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Approximately 120 computer simulations were conducted to evaluate how 

a mode-1-type internal wave would interaction with a variety of submarine 

topographic (physiographic) obstacles likely to be found in a marine setting.  A 

total of seven obstacle geometries were selected for evaluation – shelf, slope-

shelf, extended slope, short-slope, reverse-shelf, a single (isolated) rectangular 

obstacle, and a single triangular obstacle.  Internal waves of ‘depression’ as well 

as ‘elevation’ were formed using a two-layered, stratified numerical model based 

on the Navier-Stokes and continuity equations.  The governing equations 

assumed Boussinesq conditions.  Output data from the FORTRAN-based 

computer code were post-processed using MATLAB-based computer programs 

that calculated internal wave amplitudes and energies.  These data were 

compared to published data associated with experimental wave tank studies and 

found generally to be in good agreement.  Data from the numerical simulation 

trials were also used to generate figures illustrating various hydrodynamic 

features (pycnocline, streamlines, and velocity vectors) of an internal wave as it 

forms as well as when it interacts with different types of obstacle geometries.  



  

 

The types of features and processes observed included the formation of Kelvin-

Helmholtz or K-H-like vortices and various stages of the classically-recognized 

wave-breaking progression (“wash-down,” “breaking,” “bore,” and “surge”).  

When considering a stratified fluid system, it was confirmed that internal wave 

characteristics are influenced in large measure by the relative depths of the two 

fluids defining the system as well as the effects of viscous decay (damping).  It 

was also confirmed that the nature of the interaction between an internal wave 

and a topographic obstacle is influenced by the magnitude of either the 

nonlinear parameter or the blocking parameter. The numerical simulation trials 

also allowed for the interrogation of the modeling domain to determine the 

nature of the stability conditions (static vs. dynamic) in time and space. In this 

regard, evaluation of both the Richardson number and the normalized density 

gradient provided additional insights into the hydrodynamics of the system 

when topographic obstacles are present. Three instability states were evaluated: 

K-H, buoyant, and static. 

 

This research contributes to a basic understanding of internal wave 

phenomena and includes some general conclusions regarding the effects of 

obstacle geometry on internal wave behavior and properties. 
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CHAPTER I 
 

INTRODUCTION 

1.1 Internal Solitary Waves 
 

The existence of surface and internal solitary waves (ISWs or solitons) in 

oceans and other large water bodies has been well-established in the scientific 

literature for more than 150 years (Fedorov and Ginsburg 1992).  As with many 

other types of natural phenomena that are infrequent or difficult at first to 

recognize, historic accounts of internal wave-like behavior are reported to extend 

back even farther if the scientific literature was to be re-evaluated (Malandain 

1988).   Internal waves have also been observed in the atmosphere as lee waves 

as well as waves propagating along inversion layers.  They are also associated 

with wind sheers at the lower boundary of the high-altitude jet stream (Abdullah 

1954, Rottman and Einaudi 1993). 

 

Internal waves in the ocean constitute a major form of hydrodynamic 

phenomena.  They are not rouge waves (Smith 2006) nor might they be 

considered “extreme oceanic events” (White and Fornberg 1998, Garrett and 

Müller 2007).  As their name implies, internal waves travel within the interior of
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the sea.  Researchers have found that they occur in a variety of marine 

environments and form when stratified layers of water, of different densities 

(either salinity or temperature) meet.  Midorikawa (1977) and Ostrovsky and 

Stepanyants (1989) suggest that ISWs can sometimes form under the influence 

of tidal processes when barotropic tides produce baroclinic motions.  Reported 

observations of internal wave phenomena are generally limited to certain 

months of the year suggesting a seasonal (temporal) aspect to their behavior 

(Apel et al. 1975).  Based on their review of temperature records, Carsola and 

Callaway (1962), for example, note that internal wave phenomena appear to 

peak during the spring-summer months based on the presence of a well-

developed thermocline, and are poorly-defined or generally absent in the 

thermocline during the neap (weak) tidal phase.   

 

Internal wave formation can take place when stratified ocean water is 

disturbed and mixed in the presence of irregular or abrupt topographic 

(physiographic) features commonly observed on the ocean floor such as the 

continental shelf, seamounts, or submarine rises (Maxworthy 1979, St. Laurent 

et al. 2003).  Once formed, these (downwind) waves maintain their coherence 

through non-linear (hydrodynamic) processes.  They appear as a quasi-linear 

collection of waves (wave trains) in high-altitude aerial photography or satellite 

imagery as a result of interactions with surface waves (Gargett and Hughes 
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1972).  Recently, reports of internal wave phenomena have been described in the 

“Science Section” of the New York Times when reference was New York Times 

when reference was made to the association of Kelvin-Helmholtz (K-H) billows 

with breaking internal waves off the coast of the Azores Islands, in the Atlantic 

Ocean.  See Broad (2010). 

