345 0.255   
  480 1.010 1.560 0.322 0.255   

Reloading 540 1.010 2.143 0.356 0.268   
Triaxial loading 660 1.010 2.973 0.511 0.366   

  780 1.010 3.406 0.694 0.444   
  975 1.020 3.738 0.999 0.529   
  1260 1.010 3.941 1.480 0.575   
  1500 1.029 4.050 1.891 0.581   
  1742 1.029 4.121 2.298 0.568   
  2160 1.010 4.140 2.984 0.490   
  2520 1.020 4.180 3.567 0.431   
  2760 1.020 4.188 3.956 0.385   
  3000 1.030 4.173 4.386 0.333   
  3360 1.030 4.134 4.945 0.268   
  3960 1.059 4.139 5.541 0.255   
  4440 1.069 4.106 6.347 0.235   
  5100 1.000 3.892 7.460 0.209   
  5820 1.000 3.855 8.277 0.196   
  6240 1.000 3.859 8.984 0.190   
  6600 1.000 3.857 9.574 0.177   

Unloading 6720 1.000 3.165 9.547 0.190   
  6780 1.000 2.397 9.493 0.196   
  6900 1.000 1.509 9.354 0.268   
  7080 0.991 1.002 9.125 0.438   
  7320 0.991 0.818 8.867 0.588   

Reloading 7380 0.991 1.122 8.906 0.607   
  7500 0.991 1.741 9.027 0.653   
  7680 0.991 2.612 9.257 0.653   
  7800 0.991 3.187 9.427 0.614   
  7927 0.991 3.665 9.609 0.581   
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  8160 0.991 3.920 9.983 0.496   
Triaxial loading 8520 0.991 3.883 10.572 0.438   

  9000 0.991 3.861 11.377 0.392   
Unloading 9120 0.991 3.128 11.348 0.405   

  9180 0.991 2.383 11.289 0.412   
  9300 0.990 1.517 11.142 0.477   
  9480 0.990 1.018 10.900 0.627   
  9780 0.981 0.738 10.542 0.790   
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Specimen H7  Porosity  44.6 %  
Cored from block I  Void ratio  0.806   
Orientation Horizontal      
Initial height 9.759 cm Back pressure  97 kPa  
Initial diameter 3.649 cm Saturation index, B  0.92   
Initial mass 151.5 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 0 2.002 1.501 0.000 0.000   
  120 2.002 2.068 0.112 0.086   
  240 2.002 2.709 0.242 0.178   
  360 1.982 3.364 0.398 0.296   
Unloading 420 1.982 2.986 0.395 0.310   
  540 1.982 2.516 0.377 0.310   
Reloading 600 2.012 3.223 0.410 0.323   
  660 2.012 3.771 0.483 0.362   

Triaxial loading 780 2.012 4.381 0.651 0.481   
  960 2.012 5.073 0.916 0.639   
  1140 2.012 5.554 1.180 0.771   
  1560 2.012 6.153 1.851 1.021   
  2040 2.011 6.500 2.634 1.205   
  2640 2.021 6.777 3.612 1.377   
  3240 2.002 6.893 4.599 1.508   
  3840 2.002 7.012 5.591 1.620   
  4440 2.002 7.095 6.592 1.713   
  5160 2.002 7.157 7.792 1.818   
  5760 2.002 7.201 8.791 1.923   
  6240 2.002 7.226 9.587 2.022   
  6720 2.002 7.205 10.385 2.121   
  7320 2.002 7.162 11.389 2.213   
  7920 2.002 7.091 12.398 2.549   
  8400 1.972 6.989 13.187 2.885   
  9240 2.002 6.954 14.169 3.023   
  9720 2.002 6.882 14.954 3.089   
  10200 2.012 6.827 15.749 3.155   
Unloading 10320 2.021 5.868 15.737 3.188   
  10440 2.021 4.086 15.626 3.359   
  10620 1.943 2.596 15.422 4.485   
  10860 1.943 1.870 15.112 4.848   
  11160 1.924 1.484 14.700 5.105   
Reloading 11280 1.914 1.796 14.717 5.157   
  11400 1.914 2.605 14.825 5.210   
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  11580 1.884 3.744 15.040 5.276   
  11820 1.884 5.101 15.357 5.276   
  12120 1.884 6.415 15.782 5.197   
  12360 1.884 6.802 16.170 5.138   
  12720 1.904 6.853 16.769 5.091   
  13200 1.904 6.758 17.579 5.072   
Unloading 13260 1.933 5.970 17.563 5.078   

  13380 1.933 4.725 17.506 5.118   
  13440 1.933 4.105 17.457 5.131   
  13560 1.904 2.961 17.322 5.230   
  13740 1.904 2.108 17.087 5.388   
  13980 1.894 1.651 16.787 5.572   
  14220 1.884 1.420 16.531 5.724   
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Specimen H6  Porosity  44.1 %  
Cored from block I  Void ratio  0.790   
Orientation Horizontal      
Initial height 9.729 cm Back pressure  97 kPa  
Initial diameter 3.669 cm Saturation index, B  0.91   
Initial mass 154.0 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.099 0.000 0.000 0.000   
  360 0.501 0.154 0.146 0.577   
  480 0.982 0.074 0.251 0.911   
  600 1.501 0.376 0.322 1.128   
  720 2.041 0.736 0.382 1.319   
  840 2.531 1.126 0.429 1.491   
  960 3.041 1.531 0.472 1.698   
  1080 3.511 1.898 0.512 1.921   
  1200 4.002 2.281 0.551 2.135   

Triaxial loading 0 4.002 3.001 0.000 0.000   
  60 4.002 3.643 0.081 0.105   
  180 4.002 4.389 0.209 0.268   
  300 4.002 5.175 0.360 0.445   

Unloading 360 4.002 4.260 0.336 0.484   
  420 4.002 3.453 0.304 0.491   

Reloading 480 4.002 3.994 0.328 0.517   
  540 4.002 4.928 0.371 0.550   
  600 4.002 5.574 0.450 0.608   

Triaxial loading 720 4.002 6.268 0.606 0.746   
  900 4.002 7.177 0.866 0.968   
  1140 4.002 8.132 1.220 1.295   
  1440 4.002 9.007 1.682 1.681   
  1800 4.002 9.722 2.254 2.054   
  2280 4.002 10.401 3.018 2.473   
  3000 4.002 11.101 4.205 3.055   
  3900 4.002 11.726 5.693 3.762   
  4800 4.002 12.191 7.149 4.507   
  5700 4.002 12.587 8.607 5.207   
  6600 4.002 12.834 10.099 5.901   
  7500 4.002 13.042 11.572 6.463   
  8400 4.002 13.236 13.051 6.993   
  9300 4.002 13.382 14.544 7.438   
  10260 4.002 13.525 15.757 7.909   
  11100 4.002 13.561 17.143 8.374   
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  11700 4.002 13.592 18.129 8.714   
Unloading 11760 4.002 12.167 18.123 8.746   

  11820 4.002 10.739 18.081 8.779   
  11940 4.002 8.150 17.973 8.851   
  12120 4.002 5.664 17.780 9.015   
  12360 3.993 4.056 17.481 9.289   
  12600 3.993 3.263 17.171 9.545   

Reloading 12660 3.993 3.729 17.192 9.590   
  12720 3.993 4.366 17.241 9.630   
  12840 3.993 5.899 17.358 9.695   
  13020 3.993 8.193 17.560 9.780   
  13208 4.002 10.313 17.774 9.819   
  13440 4.002 12.671 18.080 9.852   
  13683 4.002 13.854 18.446 9.904   
  14100 4.002 14.244 19.121 10.022   
  14700 4.002 14.189 20.135 10.225   

Unloading 14760 4.002 12.787 20.122 10.245   
  14820 4.002 11.141 20.077 10.277   
  14940 4.002 8.465 19.963 10.343   
  15120 4.002 5.820 19.778 10.480   
  15360 3.992 4.047 19.473 10.722   
  15720 3.993 2.997 19.055 11.056   
Isotropic unloading 15720 3.993 2.994 19.055 11.056   

  15840 3.502 2.627 19.012 11.090   
  15960 3.022 2.266 18.983 11.116   
  16080 2.502 1.876 18.952 11.101   
  16200 1.992 1.494 18.914 11.089   
  16320 1.482 1.111 18.864 11.056   
  16440 0.992 0.744 18.806 10.991   
  16560 0.492 0.369 18.709 10.837   
  16680 0.109 0.082 18.411 10.252   
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Specimen H13  Porosity  42.0 %  
Cored from block II  Void ratio  0.725   
Orientation Horizontal      
Initial height 9.765 cm Back pressure  97 kPa  
Initial diameter 3.646 cm Saturation index, B  0.94   
Initial mass 158.4 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.108 0.081 0.000 0.000   
  360 0.510 0.383 0.043 0.563   

   480 1.030 0.773 0.113 0.741   
  600 1.501 1.126 0.141 0.909   
  720 1.982 1.486 0.172 1.036   
  840 2.541 1.906 0.208 1.155   
  960 3.022 2.266 0.239 1.215   
  1080 3.512 2.634 0.269 1.274   
  1200 4.002 3.002 0.301 1.351   

Triaxial loading 1500 4.002 3.001 0.000 0.000   
  1620 4.002 3.763 0.068 0.040   
  1740 4.002 4.610 0.188 0.132   
  1860 4.002 5.592 0.330 0.238   
Unloading 1980 4.002 3.976 0.291 0.251   
Reloading 2100 4.002 5.376 0.348 0.277   

Triaxial loading 2160 4.002 6.126 0.415 0.343   
  2280 4.002 6.938 0.581 0.469   
  2460 4.002 7.955 0.833 0.647   
  2640 3.992 8.737 1.105 0.832   
  2880 3.992 9.515 1.471 1.030   
  3240 3.992 10.313 2.044 1.320   
  3900 3.982 11.241 3.116 1.709   
  4800 3.992 12.047 4.603 2.112   
  5700 3.992 12.575 6.069 2.442   
  6600 4.012 12.935 7.539 2.726   
  7500 4.012 13.176 9.041 2.996   
  8400 4.021 13.344 10.530 3.260   
  9600 4.021 13.411 12.509 3.531   
  10800 4.032 13.372 14.517 3.828   
  12000 4.032 13.155 16.490 4.112   
  12600 4.041 13.018 17.444 4.244   
Unloading 12720 4.041 10.142 17.375 4.263   
  12900 4.051 6.804 17.208 4.356   
  13140 4.022 4.591 16.928 4.580   
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  13380 4.022 3.635 16.611 4.791   
  13560 3.992 3.189 16.387 4.937   
  13620 3.992 3.539 16.401 4.976   
Reloading 13740 3.982 4.681 16.519 5.036   
  13920 3.982 6.837 16.719 5.115   
  14100 3.973 9.131 16.974 5.167   
  14340 3.963 11.101 17.248 5.167   
  14640 3.963 12.835 17.673 5.148   
  15000 3.972 13.224 18.232 5.148   
Unloading 15120 3.972 10.314 18.165 5.167   

  15300 3.973 6.861 17.990 5.240   
  15540 3.953 4.435 17.702 5.392   
  15780 3.953 3.432 17.407 5.537   
  16020 3.933 2.942 17.164 5.662   
Isotropic unloading 16080 3.943 2.957 17.164 5.662   

  16200 3.433 2.575 17.123 5.666   
  16320 2.962 2.222 17.090 5.672   
  16440 2.501 1.876 17.048 5.651   
  16560 1.942 1.457 16.990 5.613   
  16680 1.501 1.126 16.935 5.576   
  16800 0.982 0.736 16.852 5.491   
  16920 0.491 0.368 16.729 5.358   
  17040 0.138 0.104 16.433 4.909   
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Specimen H16  Porosity  41.9 %  
Cored from block II  Void ratio  0.722   
Orientation Horizontal      
Initial height 9.770 cm Back pressure  98 kPa  
Initial diameter 3.631 cm Saturation index, B  0.92   
Initial mass 157.5 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.117 0.088 0.000 0.000   
  360 0.490 0.367 0.040 0.165   
  480 1.000 0.750 0.103 0.280   
  600 1.490 1.117 0.149 0.370   
  720 1.961 1.471 0.188 0.473   
  840 2.461 1.846 0.226 0.572   
  960 2.942 2.206 0.258 0.651   
  1080 3.442 2.581 0.293 0.749   
  1200 3.942 2.957 0.329 0.839   
  1320 4.432 3.324 0.363 0.927   
  1440 4.913 3.685 0.398 1.033   
  1560 5.396 4.047 0.434 1.140   
  1680 5.933 4.449 0.469 1.255   

Triaxial loading 2520 5.933 4.449 0.000 0.000   
  2700 5.923 5.354 0.064 0.053   
  2820 5.923 6.440 0.189 0.146   
  2940 5.923 7.560 0.342 0.266   
  3060 5.913 8.559 0.504 0.399   
  3180 5.913 9.454 0.675 0.525   
  3360 5.913 10.591 0.933 0.711   
  3600 5.913 11.742 1.308 0.957   
  4080 5.913 13.208 2.095 1.389   
  4560 5.913 14.134 2.865 1.761   
  5160 5.903 14.986 3.833 2.166   
  5790 5.903 15.694 4.858 2.538   
  6600 5.903 16.372 6.176 2.964   
  7800 5.903 17.144 8.177 3.515   
  9000 5.903 17.695 10.131 3.987   
  10200 5.903 18.033 12.140 4.426   
  11400 5.903 18.252 14.120 4.798   
  12900 5.913 18.383 16.601 5.223   
  14400 5.923 18.301 19.033 5.582   
  15600 5.962 18.295 20.893 5.841   
  16500 5.982 18.232 22.481 6.054   
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Unloading 16620 5.982 14.964 22.403 6.074   
  16800 5.972 10.715 22.221 6.127   
  16980 5.972 7.960 22.016 6.220   
  17220 5.942 5.903 21.708 6.413   
  17580 5.903 4.590 21.286 6.645   

Reloading 17700 5.884 5.571 21.329 6.692   
  17880 5.884 8.025 21.507 6.765   
  18060 5.884 10.526 21.711 6.818   
  18240 5.884 12.936 21.944 6.845   
  18420 5.884 15.135 22.182 6.851   
  18600 5.893 16.917 22.439 6.851   
  18840 5.893 18.285 22.808 6.845   
  19320 5.913 18.805 23.580 6.851   
  20100 5.952 18.696 24.850 6.924   
  21000 5.952 18.447 26.341 7.051   

Unloading 21120 5.972 15.013 26.269 7.077   
  21300 5.972 10.749 26.099 7.124   
  21480 5.962 7.983 25.899 7.223   
  21720 5.942 5.914 25.598 7.396   
  21960 5.883 4.844 25.308 7.556   
  22200 5.883 4.414 25.094 7.675   
Isotropic unloading 22200 5.883 4.413 25.094 7.675   

  22320 5.393 4.045 25.057 7.692   
  22440 4.893 3.670 25.030 7.685   
  22560 4.403 3.302 25.002 7.686   
  22680 3.922 2.942 24.975 7.684   
  22800 3.432 2.574 24.945 7.666   
  22920 2.942 2.206 24.913 7.681   
  23040 2.441 1.831 24.876 7.637   
  23160 1.961 1.470 24.833 7.616   
  23280 1.480 1.110 24.782 7.598   
  23400 1.000 0.750 24.707 7.543   
  23520 0.500 0.375 24.542 7.415   
  23640 0.176 0.132 24.139 7.035   
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Specimen H14  Porosity  43.6 %  
Cored from block II  Void ratio  0.772   
Orientation Horizontal      
Initial height 9.753 cm Back pressure  98 kPa  
Initial diameter 3.625 cm Saturation index, B  0.92   
Initial mass 152.2 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.108 0.081 0.000 0.000   
  360 0.588 0.441 0.048 0.254   
  480 1.078 0.809 0.097 0.392   
  600 1.569 1.177 0.137 0.497   
  720 2.059 1.544 0.173 0.602   
  840 2.550 1.912 0.213 0.732   
  960 3.050 2.288 0.253 0.858   
  1088 3.540 2.655 0.291 0.986   
  1200 4.031 3.023 0.331 1.138   
  1320 4.521 3.391 0.369 1.281   
  1440 5.001 3.751 0.406 1.455   
  1560 5.501 4.126 0.465 1.675   
  1680 5.982 4.486 0.483 1.908   
  1800 6.482 4.861 0.522 2.174   
  1920 6.982 5.237 0.561 2.462   
  2040 7.453 5.590 0.595 2.672   
  2160 7.943 5.957 0.634 2.889   
  2280 8.434 6.325 0.670 3.114   
  2400 8.924 6.693 0.704 3.319   
  2520 9.414 7.061 0.741 3.492   
  2640 9.905 7.429 0.778 3.679   

Triaxial loading 3240 9.905 7.429 0.000 0.000   
  3420 9.905 8.505 0.080 0.080   
  3600 9.905 10.007 0.288 0.247   
  3780 9.905 11.267 0.548 0.435   
  4020 9.885 12.729 0.896 0.709   
  4320 9.885 14.225 1.360 1.063   
  4680 9.904 15.694 1.927 1.477   
  5280 9.905 17.535 2.865 2.132   
  5880 9.915 18.961 3.821 2.741   
  6480 9.915 20.108 4.774 3.322   
  7200 9.915 21.260 5.951 3.984   
  8400 9.915 22.831 7.909 5.074   
  9600 9.905 24.114 9.851 6.083   
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  10800 9.914 25.184 11.829 7.073   
  12000 9.905 26.204 13.788 8.122   
  13500 9.905 27.326 16.261 9.312   
  15000 9.905 28.394 18.711 10.442   
  16500 9.905 29.348 21.161 11.364   
  18000 9.915 30.187 23.616 12.106   

Unloading 18120 9.915 25.774 23.545 12.140   
  18300 9.924 20.203 23.383 12.173   
  18480 9.924 15.840 23.199 12.227   
  18660 9.914 12.602 23.01 12.307   
  18900 9.905 9.748 22.687 12.441   
  19260 9.895 7.643 22.292 12.621   

Reloading 19380 9.895 8.887 22.321 12.641   
  19500 9.895 10.962 22.431 12.701   
  19680 9.895 14.192 22.629 12.761   
  19920 9.905 18.836 22.902 12.828   
  20160 9.905 23.298 23.184 12.875   
  20400 9.905 27.162 23.49 12.902   
  20760 9.905 30.368 24.004 12.975   
  21240 9.925 31.514 24.773 13.116   
  22140 9.934 32.069 26.248 13.430   

Unloading 22260 9.934 27.604 26.177 13.457   
  22440 9.944 21.709 26.013 13.497   
  22623 9.934 16.905 25.834 13.550   
  22800 9.934 13.455 25.651 13.624   
  23040 9.905 10.215 25.371 13.751   
  23280 9.885 8.273 25.085 13.871   
  23760 9.846 7.387 24.839 14.005   
Isotropic unloading 23760 9.846 7.385 24.839 14.005   