 

As a class, ISWs are nonlinear and non-sinusoidal.  They typically have 

wavelengths that can vary from hundreds of meters (m) to tens of kilometers 

(km), and periods from several minutes to several hours (Figure 1).  Wave 

amplitudes (pycnocline displacements from peak to trough) can sometimes 

exceed 100 m and are not uncommon.   Hence, they may be considered to be 

mesoscale ocean phenomena.  The orbital motions of internal wave water 

particles have the largest radius at the pycnocline depth.  From this location, 

their orbitals decrease vertically in both directions.  The horizontal velocities do 

not decay with depth, as would be the case with surface (gravity) waves.  Also, as 

illustrated later in this dissertation, the horizontal and vertical velocities of the 

water particles in the respective fluid layers are opposite to each other. 

 

The importance of internal wave behavior cannot be underestimated.  

Anything that is in or near a body of water is subject to wave motion (Pretor-

Pinney 2010).  The study of pycnocline displacements and currents associated 
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Figure 1.  Scale of internal waves shown in relation to other types of physical 
and biological upper ocean processes. Taken from Dickey (1990, 1991).  
Reproduced by permission of the American Geophysical Union (AGU). 
www.agu.org/pubs/authors/ usage_permissions.shtml. 

with internal waves has many practical applications including applied 

oceanography, hydraulic engineering, deep-water construction and structure 

performance, and sediment and environmental pollutant transport.  An early 

motivation in the study of internal waves was practical.  The desire was to better 

understand what effects this class of waves might have on the stability of deep 

ocean drilling platforms (Osborne, Burch, and Scarlet 1978, Osborne and Burch 

http://www.agu.org/�
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1980).  Some physical oceanographers, though, considered internal wave 

phenomena annoyances as they introduced “background noise” into the data 

they were collecting (El-Sabh, Glombitza, and Johannessen 1971, Colton 1972).  

Nevertheless, the significance of ISW phenomena has grown as they are now 

thought to be responsible for a significant portion of oceanic mixing of heat, salt, 

and other nutrients by virtue of breaking phenomena (Briscoe 1984, Gregg 1991, 

Munk and Wunsch 1998). In particular, turbulent mixing may lead to nutrient 

pumping which is considered especially relevant to controlling the dispersal of 

nutrients important to marine communities present in the water column 

(Bourgault and Kelly 2003, Stevick et al. 2008).  Nutrient pumping (upwelling) 

has also been found to correlate to reports of internal tidal bores associated with 

the spring-to-neap lunar cycle (Pineda 1991, 1994). 

 

For their part, Egbert and Ray (2000) concluded that internal tidal and 

wave phenomena radiated into the deep ocean can provide enough energy to 

maintain abyssal stratification. A recent compilation by Wunsch and Ferrari 

(2004), for example, indicates that internal waves represent about 24 percent of 

the ocean energy reservoir or about 14 exajoules (EJ) or 1018 J.1    Moreover, it 

has been recently suggested that internal wave-like phenomena might also 

                                                 

1 Based on an earlier estimate by Munk (1981).  The total ocean energy reservoir has 
been estimated by Wunsch and Ferrari to be about 53 EJ.  Uncertainties in that estimate are 
reported to range between a factor of 2 and possibly as large as 10. 
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represent geomorphic agents that can shape the gradients of continental slopes 

(Cacchione, Pratson, and Ogston 2002, Zhang, King, and Swinney 2008).  As 

discussed later in this dissertation, internal waves are not uncommon in nature.  

Rather, despite being nonlinear phenomena, their occurrence appears to fit into 

a certain predictable pattern suggesting that they are more common than once 

thought.  

 

However, despite increased recognition of both their occurrence and 

importance, the study of internal waves has not benefited from the same level of 

study as surface or wind-generated waves have historically enjoyed (i.e., 

National Research Council 1963, Kinsman 1965).   Although there have been 

several decades of study and research, certain fundamental aspects of internal 

wave behavior are still poorly understood such as their exact formation methods 

and propagation properties (Helfrich and Melville 2006).  A particular challenge 

to researchers has been to develop a parameterization scheme (e.g., Pierson et 

al. 1958) that can be used to help explain the behavior of internal waves when 

they shoal in response to changing topographic conditions.  See Emery and 

Gunnerson (1973).  To this end, researchers have found it useful to rely on the 

use of experimental wave tanks to recreate the in situ or field observations 

reported by oceanographers as well as test mathematical theories that can be 

used to describe their behavior. 
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Compared to the number of published field studies and observations, 

there are fewer published studies of internal wave behavior based on wave tank 

experiments and even fewer published numerical simulations. When performed, 

the primary focus of many past wave tank experiments has primarily been on 

investigating the shoaling behavior of internal waves with topographic features 

(obstacles) of moderate slope (Kao and Pao 1980, Saffarinia and Kao 1996). 

These studies have provided additional insights into the hydrodynamic behavior 

of solitary wave-like forms as well as help to validate the so-called K-dV 

equation, derived by Korteweg and de Vries (1895), which has been widely used 

to describe internal waves.  In recent years, however, there has been a growing 

interest in improving the understanding of behavior between internal waves and 

more discrete topographic features such as submarine seamounts (Lui et al. 

1998, Hsu, Liu, and Liu 2000). 

 

One of the challenges to oceanographers has been to capture real-time 

data on internal waves as they occur in situ.  Field data are expensive to collect.  

Research ships need to be chartered, staffed, and outfitted with the scientific 

instrumentation.  Once underway, the research expedition needs to locate an 

internal wave in anticipation of where and when one might occur, and then 

collect the data on its properties in real time. Moored (stationary) data arrays 

are an alternative to ship-borne surveys but these methods still suffer from the 
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limitation that they need to be properly located and operational to document the 

phenomena of interest (e.g., Dickey 2003) ─ in the case of this research, the 

occurrence of a passing internal wave.  Even when collected, some investigators 

have called into question the temporal as well as spatial representativeness of 

the physical data themselves collected in a marine setting (National Academy of 

Sciences ─ NAS 1993). 

 

In many fluid mechanic/hydrodynamic studies, an acceptable alternative 

research technique to field investigations is laboratory experimentation (e.g., 

Rouse 1976, Mutel 1998).  Although relatively less expensive, laboratory 

experiments are still both labor and resource intensive. Another issue to 

consider concerns the physical representativeness of the experimental results 

themselves which have been the subject of considerable academic discussion as 

well as advice for improvement (Coleman and Steele 1995, Stern et al. 1999).  

Despite the best attempts of investigators to achieve physical representatives 

and accuracy, Monaghan and Kos (2000) and, more recently, Bourgault and 

Richards (2007) have called into question the value of wave tank experiments 

involving internal waves owing to questions about the exactness of the results 

relative to actual field data (i.e., scaling effects) and/or recognized theories.  In 

wave tank experiments conducted by Wessels and Hutter (1996), for example, 

they estimated some of their measurement errors to be as large as 25 percent. 
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In an effort to improve the physical representativeness and accuracy of 

internal wave investigations, researchers have employed computational fluid 

dynamics (CFD) techniques to the study of internal waves.  Computational fluid 

dynamics is a branch of fluid mechanics dealing with the simulation of fluid 

flows through the use of numerical methods.  The numerical methods implement 

certain (universal) governing equations, and are used to obtain detailed results 

of the flow field such as velocities, pressures, densities, and temperatures.  A 

CFD simulation requires that the physical geometry, fluid properties, initial and 

boundary conditions, and external (forcing) conditions be defined for some 

computational domain for which the governing equations are solved in both time 

and space. 

 

In the years following its development, the digital computer has been 

widely used to model complex physical phenomena (e.g., Davis and Herzfeld 

1993, Kaufman, and Smarr 1993), including those phenomena involving ocean 

dynamics (NAS 1975).  In this regard, CFD methods have been developed and 

proven to be an acceptable research alternative to wave tank experiments when 

it can be demonstrated that certain fluid mechanics validation and verification 

issues are addressed (Stern et al. 2001, Oberkampf and Trucano, 2002).  

Moreover, because it has been recognized that visually-displayed information 

can convey additional information on both the temporal and spatial variations in 
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scientific data (Tufte 1983, 1990, 1997), many of the commercial CFD programs 

available ─ e.g., FLUENT, FLOW-3D, COMSOL, MODFLOW2  ─ now have 

integrated graphics packages that allows for a virtual rendering of the fluid 

behavior being investigated which have led to improvements (at least 

academically) in the study of hydrodynamic phenomena generally (Fraser et al. 

2007).   