  23880 9.493 7.120 24.821 14.008   
  24000 8.895 6.671 24.796 14.012   
  24120 8.434 6.325 24.777 14.019   
  24240 7.944 5.958 24.753 14.022   
  24360 7.453 5.590 24.730 14.026   
  24480 6.973 5.230 24.706 14.030   
  24600 6.522 4.891 24.683 14.015   
  24720 6.031 4.523 24.655 14.009   
  24840 5.472 4.104 24.624 14.008   
  24960 5.002 3.751 24.592 13.985   
  25080 4.551 3.413 24.562 13.977   
  25200 4.031 3.023 24.524 13.969   
  25320 3.521 2.640 24.481 13.952   
  25440 3.040 2.280 24.438 13.931   
  25560 2.560 1.920 24.388 13.910   
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  25680 2.060 1.545 24.323 13.875   
  25800 1.569 1.177 24.240 13.834   
  25920 1.079 0.809 24.123 13.767   
  26040 0.589 0.442 23.915 13.648   
  26160 0.147 0.110 23.123 12.922   
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Specimen H15  Porosity  44.9 %  
Cored from block II  Void ratio  0.815   
Orientation Horizontal      
Initial height 9.763 cm Back pressure  98 kPa  
Initial diameter 3.623 cm Saturation index, B  0.93   
Initial mass 148.6 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.147 0.110 0.000 0.000   
  360 0.686 0.515 0.083 0.317   
  480 1.196 0.897 0.162 0.492   
  600 1.677 1.257 0.228 0.629   
  720 2.177 1.632 0.291 0.765   
  840 2.667 2.000 0.342 0.898   
  960 3.148 2.361 0.389 1.020   
  1080 3.638 2.729 0.432 1.142   
  1200 4.129 3.096 0.476 1.275   
  1320 4.609 3.457 0.518 1.420   
  1440 5.109 3.832 0.563 1.606   
  1560 5.590 4.192 0.603 1.823   
  1680 6.080 4.560 0.645 2.068   
  1800 6.580 4.935 0.688 2.314   
  1920 7.080 5.310 0.728 2.535   
  2040 7.551 5.663 0.766 2.732   
  2160 8.041 6.031 0.806 2.909   
  2280 8.551 6.413 0.850 3.133   
  2400 9.022 6.766 0.887 3.326   
  2520 9.531 7.148 0.926 3.485   
  2640 10.002 7.502 0.962 3.639   
  2760 10.503 7.877 1.000 3.793   
  2880 10.983 8.237 1.036 3.942   
  3000 11.483 8.612 1.073 4.084   
  3120 11.983 8.987 1.110 4.219   
  3240 12.533 9.399 1.150 4.375   
  3360 13.023 9.767 1.185 4.505   
  3480 13.503 10.128 1.220 4.649   
  3600 14.053 10.539 1.262 4.812   

Triaxial loading 4200 14.033 10.525 0.000 0.000   
  4440 14.033 11.926 0.108 0.087   
  4680 14.013 14.057 0.407 0.301   
  4920 13.945 15.667 0.749 0.575   
  5160 13.994 17.132 1.110 0.849   
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  5520 14.072 18.888 1.663 1.283   
  6120 14.004 21.126 2.609 1.965   
  6720 13.906 22.863 3.556 2.627   
  7320 14.004 24.463 4.523 3.262   
  8100 14.102 26.264 5.784 4.058   
  9300 14.003 28.389 7.724 5.201   
  10500 14.003 30.449 9.695 6.264   
  11700 13.935 32.037 11.631 7.193   
  13200 14.004 34.177 14.077 8.323   
  14700 13.974 36.055 16.521 9.379   
  16200 14.004 37.834 18.955 10.368   
  17700 14.004 39.463 21.380 11.284   
  18900 14.003 40.696 23.294 11.999   

Unloading 19020 14.003 36.333 23.204 12.039   
  19200 13.974 29.829 23.027 12.080   
  19440 13.964 22.869 22.783 12.153   
  19680 13.974 17.698 22.513 12.247   
  19980 13.945 13.309 22.135 12.400   
  20340 13.935 10.618 21.748 12.561   

Reloading 20520 13.935 13.429 21.822 12.634   
  20760 13.925 18.612 22.078 12.735   
  21000 13.935 23.798 22.349 12.828   
  21300 13.945 30.351 22.700 12.922   
  21600 13.964 36.213 23.070 13.009   
  21900 13.984 40.209 23.495 13.102   
  22320 13.974 42.334 24.165 13.276   
  23100 13.974 43.427 25.424 13.597   
  23760 13.974 44.050 26.491 13.871   

Unloading 23880 13.974 39.281 26.394 13.911   
  24060 13.964 32.422 26.228 13.945   
  24240 13.935 26.682 26.046 13.978   
  24480 13.935 20.576 25.788 14.072   
  24780 13.925 15.201 25.451 14.199   
  25020 13.925 12.378 25.158 14.312   
  25560 13.925 10.448 24.802 14.493   
Isotropic unloading 25560 13.925 10.444 24.802 14.493   

  25680 13.444 10.083 24.779 14.509   
  25800 13.003 9.752 24.760 14.518   
  25920 12.464 9.348 24.739 14.536   
  26040 12.042 9.032 24.721 14.545   
  26160 11.542 8.656 24.701 14.556   
  26280 10.885 8.164 24.674 14.572   
  26400 10.473 7.855 24.654 14.576   
  26520 10.022 7.516 24.635 14.587   
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  26640 9.532 7.149 24.611 14.601   
  26760 9.061 6.796 24.590 14.608   
  26880 8.541 6.406 24.562 14.597   
  27000 8.041 6.031 24.534 14.606   
  27120 7.551 5.663 24.507 14.616   
  27240 7.070 5.302 24.478 14.607   
  27360 6.580 4.935 24.447 14.613   
  27480 6.080 4.560 24.414 14.607   
  27600 5.599 4.199 24.378 14.609   
  27720 5.109 3.832 24.339 14.587   
  27840 4.628 3.471 24.295 14.587   
  27960 4.119 3.089 24.244 14.558   
  28080 3.618 2.714 24.187 14.532   
  28200 3.138 2.353 24.124 14.517   
  28320 2.667 2.000 24.044 14.480   
  28440 2.167 1.625 23.925 14.422   
  28560 1.657 1.243 23.763 14.326   
  28680 1.186 0.890 23.514 14.229   
  28800 0.696 0.522 23.344 14.070   
  28920 0.137 0.103 22.556 13.548   
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Specimen H9  Porosity  44.1 %  
Cored from block II  Void ratio  0.790   
Orientation Horizontal      
Initial height 9.749 cm Back pressure  245 kPa  
Initial diameter 3.625 cm Saturation index, B  0.82   
Initial mass 150.6 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Triaxial loading 360 0.143 0.130 0.000 0.000   
  480 0.143 0.251 0.154 0.116   
  600 0.143 0.554 0.283 0.211   
  720 0.143 0.969 0.419 0.301   
  840 0.143 1.438 0.566 0.355   
  900 0.143 1.672 0.643 0.375   
  960 0.143 1.870 0.730 0.361   
  1080 0.143 2.037 0.905 0.201   
  1140 0.143 1.992 1.009 0.054   
  1260 0.143 1.839 1.198 -0.274   
  1380 0.143 1.689 1.407 -0.615   
  1560 0.143 1.476 1.720 -1.016   
  1740 0.143 1.309 2.030 -1.276   
  1920 0.143 1.198 2.325 -1.429   
  2280 0.143 1.094 2.950 -1.615   
  2640 0.143 1.076 3.538 -1.715   
  3000 0.143 1.064 4.144 -1.795   

Unloading 3120 0.143 0.705 4.108 -1.781   
  3180 0.143 0.477 4.029 -1.728   
  3300 0.143 0.293 3.865 -1.548   
  3420 0.143 0.209 3.673 -1.380   

  3600 0.143 0.165 3.480 -1.220   
Reloading 3780 0.143 0.508 3.720 -1.133   

  3960 0.143 0.842 3.983 -1.213   
Triaxial loading 4140 0.143 1.073 4.265 -1.347   

  4320 0.143 1.104 4.563 -1.454   
  4560 0.143 1.096 4.964 -1.541   
  4800 0.143 1.073 5.367 -1.608   

Unloading 4860 0.143 0.766 5.357 -1.608   
  4980 0.143 0.474 5.257 -1.581   
  5100 0.143 0.289 5.082 -1.461   
  5220 0.143 0.206 4.901 -1.334   
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Specimen V4  Porosity  44.3 %  
Cored from block I  Void ratio  0.796   
Orientation Vertical       
Initial height 9.787 cm Back pressure  93 kPa  
Initial diameter 3.680 cm Saturation index, B  0.94   
Initial mass 155.3 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.103 0.100 0.000 0.000   
  360 0.396 0.385 0.040 0.254   
  480 0.887 0.861 0.132 0.446   
  600 0.887 0.861 0.135 0.472   
  720 1.378 1.336 0.212 0.658   
  840 1.878 1.821 0.286 0.822   
  960 2.358 2.288 0.350 0.981   
  1080 2.849 2.763 0.406 1.112   
  1200 3.338 3.238 0.464 1.258   
  1320 3.829 3.714 0.518 1.396   
  1440 4.320 4.190 0.572 1.520   
  1560 4.810 4.666 0.625 1.659   
  1680 5.300 5.141 0.680 1.841   
  1800 5.790 5.617 0.733 2.037   
  1920 6.281 6.092 0.786 2.274   
  2040 6.771 6.568 0.839 2.526   
  2160 7.262 7.044 0.889 2.733   
  2280 7.752 7.520 0.940 2.994   
  2400 8.253 8.005 0.989 3.236   
  2520 8.743 8.480 1.040 3.531   
  2640 9.223 8.947 1.087 3.769   
  2760 9.713 9.422 1.132 4.020   
  2880 10.204 9.898 1.182 4.265   
  3000 10.694 10.373 1.227 4.499   
  3120 11.204 10.868 1.271 4.732   
  3240 11.675 11.325 1.316 4.941   
Isotropic unloading 3360 11.214 10.878 1.320 5.080   