1.2 Scope of Work and Objectives 
 

This research numerically simulates the two-dimensional (2D) behavior of 

large-amplitude ISWs within a shallow, canal-like basin.  For convenience, the 

basin is closed at both ends.  As an initial condition for the modeling exercises, 

the basin is stratified and comprised of two layers of fluid with different 

densities.   This is the simplest idealization for the modeling of internal wave 

propagation. When perturbed, the difference in densities and the tendency of the 

system to restore itself is a key factor contributing to the formation of an  

interfacial internal wave.  Rather than using the K-dV equation, which is only 

valid for moderate-amplitude solitons, this research relied on certain governing 

equations represented by the Navier-Stokes and the continuity equations.  The 

numerical method used to solve these equations was a one-step explicit finite 
                                                 

2 ANSYS FLUENT (2010),  FLOW-3D (2010), COMSOL Multiphysics (1998), and Visual 
MODFLOW (2010). 
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difference scheme. This method possesses both the transportive and conservative 

properties described by Roache (1972, 1998a).  To address any truncation errors 

associated with the calculations at each time step (i.e., numerical dispersion, 

false diffusion), an explicit numerical method described by Valentine (1987) was 

used.  The calculating environment was FORTRAN-95.  Computational results 

were processed using the student version of MATLAB®-software (MATLAB® and 

SIMULINK®  2008). 

  

 A key focus of the research was to examine how simulated internal waves 

interact with topographic obstacles and quantify how their properties change 

(vary) when different obstacle geometries are encountered.  The computational 

results obtained were compared against the experimental results reported by 

other researchers.  

1.3 Contribution and Originality 
 

There has been a long-standing scientific interest in understanding the 

hydrodynamic behavior of stratified fluids (e.g., Long 1953, 1954, 1955; Yih 

1969, and Imberger 1987).  In the case of internal waves, based on observations 

from aerial photographs and satellite images, earlier studies in situ focused 

primarily on their shoaling behavior in response to an encounter with the 

continental slope/continental shelf transition.  In an experimental setting such 
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as a wave tank, prior researchers have attempted to recreate the interactions 

observed in the field and quantify them.  This research contributes to an 

improved understanding of the behavior between nonlinear internal waves and 

other certain types of submarine topographic features by evaluating these 

interactions numerically and then graphically presenting the results.  In 

particular, this research is unique in that it has been possible to employ graphics 

software to depict the small-scale features of internal wave dynamics that have 

not been readily observable in a traditional wave tank setting through the use of 

dye layers, hot film probes, particle seed methods or other such techniques.  

These features include the velocity fields, a prescribed density interface [or 

pycnocline – from the Greek pyknόs (πυκνός), for dense], streamlines, and even 

the spatial distribution of the Richardson number.  Moreover, the research 

contributes to a basic understanding of internal wave phenomena and will 

include some general conclusions regarding the effects of obstacle geometry on 

internal wave behavior and properties.  

1.4 Organization 
 

In the remaining chapters, this dissertation is organized as follows.  

Chapter 2 provides some background on the historical study of internal wave 

phenomena, and reviews the physical mechanisms generally responsible for ISW 

generation, propagation, and dissipation.  Chapter 3 identifies the governing 
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equations that form the basis for this research and describes the computational 

approach employed in the numerical simulations.  Chapter 4 presents and 

analyzes results from the numerical simulation trials themselves.  These trials 

include numerical simulations of internal wave encounters with topographic 

analogues for seven types of submarine features likely to be found on the 

seafloor.  Higher graphic resolution figures reveal additional details from some 

of these simulations.  These figures are presented in appendices to this 

dissertation.  Last, Chapter 5 presents some concluding remarks and 

recommendations for future research bearing on the study of internal wave 

phenomena. 
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CHAPTER II 
 

BACKGROUND 

2.1 The Study of Internal Solitary Waves 
 

Much of what is known about internal waves can be attributed to 

observations made at sea as well as the results of theoretical studies and 

experimental models.  As a result, there is a rich (and growing) literature with 

respect to the study of internal wave behaviour.  In the United States, funding 

particularly by both the Office of Naval Research (ONR) as well as the National 

Science Foundation over the last half-century has done much to advance oceanic 

science in this research area as well as other areas of physical oceanography.  

Sapolsky (1990) and the NAS (2000) describe some of the major programs and 

projects benefiting from this support. 