  3480 10.743 10.421 1.315 5.118   
  3600 9.988 9.689 1.300 5.169   
  3750 8.929 8.661 1.278 5.205   
  3870 8.252 8.005 1.263 5.239   
  3990 7.752 7.520 1.249 5.268   
  4110 7.262 7.044 1.235 5.298   
  4230 6.781 6.578 1.221 5.316   
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  4350 6.330 6.140 1.205 5.328   
  4470 5.820 5.645 1.187 5.337   
  4590 5.340 5.179 1.169 5.340   
  4710 4.840 4.694 1.148 5.340   
  4830 4.330 4.200 1.126 5.337   
  4950 3.849 3.734 1.102 5.323   
  5070 3.359 3.258 1.077 5.307   
  5190 2.878 2.792 1.047 5.277   
  5310 2.359 2.288 1.012 5.245   
  5430 1.898 1.841 0.973 5.186   
  5550 1.398 1.356 0.926 5.112   
  5670 0.986 0.956 0.882 5.145   
  5790 0.839 0.814 0.860 4.959   
  5910 0.496 0.481 0.816 4.779   
  6030 0.202 0.196 0.774 4.459   
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Specimen V9  Porosity  42.5 %  
Cored from block II  Void ratio  0.739   
Orientation Vertical       
Initial height 9.749 cm Back pressure  86 kPa  
Initial diameter 3.638 cm Saturation index, B  0.94   
Initial mass 156.2 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.098 0.095 0.000 0.000   
  360 0.393 0.382 0.070 0.429   
  480 0.892 0.866 0.164 0.746   
  600 1.373 1.332 0.245 0.941   
  720 1.873 1.817 0.317 1.117   
  840 2.363 2.292 0.378 1.241   
  960 2.853 2.768 0.437 1.363   
  1080 3.334 3.234 0.491 1.494   
  1200 3.844 3.729 0.549 1.629   
  1320 4.315 4.185 0.600 1.757   
  1440 4.815 4.671 0.653 1.874   
  1560 5.296 5.137 0.703 2.014   
  1680 5.786 5.612 0.754 2.143   
  1800 6.286 6.097 0.797 2.267   
  1920 6.776 6.573 0.850 2.413   
  2040 7.267 7.049 0.896 2.547   
  2160 7.757 7.524 0.943 2.675   
  2280 8.247 8.000 0.986 2.805   
  2400 8.728 8.466 1.033 2.943   
  2520 9.228 8.951 1.077 3.080   
  2640 9.708 9.417 1.119 3.206   
  2760 10.199 9.893 1.161 3.352   
  2880 10.689 10.368 1.204 3.492   
  3000 11.189 10.853 1.247 3.633   
  3120 11.729 11.377 1.287 3.779   
  3240 12.160 11.795 1.322 3.902   
  3360 12.651 12.271 1.362 4.051   
  3480 13.121 12.728 1.401 4.194   
  3600 13.680 13.270 1.447 4.355   
  3720 14.072 13.650 1.484 4.487   
  3840 14.661 14.221 1.528 4.628   
  3960 15.004 14.554 1.561 4.762   
  4080 15.818 15.344 1.618 4.953   
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Specimen H3  Porosity  44.2 %  
Cored from block I  Void ratio  0.791   
Orientation Horizontal      
Initial height 9.755 cm Back pressure  102 kPa  
Initial diameter 3.671 cm Saturation index, B  0.95   
Initial mass 154.5 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.123 0.119 0.000 0.000   
  360 0.398 0.386 0.031 0.216   
  480 0.888 0.861 0.104 0.373   
  600 1.368 1.327 0.165 0.478   
  720 1.859 1.803 0.231 0.605   
  840 2.350 2.279 0.289 0.719   
  960 2.840 2.755 0.347 0.845   
  1080 3.330 3.230 0.404 0.966   
  1200 3.821 3.706 0.469 1.105   
  1320 4.321 4.191 0.532 1.242   
  1440 4.801 4.657 0.591 1.384   
  1560 5.282 5.123 0.656 1.567   
  1680 5.782 5.608 0.719 1.804   
  1800 6.282 6.093 0.785 2.049   
  1920 6.782 6.579 0.846 2.289   
  2040 7.253 7.035 0.905 2.538   
  2160 7.743 7.511 0.967 2.768   
  2280 8.233 7.986 1.028 3.006   
  2400 8.724 8.462 1.087 3.206   
  2520 9.214 8.938 1.149 3.412   
  2640 9.714 9.423 1.207 3.620   
Isotropic unloading 2760 9.204 8.928 1.212 3.673   

  2880 8.734 8.472 1.212 3.700   
  3000 8.243 7.996 1.206 3.715   
  3120 7.753 7.521 1.198 3.718   
  3240 7.253 7.035 1.190 3.723   
  3360 6.763 6.560 1.180 3.728   
  3480 6.272 6.084 1.169 3.729   
  3600 5.831 5.656 1.158 3.728   
  3720 5.331 5.171 1.145 3.719   
  3840 4.831 4.686 1.130 3.706   
  3960 4.360 4.229 1.116 3.701   
  4080 3.850 3.735 1.096 3.681   
  4200 3.340 3.240 1.076 3.654   
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  4320 2.840 2.755 1.052 3.631   
  4440 2.350 2.279 1.025 3.590   
  4560 1.898 1.841 0.997 3.542   
  4680 1.388 1.347 0.954 3.462   
  4800 0.878 0.852 0.903 3.342   
  4920 0.496 0.481 0.852 3.180   
  5040 0.104 0.101 0.765 2.654   

Isotropic loading 11640 0.101 0.098 0.739 2.426   
  11760 0.395 0.384 0.779 2.673   
  11880 0.896 0.869 0.849 2.946   
  12000 1.386 1.344 0.900 3.130   
  12120 1.867 1.811 0.942 3.293   
  12240 2.357 2.287 0.980 3.446   
  12360 2.848 2.762 1.011 3.540   
  12480 3.338 3.238 1.039 3.615   
  12600 3.828 3.713 1.065 3.696   
  12720 4.319 4.189 1.090 3.775   
  12840 4.809 4.665 1.114 3.812   
  12960 5.309 5.150 1.137 3.883   
  13080 5.789 5.616 1.159 3.939   
  13200 6.289 6.101 1.183 4.001   
  13320 6.760 6.557 1.204 4.060   
  13440 7.260 7.043 1.228 4.126   
  13560 7.751 7.518 1.253 4.194   
  13680 8.232 7.985 1.279 4.262   
  13800 8.751 8.489 1.309 4.351   
  13920 9.301 9.022 1.339 4.432   
  14040 9.712 9.421 1.368 4.505   
  14160 10.202 9.896 1.399 4.577   
  14280 10.801 10.477 1.440 4.673   
  10800 11.262 10.924 1.475 4.792   
  14520 11.634 11.285 1.509 4.874   
  14640 12.183 11.818 1.546 4.960   
  14760 12.742 12.360 1.595 5.065   
  14880 13.164 12.769 1.635 5.161   
  15000 13.635 13.226 1.680 5.262   
  15120 14.204 13.778 1.730 5.369   
  15240 14.861 14.415 1.788 5.487   
Isotropic unloading 15360 14.204 13.778 1.792 5.525   

  15480 13.655 13.245 1.793 5.542   
  15600 13.213 12.817 1.789 5.544   
  15720 12.350 11.980 1.776 5.549   
  15840 12.144 11.780 1.775 5.547   
  15960 11.703 11.352 1.769 5.550   
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  16080 11.233 10.896 1.761 5.548   
  16200 10.732 10.410 1.750 5.547   
  16320 10.252 9.944 1.742 5.539   
  16440 9.781 9.488 1.732 5.532   
  16560 9.251 8.974 1.721 5.527   
  16680 8.761 8.498 1.708 5.522   
  16800 8.271 8.023 1.695 5.505   
  16920 7.839 7.604 1.682 5.493   
  17040 7.251 7.033 1.666 5.481   
  17160 6.790 6.586 1.651 5.459   
  17280 6.280 6.092 1.635 5.447   
  17400 5.829 5.654 1.617 5.428   
  17520 5.378 5.216 1.599 5.403   
  17640 4.809 4.665 1.576 5.381   
  17760 4.319 4.189 1.554 5.344   
  17880 3.829 3.714 1.531 5.317   
  18000 3.387 3.285 1.505 5.284   
  18120 2.847 2.762 1.474 5.232   
  18240 2.387 2.315 1.446 5.181   
  18360 1.935 1.877 1.408 5.113   
  18480 1.386 1.345 1.357 5.006   
  18600 0.886 0.859 1.307 4.859   
  18720 0.416 0.403 1.260 4.603   
  18840 0.122 0.118 1.235 4.284   
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Specimen H9  Porosity  44.1 %  
Cored from block II  Void ratio  0.790   
Orientation Horizontal      
Initial height 9.749 cm Back pressure  99 kPa  
Initial diameter 3.625 cm Saturation index, B  0.91   
Initial mass 150.6 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

Isotropic loading 240 0.097 0.094 0.000 0.000   
  360 0.401 0.389 0.027 0.254   
  480 0.901 0.874 0.080 0.438   
  600 1.372 1.331 0.126 0.565   
  720 1.862 1.806 0.175 0.677   
  840 2.382 2.311 0.227 0.805   
  960 2.853 2.768 0.280 0.944   
  1080 3.334 3.234 0.336 1.083   
  1200 3.824 3.709 0.395 1.240   
  1320 4.354 4.223 0.459 1.412   
  1440 4.834 4.689 0.514 1.645   
  1560 5.295 5.136 0.574 1.895   
  1680 5.805 5.631 0.640 2.205   
  1800 6.285 6.097 0.696 2.484   
  1920 6.785 6.582 0.758 2.765   
  2040 7.256 7.038 0.815 3.041   
  2160 7.746 7.514 0.873 3.277   
  2280 8.247 8.000 0.931 3.481   
  2400 8.747 8.485 0.992 3.686   
  2520 8.738 8.475 1.007 3.740   
  2640 9.257 8.980 1.045 3.858   
  2760 9.708 9.417 1.100 4.013   
  2880 10.238 9.931 1.162 4.186   
  3000 10.228 9.921 1.177 4.246   
  3120 10.679 10.359 1.207 4.321   
  3240 11.189 10.853 1.265 4.469   
  3360 11.611 11.262 1.312 4.587   
  3480 12.189 11.824 1.381 4.734   
  3600 12.591 12.214 1.426 4.852   
  3840 13.199 12.803 1.494 5.027   
  3960 13.611 13.203 1.530 5.099   
  4080 14.141 13.716 1.587 5.222   
  4200 14.690 14.249 1.652 5.353   
  4320 15.180 14.725 1.709 5.478   
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  4440 15.592 15.124 1.761 5.591   
Isotropic unloading 5040 15.592 15.124 1.809 5.738   