 

An early motivation behind the development of remote sensing technology 

was to observe the Earth, its resources, and its physical processes (Fischer 

1975).  Conventional aerial photographs were already used routinely to study 

both geologic features (Simmons 1952, Ray 1960) as well as ocean phenomena 

(Dietz 1947, Cox and Munk 1954, McKenzie 1958).  70-mm color photographs 
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taken as part of the Gemini manned space flight program in the 1960s were 

instrumental in promoting the subsequent use of unmanned satellites to map 

and catalogue the Earth’s surface and the physical processes acting thereon 

(Lowman 1999).    

 

Some of this imagery − initially acquired from the Gemini program and 

later from the ERTS-1 satellite3 − revealed wave-like features on the ocean 

surface that were different from those commonly associated with wind-driven 

surface waves.  When observed, these solitary wave-like features were 

frequently found to be associated with the deep ocean/continental shelf 

topographic transition (Apel et al. 1975).  Russian investigators were also aware 

of the occurrence of these features from photographs/imagery acquired in 

connection with their own National programs (Babkov 1973).  Researchers at the 

time had already begun to independently propose that the continental shelf had 

some overall influence on their formation based on field measurements of 

primarily density and temperature data (Ichiye 1950, Defant 1959, Rattray, 

1960, Lee 1961, Yasui 1961).  Zeilon (1913, 1934), for example, had previously 

demonstrated experimentally that topographic sills or sill-like features at the 

bottom of a glacially-carved fjord could give rise to the occurrence of internal 

                                                 

3 Landsat, originally named the ‘Earth Resources Technology Satellite’ or ERTS-1, was 
first launched in 1972 (Williams and Carter 1976).    



  16 

 

wave phenomena. Sandström (1991, p. 438) has suggested that Zeilon’s 

pioneering work in this area deserves more credit (i.e., recognition) in the 

literature that it has received.   

 

In the years following their identification in imagery, internal wave 

behaviour has been investigated extensively by physical oceanographers.  

Published studies include investigations focused on the origins and 

characteristics (amplitudes, wavelengths, speeds, and energies) of internal 

waves and how these properties evolve once they encountered prominent 

topographic features commonly found along the seafloor.  Most studies reported 

that some type of high-relief topographic feature such as a continental shelf/ 

continental sill needed to be present to allow for this type of wave to form.  

Recent studies such as those conducted by Garrett and Kunze (2007) suggest 

that less prominent topographic features such as a mid-ocean ridge or MOR 

associated with seafloor spreading centers can, under certain conditions, also 

factor into internal wave generation.   

 

To better understand the current state-of-knowledge concerning internal 

wave behavior, the Annual Reviews of Fluid Mechanics series, select proceedings 



  17 

 

of the University of Hawaii’s ′Aha Huliko'a Winter Workshops 4, and certain 

issues of Geophysical Research Letters 5, were found to be excellent sources of 

information on this subject and thus good places to start when canvassing the 

literature.  Over the last 40 or so years, published reports of marine observations 

of internal waves have been complemented with experimental investigations 

intended to recreate what was observed in situ as well as numerical simulations 

performed more recently that rely on the use of digital computers. 

 

One of the earliest published literature surveys bearing on internal wave 

phenomena was an annotated bibliography prepared by Ichiye (1966) with ONR 

support.  He identified close to 160 papers and reports on this subject.  About a 

decade later, another review was published by Garrett and Munk (1979) in 

Annual Reviews of Fluid Mechanics.  In that paper, the authors cited Defant 

(1961), Briscoe (1975), Roberts (1975), and Philips (1977) as key sources of then-

current information on internal waves.  Other useful references include Philips 

(1966), Lighthill (1978), Miles (1980), Munk (1981), Baines (1986), Huthnance 

(1989), and Farmer and Armi (1999).   A short list of more-recently published 

papers would include Staquet and Sommeria (2002), Moum et al. (2003), and St. 

                                                 

4 Specifically, proceedings for the 1984, 1991, 1995, and 1999 workshops.  See Müller and 
Pujalet (1984) and Müller and Hendersen (1991, 1995, and 1999). 

5 Volume 30, number 3, for example.  See Briscoe (1975). 
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Laurent et al. (2003). Miles (1980) and Helfrich and Melville (2006) are also 

important for they provide comprehensive assessments of relevant literature 

during the preceding years.  A literature review that is contemporaneous with 

this research has been prepared by Berntsen (2008).  That bibliography is 

limited primarily to internal wave studies and investigations published over the 

last two decades.  The Berntsen bibliography contains more than 150 citations 

that are both annotated and indexed.   