  5160 15.092 14.639 1.807 5.747   
  5280 14.611 14.173 1.801 5.755   
  5400 14.072 13.650 1.792 5.759   
  5520 13.572 13.165 1.785 5.762   
  5640 13.170 12.775 1.778 5.763   
  5760 12.650 12.271 1.769 5.754   
  5880 12.160 11.795 1.760 5.751   
  6000 11.689 11.339 1.750 5.755   
  6120 11.189 10.853 1.740 5.746   
  6240 10.699 10.378 1.730 5.745   
  6360 10.198 9.892 1.718 5.731   
  6480 9.708 9.417 1.706 5.731   
  6600 9.228 8.951 1.694 5.717   
  6720 8.728 8.466 1.681 5.706   
  6840 8.247 8.000 1.668 5.701   
  6960 7.776 7.543 1.656 5.690   
  7080 7.286 7.067 1.639 5.674   
  7200 6.786 6.582 1.623 5.666   
  7320 6.276 6.088 1.605 5.647   
  7465 5.786 5.612 1.586 5.628   
  7560 5.325 5.165 1.569 5.604   
  7680 4.815 4.670 1.545 5.577   
  7800 4.315 4.185 1.523 5.546   
  7920 3.824 3.710 1.497 5.518   
  8040 3.334 3.234 1.470 5.481   
  8160 2.844 2.758 1.441 5.444   
  8280 2.334 2.264 1.403 5.389   
  8400 1.863 1.807 1.367 5.343   
  8520 1.383 1.341 1.318 5.262   
  8640 0.902 0.875 1.257 5.148   
  8760 0.392 0.381 1.161 4.903   
  8880 0.108 0.105 1.065 4.519   
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Specimen V11  Porosity  43.1 %  
Cored from block II  Void ratio  0.759   
Orientation Vertical       
Initial height 9.731 cm Back pressure Variable, above 80 kPa 
Initial diameter 3.633 cm Saturation index, B  0.88   
Initial mass 153.7 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

K0-loading 0 0.113 0.085 0.000 0.000   
  84 0.114 0.502 0.033 0.029   
  120 0.142 1.067 0.113 0.048   
  267 0.158 1.551 0.212 0.114   
  405 0.229 2.157 0.417 0.216   
  607 0.449 2.897 0.726 0.336   
  882 0.868 4.066 1.137 0.561   
  1146 1.385 5.396 1.548 0.823   
  1410 1.967 6.841 1.959 1.129   
  1794 3.019 9.083 2.575 1.615   
  2045 3.744 10.597 2.987 1.958   
  2431 4.488 12.259 3.603 2.509   
  2809 5.075 13.646 4.220 3.076   
  3313 5.616 15.008 5.042 3.849   
  3820 6.324 16.480 5.864 4.617   
  4566 6.757 17.798 7.097 5.800   
  5185 7.135 19.045 8.125 6.711   
  6186 7.934 20.993 9.769 8.309   
  6933 8.500 22.745 11.002 9.504   
  7931 8.938 24.258 12.646 11.090   
  8933 9.433 25.940 14.291 12.676   
  9683 9.915 27.559 15.524 13.862   
  10680 10.356 29.308 17.168 15.450   
  11430 11.205 31.520 18.401 16.622   
  12189 12.198 34.058 19.645 17.953   
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Specimen V13  Porosity  43.7 %  
Cored from block II  Void ratio  0.777   
Orientation Vertical       
Initial height 9.787 cm Back pressure Variable, above 100 kPa 
Initial diameter 3.644 cm Saturation index, B  0.79   
Initial mass 153.9 g      
         
         
  Time σ3' σ1' ε1 εvol   
  sec. MPa MPa % %   

K0-loading 0 0.122 0.092 0.000 0.000   
  164 0.207 0.603 0.131 0.137   
  390 0.370 1.466 0.417 0.420   
  609 0.502 2.239 0.724 0.730   
  802 0.681 2.887 1.030 1.039   
  1078 0.823 3.457 1.439 1.448   
  1340 0.995 3.962 1.848 1.856   
  1659 1.203 4.579 2.359 2.370   
  2043 1.506 5.329 2.972 2.989   
  2539 1.932 6.365 3.789 3.819   
  2923 2.282 7.283 4.402 4.438   
  3171 2.750 8.224 4.811 4.847   
  3426 3.059 9.007 5.220 5.255   
  3681 3.454 9.806 5.628 5.663   
  3938 4.216 11.136 6.037 6.072   
  4194 4.648 12.134 6.446 6.493   
  4447 5.201 13.130 6.854 6.902   
  4700 5.723 14.202 7.263 7.310   
  4953 6.407 15.402 7.672 7.718   
  5199 7.084 16.633 8.081 8.127   
  5444 7.806 17.844 8.489 8.535   
  5697 8.317 18.892 8.898 8.943   
  5946 8.845 19.627 9.307 9.365   
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Specimen V2a  Porosity 42.8 %  
Cored from block I  Void ratio 0.749   
Orientation Vertical       
Initial height 4.127 cm Loading direction:  
Initial diameter 3.668 cm    
Initial mass 66.8 g    
      
Failure: 420 N    
Time to failure: 10:30 min    
      
       
        
        
Specimen V2b  Porosity 44.1 %  
Cored from block I  Void ratio 0.787   
Orientation Vertical       
Initial height 2.933 cm Loading direction:  
Initial diameter 3.673 cm    
Initial mass 46.6 g    
      
Failure: 316 N    
Time to failure: 6:00 min    
      
       
        
        
Specimen V2c  Porosity 46.3 %  
Cored from block I  Void ratio 0.863   
Orientation Vertical       
Initial height 2.810 cm Loading direction:  
Initial diameter 3.680 cm    
Initial mass 43.0 g    
      
Failure: 217 N    
Time to failure: 10:00 min    
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Specimen V12a  Porosity 46.1 %  
Cored from block II  Void ratio 0.856   
Orientation Vertical       
Initial height 2.410 cm Loading direction:  
Initial diameter 3.635 cm    
Initial mass 36.1 g    
      
Failure: 222 N    
Time to failure: 10:40 min    
      
       
        
        
Specimen V12b  Porosity 44.9 %  
Cored from block II  Void ratio 0.813   
Orientation Vertical       
Initial height 2.331 cm Loading direction:  
Initial diameter 3.642 cm    
Initial mass 35.9 g    
      
Failure: 192 N    
Time to failure: 11:50 min    
      
       
        
        
Specimen V12c  Porosity 43.5 %  
Cored from block II  Void ratio 0.771   
Orientation Vertical       
Initial height 2.242 cm Loading direction:  
Initial diameter 3.635 cm    
Initial mass 35.2 g    
      
Failure: 189 N    
Time to failure: 7:50 min    
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Specimen V12d  Porosity 44.0 %  
Cored from block II  Void ratio 0.785   
Orientation Vertical       
Initial height 2.496 cm Loading direction:  
Initial diameter 3.645 cm    
Initial mass 39.1 g    
      
Failure: 212 N    
Time to failure: 11:05 min    
      
       
        
        
        
        
Specimen V4a  Porosity 47.2 %  
Cored from block I  Void ratio 0.894   
Orientation Vertical       
Initial height 1.933 cm Loading direction:  
Initial diameter 3.680 cm    
Initial mass 29.1 g    
      
Failure: 5.5 N    
Time to failure: 5:30 min    
      
       
        
        
Specimen V4b  Porosity 44.8 %  
Cored from block I  Void ratio 0.812   
Orientation Vertical       
Initial height 2.021 cm Loading direction:  
Initial diameter 3.680 cm    
Initial mass 31.8 g    
      
Failure: 6.5 N    
Time to failure: 2:10 min    
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Specimen V4c  Porosity 43.2 %  
Cored from block I  Void ratio 0.762   
Orientation Vertical       
Initial height 4.004 cm Loading direction:  
Initial diameter 3.680 cm    
Initial mass 64.8 g    
      
Failure: 57.8 N    
Time to failure: 6:10 min    
      
       
        
        
Specimen V4d  Porosity 45.0 %  
Cored from block I  Void ratio 0.820   
Orientation Vertical       
Initial height 1.679 cm Loading direction:  
Initial diameter 3.680 cm    
Initial mass 26.3 g    
      
Failure: 13.2 N    
Time to failure: 3:17 min    
      
       
        
        
        
        
Specimen H11a  Porosity 43.8 %  
Cored from block II  Void ratio 0.779   
Orientation Horizontal      
Initial height 3.293 cm Loading direction:  
Initial diameter 3.632 cm    
Initial mass 51.4 g    
      
Failure: 356 N    
Time to failure: 10:30 min    
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Specimen H11b  Porosity 44.2 %  
Cored from block II  Void ratio 0.793   
Orientation Horizontal      
Initial height 3.312 cm Loading direction:  
Initial diameter 3.632 cm    
Initial mass 51.3 g    
      
Failure: 275 N    
Time to failure: 7:30 min    
      
       
        
        
Specimen H11c  Porosity 44.1 %  
Cored from block II  Void ratio 0.788   
Orientation Horizontal      
Initial height 3.358 cm Loading direction:  
Initial diameter 3.647 cm    
Initial mass 52.6 g    
      
Failure: 328 N    
Time to failure: 10:00 min    
      
       
        
        
        
        
Specimen H12a  Porosity 45.2 %  
Cored from block II  Void ratio 0.824   
Orientation Horizontal      
Initial height 2.568 cm Loading direction:  
Initial diameter 3.637 cm    
Initial mass 39.2 g    
      
Failure: 202 N    
Time to failure: 9:00 min    
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Specimen H12b  Porosity 46.1 %  
Cored from block II  Void ratio 0.854   
Orientation Horizontal      
Initial height 2.330 cm Loading direction:  
Initial diameter 3.632 cm    
Initial mass 34.9 g    
      
Failure: 120 N    
Time to failure: 8:40 min    
      
       
        
        
Specimen H12c  Porosity 46.3 %  
Cored from block II  Void ratio 0.861   
Orientation Horizontal      
Initial height 2.366 cm Loading direction:  
Initial diameter 3.642 cm    
Initial mass 35.5 g    
      
Failure: 129 N    
Time to failure: 8:00 min    
      
       
        
        
Specimen H12d  Porosity 45.0 %  
Cored from block II  Void ratio 0.817   
Orientation Horizontal      
Initial height 2.535 cm Loading direction:  
Initial diameter 3.635 cm    
Initial mass 38.8 g    
      
Failure: 183 N    
Time to failure: 9:40 min    
      
       
        
        
        
        
        
        
        



 410 
 

Specimen H3a  Porosity 44.1 %  
Cored from block I  Void ratio 0.790   
Orientation Horizontal      
Initial height 2.222 cm Loading direction:  
Initial diameter 3.670 cm    
Initial mass 35.2 g    
      
Failure: 15.2 N    
Time to failure: 3:40 min    
      
       
        
        
Specimen H3b  Porosity 43.9 %  
Cored from block I  Void ratio 0.783   
Orientation Horizontal      
Initial height 2.289 cm Loading direction:  
Initial diameter 3.670 cm    
Initial mass 36.4 g    
      
Failure: 20.4 N    
Time to failure: 3:10 min    
      
       
        
        
Specimen H3c  Porosity 43.8 %  
Cored from block I  Void ratio 0.779   
Orientation Horizontal      
Initial height 2.202 cm Loading direction:  
Initial diameter 3.670 cm    
Initial mass 35.1 g    
      
Failure: 9.0 N    
Time to failure: 1:30 min    
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Specimen H3d  Porosity 43.6 %  
Cored from block I  Void ratio 0.772   
Orientation Horizontal      
Initial height 2.350 cm Loading direction:  
Initial diameter 3.670 cm    
Initial mass 37.6 g    
      
Failure: 16.7 N    
Time to failure: 6:40 min    
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Specimen TS1  Porosity  42.4 %  
Orientation N/A  Void ratio  0.736   
Initial height 39.84 cm      
Initial inside diameter 18.0 cm      
Initial outside diameter 22.0 cm      
Initial mass 7727.8 g      
         
         

 Time σz' - σθ' τzθ εz εθ γzθ   
 sec. kPa kPa % % %   
 0 20.0 0.0 0.0000 Ν/Α 0.0000   

 180 23.7 0.0 0.0000 Ν/Α -0.0002   
 360 85.0 0.1 0.0006 Ν/Α 0.0000   
 540 106.1 21.0 0.0003 Ν/Α 0.0009   
 720 108.0 86.7 -0.0002 Ν/Α 0.0034   
 900 108.6 137.9 -0.0008 Ν/Α 0.0054   
 1080 108.6 160.1      
 
Shear band/fracture lines after failure for specimen TS1: 
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Specimen TS2  Porosity  43.6 %  
Orientation N/A  Void ratio  0.774   
Initial height 39.61 cm      
Initial inside diameter 18.0 cm      
Initial outside diameter 22.0 cm      
Initial mass 7520.1 g      
         
         

 Time σz' - σθ' τzθ εz εθ γzθ   
 sec. kPa kPa % % %   

 0 20.0 0.0 0.0000 0.0000 0.0000   
 180 94.5 -0.2 0.0012 -0.0003 0.0002   
 360 185.4 -0.1 0.0028 -0.0008 -0.0002   
 540 282.4 0.0 0.0043 -0.0010 -0.0002   
 720 187.7 -0.2 0.0028 -0.0007 -0.0001   
 900 122.6 -0.2 0.0017 -0.0003 -0.0001   
 1080 191.8 -0.2 0.0028 -0.0005 0.0001   
 1260 284.1 -0.2 0.0043 -0.0006 -0.0001   
 1440 373.4 0.1 0.0061 -0.0009 0.0000   
 1620 374.6 15.5 0.0061 -0.0006 0.0012   
 1800 374.9 78.7 0.0060 -0.0006 0.0037   
 1980 305.1 78.6 0.0050 -0.0005 0.0039   
 2160 226.6 78.2 0.0036 -0.0006 0.0040   
 2340 159.8 77.7 0.0024 -0.0010 0.0038   
 2520 148.6 60.3 0.0024 -0.0007 0.0030   
 2700 148.4 7.0 0.0023 0.0000 0.0004   
 2880 235.4 4.4 0.0038 0.0002 0.0002   
 3060 331.0 3.1 0.0052 0.0003 0.0001   
 3240 419.7 2.0 0.0069 0.0003 -0.0002   
 3420 513.1 1.0 0.0082 0.0001 -0.0003   
 3600 513.5 45.9 0.0083 0.0001 0.0022   
 3780 513.6 113.8 0.0083 -0.0001 0.0052   
 3960 443.8 114.4 0.0071 0.0001 0.0053   
 4140 363.7 114.4 0.0059 0.0005 0.0054   
 4320 278.3 114.1 0.0046 0.0009 0.0053   
 4500 275.2 55.8 0.0044 0.0010 0.0025   
 4680 276.0 7.6 0.0045 0.0012 0.0003   
 4860 378.3 4.8 0.0061 0.0007 0.0001   
 5040 378.7 58.4 0.0062 0.0010 0.0026   
 5220 378.9 114.8 0.0063 0.0004 0.0055   
 5400 378.8 162.6 0.0061 0.0000 0.0072   
 5580 470.3 163.1 0.0078 0.0002 0.0074   
 5760 557.2 162.8 0.0091 -0.0005 0.0074   
 5940 642.4 162.6 0.0104 -0.0004 0.0073   
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 6120 648.5 108.2 0.0105 -0.0006 0.0048   
 6300 649.3 71.2 0.0104 -0.0005 0.0030   
 6480 649.5 8.0 0.0105 -0.0004 0.0000   
 6660 551.1 4.9 0.0090 0.0000 -0.0001   
 6840 471.3 3.5 0.0076 0.0005 -0.0001   
 7020 386.0 2.1 0.0063 0.0008 0.0002   
 7200 385.8 38.6 0.0064 0.0008 0.0019   
 7380 385.5 99.1 0.0062 0.0007 0.0044   
 7560 385.2 155.5 0.0061 0.0011 0.0070   
 7740 384.8 209.1 0.0060 0.0005 0.0093   
 7920 384.6 257.2 0.0056 0.0004 0.0113   
 8100 384.4 307.0 0.0056 0.0001 0.0134   
 8280 384.2 347.0 0.0056 -0.0001 0.0149   
 8460 384.2 388.0 0.0055 -0.0004 0.0170   
 8640 384.0 441.7 0.0058 -0.0009 0.0190   
 
Shear band/fracture lines after failure for specimen TS2: 
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Specimen TS3  Porosity  42.4 %  
Orientation N/A  Void ratio  0.736   
Initial height 39.99 cm      
Initial inside diameter 18.0 cm      
Initial outside diameter 22.0 cm      
Initial mass 7758.1 g      
         
         

 Time σz' - σθ' τzθ εz εθ γzθ   
 sec. kPa kPa % % %   

 0 18.9 0.0 0.0000 0.0000 0.0000   
 180 70.7 -1.3 0.0008 -0.0003 0.0002   
 360 135.1 -2.3 0.0016 -0.0005 -0.0002   
 540 149.2 27.2 0.0017 -0.0006 -0.0002   
 720 149.7 72.1 0.0017 -0.0007 -0.0001   
 900 219.7 72.7 0.0027 -0.0009 -0.0001   
 1080 298.9 72.2 0.0047 0.0000 0.0001   
 1260 373.9 71.8 0.0056 -0.0003 -0.0001   
 1440 373.8 41.9 0.0056 -0.0003 0.0000   
 1620 373.8 3.3 0.0055 -0.0003 0.0012   
 1800 278.3 0.9 0.0042 -0.0001 0.0037   
 1980 276.5 40.2 0.0043 0.0002 0.0039   
 2160 276.5 103.7 0.0043 0.0004 0.0040   
 2340 364.5 104.9 0.0055 -0.0004 0.0038   
 2520 439.4 104.8 0.0064 -0.0006 0.0030   
 2700 508.3 104.4 0.0073 -0.0008 0.0004   
 2880 508.7 56.5 0.0073 -0.0008 0.0002   
 3060 517.0 3.9 0.0071 -0.0008 0.0001   
 3240 575.7 1.1 0.0081 -0.0007 -0.0002   
 3420 634.8 0.1 0.0089 -0.0010 -0.0003   
 3600 637.3 25.5 0.0090 -0.0013 0.0022   
 3780 638.9 107.1 0.0091 -0.0013 0.0052   
 3960 639.5 150.2 0.0091 -0.0014 0.0053   
 4140 543.5 149.9 0.0082 -0.0011 0.0054   
 4320 476.8 149.2 0.0071 -0.0011 0.0053   
 4500 368.2 148.8 0.0056 -0.0006 0.0025   
 4680 366.4 114.8 0.0055 -0.0010 0.0003   
 4860 366.4 56.3 0.0055 -0.0009 0.0001   
 5040 366.4 3.4 0.0054 -0.0010 0.0026   
 5220 460.4 1.0 0.0066 -0.0009 0.0055   
 5400 540.9 0.2 0.0077 -0.0014 0.0072   
 5580 618.7 -0.9 0.0086 -0.0015 0.0074   
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 5760 619.5 21.5 0.0089 -0.0015 0.0074   
 5940 619.8 97.4 0.0089 -0.0017 0.0073   
 6120 620.0 149.3 0.0089 -0.0015 0.0048   
 6300 619.9 202.7 0.0089 -0.0017 0.0030   
 6480 619.8 256.1 0.0005 -0.0020 0.0000   
 6660 619.9 312.9 0.0005 -0.0020 -0.0001   
 6840 619.8 363.8 0.0005 -0.0021 -0.0001   
 7020 619.7 419.8 0.0005 -0.0022 0.0002   
 7200 619.7 475.2 0.0005 -0.0025 0.0019   
 7380 619.7 520.9 0.0005 -0.0026 0.0044   
 7560 619.7 562.2 Failure Failure Failure   
 
Shear band/fracture lines after failure for specimen TS3: 
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Appendix E: Test Data 
Data from triaxial loading on F1-Sand, L1-Sand, L2-Sand, and L8-Sand. Properties of 
sands are shown in Table E.1. 
 
 

Table E.1: Properties F1-Sand, L1-Sand, L2-Sand, and L8-Sand. 
Sand F1-Sand L1-Sand L2-Sand L8-Sand 
Specific gravity, Gs 2.68 2.65 2.66 2.72 
Min. void ratio, emin 0.701 0.679 0.540 0.511 
Max. void ratio, emax 1.018 0.989 0.851 0.724 
D10 (mm) 0.15 0.16 0.37 0.095 
D60 (mm) 0.22 0.28 0.58 0.28 
Coefficient of uniformity, Cu 1.47 1.75 1.57 2.95 
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Sand: F1-Sand  Sand: F1-Sand 
Test no.: 1  Test no.: 2 
Void ratio: 0.644  Void ratio: 0.637 
Relative density: 118.0 %  Relative density: 120.2 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

0.703 0.703 0.000 0.000  2.109 2.109 0.000 0.000 
0.703 1.479 0.271 0.140  2.109 3.803 0.271 0.138 
0.703 1.780 0.541 0.204  2.109 4.608 0.542 0.228 
0.703 2.178 1.083 0.245  2.109 5.700 1.084 0.337 
0.703 2.487 1.624 0.212  2.109 6.468 1.626 0.375 
0.703 2.707 2.165 0.111  2.109 7.052 2.168 0.361 
0.703 2.889 2.706 -0.033  2.109 7.483 2.710 0.306 
0.703 3.126 3.789 -0.357  2.109 8.015 3.794 0.133 
0.703 3.257 4.871 -0.723  2.109 8.385 4.878 -0.094 
0.703 3.341 6.089 -1.248  2.109 8.611 6.098 -0.400 
0.703 3.349 7.442 -1.762  2.109 8.735 7.453 -0.739 
0.703 3.339 8.796 -2.250  2.109 8.672 8.808 -1.072 
0.703 3.254 10.149 -2.686  2.109 8.541 10.163 -1.373 
0.703 3.214 11.502 -3.024  2.109 8.324 12.209 -1.750 
0.703 3.129 12.855 -3.350      
0.703 3.046 14.208 -3.629      
0.703 2.992 15.562 -3.870      
0.703 2.750 17.591 -4.218      
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Sand: F1-Sand  Sand: F1-Sand 
Test no.: 3  Test no.: 4 
Void ratio: 0.591  Void ratio: 0.615 
Relative density: 134.7 %  Relative density: 127.1 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

7.030 7.030 0.000 0.000  21.092 21.092 0.000 0.000 
7.030 10.767 0.271 0.116  21.092 33.199 0.385 0.319 
7.030 13.297 0.543 0.236  21.092 38.570 0.771 0.544 
7.030 16.808 1.085 0.417  21.092 45.200 1.541 0.835 
7.030 19.258 1.628 0.528  21.092 50.122 2.312 1.061 
7.030 20.857 2.171 0.576  21.092 53.989 3.083 1.245 
7.030 22.012 2.714 0.588  21.092 56.829 3.854 1.367 
7.030 23.786 3.799 0.546  21.092 60.865 5.395 1.517 
7.030 25.183 4.885 0.411  21.092 63.515 6.936 1.580 
7.030 26.083 6.106 0.244  21.092 65.674 8.671 1.586 
7.030 26.658 7.463 -0.030  21.092 67.424 10.597 1.552 
7.030 26.577 8.820 -0.301  21.092 68.177 12.524 1.467 
7.030 25.997 10.176 -0.525  21.092 68.507 14.451 1.361 
7.030 25.025 11.574 -0.712  21.092 68.437 16.378 1.250 

     21.092 68.071 18.304 1.145 
     21.092 67.509 20.231 1.048 
     21.092 66.883 22.158 0.966 
     21.092 66.074 24.085 0.892 

     21.092 65.695 25.062 0.863 
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Sand: F1-Sand  Sand: F1-Sand 
Test no.: 5  Test no.: 6 
Void ratio: 0.624  Void ratio: 0.629 
Relative density: 124.3 %  Relative density: 122.7 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

42.184 42.184 0.000 0.000  70.307 70.307 0.000 0.000 
42.184 57.968 0.387 0.353  70.307 86.007 0.389 0.289 
42.184 66.018 0.774 0.592  70.307 97.305 0.778 0.598 
42.184 76.775 1.547 1.026  70.307 112.843 1.556 1.125 
42.184 84.678 2.321 1.417  70.307 124.781 2.335 1.620 
42.184 90.893 3.095 1.744  70.307 134.378 3.113 2.057 
42.184 96.011 3.868 2.034  70.307 142.259 3.891 2.456 
42.184 103.513 5.416 2.487  70.307 155.013 5.447 3.163 
42.184 109.250 6.963 2.865  70.307 164.849 7.004 3.755 
42.184 114.565 8.704 3.243  70.307 173.947 8.755 4.365 
42.184 118.432 10.638 3.548  70.307 182.074 10.700 4.947 
42.184 121.575 12.573 3.817  70.307 188.676 12.646 5.471 
42.184 123.867 14.507 4.050  70.307 194.146 14.591 5.947 
42.184 125.568 16.441 4.245  70.307 198.456 16.537 6.352 
42.184 126.911 18.375 4.437  70.307 202.449 18.482 6.751 
42.184 128.036 20.309 4.610  70.307 205.332 20.428 7.098 
42.184 128.542 22.244 4.769  70.307 208.306 22.374 7.445 
42.184 128.718 24.178 4.916  70.307 210.443 24.319 7.908 
42.184 128.394 26.112 5.052  70.307 212.236 26.265 8.351 
42.184 127.790 28.046 5.183      
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Sand: L1-Sand  Sand: L1-Sand 
Test no.: 1  Test no.: 2 
Void ratio: 0.620  Void ratio: 0.607 
Relative density: 119.0 %  Relative density: 123.2 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

0.703 0.703 0.000 0.000  2.109 2.109 0.000 0.000 
0.703 1.926 0.269 0.082  2.109 3.774 0.270 0.115 
0.703 2.484 0.538 0.087  2.109 5.194 0.539 0.205 
0.703 3.177 1.077 -0.042  2.109 7.220 1.078 0.275 
0.703 3.573 1.615 -0.296  2.109 8.379 1.617 0.220 
0.703 3.785 2.153 -0.587  2.109 9.026 2.156 0.099 
0.703 3.905 2.692 -0.903  2.109 9.444 2.695 -0.051 
0.703 4.006 3.769 -1.575  2.109 9.964 3.774 -0.423 
0.703 4.080 4.845 -2.311  2.109 10.338 4.852 -0.865 
0.703 4.098 6.057 -3.072  2.109 10.492 6.065 -1.393 
0.703 3.989 7.402 -3.847  2.109 10.535 7.412 -1.951 
0.703 3.903 8.748 -4.578  2.109 10.517 8.760 -2.517 
0.703 3.677 10.094 -5.132  2.109 10.369 10.108 -3.026 
0.703 3.274 12.127 -5.577  2.109 10.199 11.456 -3.513 

     2.109 9.990 12.803 -3.936 
     2.109 9.652 14.829 -4.456 
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Sand: L1-Sand  Sand: L1-Sand 
Test no.: 3  Test no.: 4 
Void ratio: 0.610  Void ratio: 0.614 
Relative density: 122.3 %  Relative density: 121.0 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

7.031 7.031 0.000 0.000  15.468 15.468 0.000 0.000 
7.031 9.857 0.270 0.095  15.468 22.379 0.388 0.314 
7.031 13.401 0.540 0.234  15.468 27.793 0.777 0.565 
7.031 18.855 1.080 0.458  15.468 35.316 1.553 0.979 
7.031 22.113 1.619 0.584  15.468 40.420 2.330 1.299 
7.031 24.227 2.159 0.644  15.468 44.076 3.107 1.554 
7.031 25.764 2.699 0.663  15.468 46.902 3.883 1.745 
7.031 28.013 3.779 0.628  15.468 50.952 5.437 2.015 
7.031 29.516 4.858 0.505  15.468 53.652 6.990 2.178 
7.031 30.544 6.073 0.319  15.468 55.677 8.738 2.279 
7.031 31.089 7.422 0.068  15.468 57.111 10.680 2.316 
7.031 31.032 8.772 -0.196  15.468 58.812 12.621 2.310 
7.031 30.670 10.121 -0.409  15.468 58.158 14.563 2.269 
7.031 29.552 12.146 -0.615  15.468 57.955 16.505 2.203 

     15.468 57.350 18.447 2.138 
     15.468 56.218 21.340 2.053 
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Sand: L1-Sand  Sand: L1-Sand 
Test no.: 5  Test no.: 6 
Void ratio: 0.613  Void ratio: 0.618 
Relative density: 121.3 %  Relative density: 119.7 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

42.184 42.184 0.000 0.000  63.276 63.276 0.000 0.000 
42.184 55.669 0.386 0.391  63.276 74.912 0.393 0.332 
42.184 64.563 0.772 0.693  63.276 85.774 0.786 0.689 
42.184 76.606 1.544 1.279  63.276 100.588 1.572 1.392 
42.184 85.704 2.317 1.834  63.276 112.631 2.358 2.048 
42.184 92.953 3.089 2.344  63.276 122.362 3.143 2.673 
42.184 98.697 3.861 2.766  63.276 130.862 3.929 3.212 
42.184 107.654 5.405 3.529  63.276 144.410 5.501 4.220 
42.184 114.931 6.950 4.197  63.276 155.378 7.073 5.111 
42.184 121.307 8.687 4.846  63.276 165.629 8.841 6.015 
42.184 126.939 10.618 5.457  63.276 175.092 10.806 6.893 
42.184 131.305 12.548 5.980  63.276 183.395 12.770 7.686 
42.184 135.074 14.479 6.453  63.276 190.539 14.735 8.388 
42.184 137.865 16.409 6.850  63.276 196.395 16.699 9.032 
42.184 140.389 18.340 7.203  63.276 201.563 18.664 9.578 
42.184 142.421 20.270 7.524  63.276 205.844 20.629 10.066 
42.184 144.319 23.147 7.953  63.276 209.290 22.593 10.502 

     63.276 213.536 25.544 11.035 
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Sand: L2-Sand  Sand: L2-Sand 
Test no.: 1  Test no.: 2 
Void ratio: 0.577  Void ratio: 0.586 
Relative density: 88.1 %  Relative density: 85.2 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

0.753 0.753 0.000 0.000  2.109 2.109 0.000 0.000 
0.753 1.773 0.134 0.061  2.109 4.272 0.134 0.077 
0.753 2.518 0.268 0.074  2.109 5.868 0.269 0.115 
0.753 3.371 0.537 -0.031  2.109 8.394 0.538 0.120 
0.753 3.946 1.074 -0.438  2.109 10.407 1.075 -0.088 
0.753 4.179 1.611 -0.945  2.109 11.298 1.613 -0.422 
0.753 4.304 2.148 -1.444  2.109 11.792 2.151 -0.867 
0.753 4.379 2.685 -2.013  2.109 12.073 2.688 -1.382 
0.753 4.410 3.758 -3.349  2.109 12.326 3.763 -2.395 
0.753 4.311 4.832 -4.333  2.109 12.056 4.839 -3.331 
0.753 4.073 6.040 -5.339  2.109 11.312 6.048 -4.222 
0.753 3.728 7.383 -6.169  2.109 10.539 7.392 -4.943 
0.753 3.463 9.387 -6.765  2.109 10.190 8.737 -5.404 

     2.109 9.988 10.753 -5.995 
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Sand: L2-Sand  Sand: L2-Sand 
Test no.: 3  Test no.: 4 
Void ratio: 0.583  Void ratio: 0.583 
Relative density: 86.2 %  Relative density: 86.2 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

7.031 7.031 0.000 0.000  21.092 21.092 0.000 0.000 
7.031 10.814 0.134 0.077  21.092 34.007 0.388 0.218 
7.031 13.773 0.269 0.123  21.092 41.425 0.777 0.293 
7.031 18.540 0.538 0.185  21.092 57.898 1.553 0.504 
7.031 25.669 1.075 0.224  21.092 68.767 2.330 0.601 
7.031 30.057 1.613 0.139  21.092 74.286 3.107 0.595 
7.031 33.031 2.151 -0.062  21.092 77.549 3.883 0.542 
7.031 34.268 2.688 -0.332  21.092 80.937 5.437 0.352 
7.031 35.618 3.763 -0.934  21.092 81.844 6.990 0.102 
7.031 36.124 4.839 -1.536  21.092 81.549 8.738 -0.181 
7.031 35.899 6.048 -2.307  21.092 80.192 10.680 -0.451 
7.031 34.591 7.392 -2.979  21.092 78.990 12.621 -0.689 
7.031 32.686 8.737 -3.450  21.092 77.802 14.563 -0.890 
7.031 31.737 10.081 -3.720  21.092 75.931 17.456 -1.110 
7.031 31.962 12.124 -3.897      
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Sand: L2-Sand  Sand: L2-Sand 
Test no.: 5  Test no.: 6 
Void ratio: 0.603  Void ratio: 0.581 
Relative density: 79.7 %  Relative density: 86.8 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

42.184 42.184 0.000 0.000  63.277 63.277 0.000 0.000 
42.184 54.790 0.385 0.143  63.277 79.314 0.391 0.177 
42.184 62.910 0.771 0.248  63.277 88.588 0.781 0.278 
42.184 85.795 1.541 0.552  63.277 119.150 1.563 0.688 
42.184 102.775 2.312 0.899  63.277 139.553 2.334 1.104 
42.184 112.125 3.083 1.203  63.277 151.660 3.125 1.552 
42.184 118.116 3.854 1.446  63.277 159.323 3.906 1.906 
42.184 125.427 5.395 1.867  63.277 170.804 5.469 2.587 
42.184 129.948 6.936 2.232  63.277 177.969 7.031 3.168 
42.184 132.528 8.671 2.585  63.277 184.184 8.789 3.780 
42.184 133.991 10.597 2.940  63.277 189.415 10.742 4.417 
42.184 134.610 12.542 3.268  63.277 193.310 12.695 4.991 
42.184 134.933 14.451 3.587  63.277 196.038 14.648 5.534 
42.184 134.968 16.378 3.891  63.277 197.894 16.602 6.026 
42.184 134.729 19.268 4.313  63.277 199.567 18.555 6.462 

     63.277 201.929 21.492 7.067 
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Sand: L8-Sand  Sand: L8-Sand 
Test no.: 1  Test no.: 2 
Void ratio: 0.530  Void ratio: 0.537 
Relative density: 91.1 %  Relative density: 87.9 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

0.703 0.703 0.000 0.000  2.109 2.109 0.000 0.000 
0.703 1.874 0.268 0.097  2.109 5.321 0.270 0.146 
0.703 2.437 0.537 0.066  2.109 6.847 0.539 0.155 
0.703 3.023 1.074 -0.159  2.109 8.440 1.078 0.013 
0.703 3.290 1.611 -0.468  2.109 9.210 1.617 -0.217 
0.703 3.426 2.148 -0.786  2.109 9.716 2.156 -0.526 
0.703 3.535 2.685 -1.219  2.109 10.082 2.695 -0.889 
0.703 3.638 3.758 -2.102  2.109 10.398 3.774 -1.654 
0.703 3.608 4.832 -2.879  2.109 10.419 4.852 -2.348 
0.703 3.544 6.040 -3.691  2.109 10.215 6.065 -3.135 
0.703 3.379 7.383 -4.574  2.109 9.555 7.412 -3.803 
0.703 3.241 8.725 -5.144  2.109 9.119 8.760 -4.214 
0.703 3.108 10.067 -5.674  2.109 8.894 10.782 -4.736 
0.703 2.967 12.077 -6.177      
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Sand: L8-Sand  Sand: L8-Sand 
Test no.: 3  Test no.: 4 
Void ratio: 0.541  Void ratio: 0.532 
Relative density: 85.9 %  Relative density: 90.0 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

7.031 7.031 0.000 0.000  21.092 21.092 0.000 0.000 
7.031 14.237 0.269 0.186  21.092 33.044 0.284 0.211 
7.031 18.955 0.538 0.265  21.092 42.121 0.568 0.344 
7.031 24.685 1.077 0.274  21.092 55.212 1.136 0.513 
7.031 27.575 1.615 0.177  21.092 63.818 1.705 0.586 
7.031 29.473 2.153 0.009  21.092 69.590 2.273 0.591 
7.031 30.893 2.692 -0.230  21.092 73.274 2.841 0.541 
7.031 32.159 3.769 -0.761  21.092 78.540 3.977 0.348 
7.031 32.574 4.845 -1.248  21.092 81.739 5.114 0.082 
7.031 31.906 6.057 -1.849  21.092 83.314 6.392 -0.289 
7.031 30.085 7.402 -2.354  21.092 84.129 7.812 -0.710 
7.031 27.898 8.748 -2.628  21.092 83.440 9.233 -1.150 
7.031 27.195 10.094 -2.805  21.092 80.972 10.653 -1.553 
7.031 27.462 11.447 -2.893  21.092 78.055 12.074 -1.878 

     21.092 71.847 14.212 -2.066 
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Sand: L8-Sand  Sand: L8-Sand 
Test no.: 5  Test no.: 6 
Void ratio: 0.537  Void ratio: 0.528 
Relative density: 87.9 %  Relative density: 92.0 % 

         
σ3' σ1' ε1 εvol  σ3' σ1' ε1 εvol 
- - % %  - - % % 

28.123 28.123 0.000 0.000  56.246 56.246 0.000 0.000 
28.123 40.279 0.284 0.174  56.246 77.190 0.286 0.213 
28.123 51.627 0.569 0.326  56.246 92.939 0.571 0.394 
28.123 68.296 1.138 0.546  56.246 118.313 1.143 0.696 
28.123 79.721 1.707 0.675  56.246 136.459 1.714 0.965 
28.123 87.300 2.276 0.734  56.246 149.747 2.286 1.155 
28.123 92.911 2.845 0.744  56.246 159.970 2.857 1.313 
28.123 100.124 3.983 0.679  56.246 173.989 4.000 1.540 
28.123 104.561 5.121 0.528  56.246 182.820 5.143 1.684 
28.123 107.493 6.401 0.298  56.246 191.123 6.429 1.782 
28.123 108.906 7.824 0.000  56.246 194.195 7.857 1.847 
28.123 108.842 9.246 -0.312  56.246 197.190 9.286 1.884 
28.123 106.874 10.669 -0.633  56.246 198.681 10.714 1.898 
28.123 104.596 12.091 -0.895  56.246 198.604 12.143 1.912 
28.123 102.248 13.514 -1.111  56.246 197.268 13.571 1.916 
28.123 98.894 15.651 -1.349  56.246 195.742 15.000 1.927 

     56.246 193.274 17.143 1.963 
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