 

In general, what the literature has reported is that internal waves are 

now generally considered to be more ubiquitous oceanic phenomena than once 

thought.   They can be generated in multi-parameter space by many different 

processes and mechanisms that vary both temporally and spatially (Levine 

1983).  The most common internal wave generation scenario relies on tidal-

topographic interactions involving some type of stratified fluid system.  When 

considering the growing body of literature that now exists on the subject, 

perhaps two papers deserve special recognition.  First, Thorpe (1975) and later 

Briscoe (1975) identified key physical processes and conditions considered 

responsible for the formation of internal waves.  Table 1 identifies the some of 

those key processes and conditions.  The relationships between some of the 

processes and conditions identified by Thorpe (1975), in time and in space, are 

depicted in Figure 2.  
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Table 1.  Physical Processes and Conditions Considered Responsible for Internal 
Wave Generation.  Complied from Thorpe (1975) using headings suggested by 

Garrett and Munk (1979). 

SURFACE GENERATION 

Travelling pressure fields Variable wind stress 

Variable buoyancy flux Surface wave energy flux 

Rainfall-induced surface turbulence Shallow diurnal thermocline 

Rainfall-induced halocline  

INTERNAL GENERATION 

Steep density gradient Stratigraphic stability 

Diapycnal eddy diffusivity Kinematic diffusivity 

Internal energy fluxes Horizontal tidal currents 

Coriolis frequency “Fossil” turbulence 

BOTTOM GENERATION 

Variable/irregular topography Horizontal tidal currents 

←
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Figure 2.  Thorpe's (1975) depiction of physical processes and conditions thought 
to contribute to the formation of internal waves.  Reproduced by permission of 
the AGU. 
 

 

Briscoe (1975) has suggested a more simplistic interpretation of the 

physical environment responsible for the generation of an internal wave.  As 

illustrated in Figure 3, the internal wave generation environment would consist 

of five major elements.  Unranked, these elements would include:   
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Figure 3.  Briscoe's (1975) “simplified” depiction of the basic physical processes 
thought to contribute to the generation of ISWs. Letters are described in the 
text.   Reproduced by permission of the AGU. 

• A system of interactions with a large scale flow system, such as 

baroclinic tides (A) 

• A series of losses due to energy dissipation (B) 

• The effects of interactions within the internal wave field itself (C) 

• The influence of hydrostatic effects such as stress, pressure, and     

buoyancy (D) 

• The influence of submarine topography (E) 
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Other internal wave generation scenarios have been proposed that include 

one or more of the processes listed in Table 1 and depicted in Figure 2.  They 

include: 

• Relaxation of internal hydraulic flows (Maxworthy 1979, Apel et al. 

1985) 

• Intrusions created by collapsing mixed layers (Maxworthy 1980) 

• Upstream influences (Baines 1984, Melville and Helfrich 1987, and 

Grue et al. 1997) 

 

An important step in advancing the phenomenological understanding of 

internal waves, though, was achieved by Garrett and Munk (1972, 1975) when 

they synthesized existing internal wave data and developed a universal 

kinematic model for solitary wave behaviour.   Their so-called Garrett-Munk 

Spectra describes variations in internal wave energy as a function of wave 

frequency and wave number.  When they do occur, Roth, Briscoe, and McComas 

(1981) have suggested that the characteristics of internal waves found to occur 

in the upper reaches of the ocean (depths generally less than 200 m) are 

qualitatively different from those internal waves found to occur at depths 

greater than 200 m as the later are subject to fewer state fluctuations.  See 

Table 2. 
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Table 2.  Internal Wave Parameters and Qualitative Observations.  Taken from 
Roth, Briscoe, and McComas (1981, Table 1). 

PARAMETER UPPER OCEAN DEEP OCEAN 

Energy Sources Atmosphere, winds, surface waves Many, none dominant 

Spectral Shape Variable Constant 

Level Variable Constant 

Directionality Sometimes None, except for internal tides 

Energy Loss Rate uncertain Rate uncertain 

Internal Oscillations Strong, variable Variable, often energy propagation 
down 

Internal Tides Very strong, variable Variable 

Coherence Low, but high in some bands Low 

Geographical Specificity Yes None 

Space Variability Unknown None 

Critical Issues General description, cause of 
variability Energy sources, losses 

 

Lastly, it is worth noting that prior to glasnost, Russia investigators were 

also a significant source of information concerning internal waves.  Monin, 

Kamenkovich, and Kort (1977) are cited as a major reference concerning Soviet 

research on the subject through the year 1974.  Briscoe (1975) estimated that 

Russian researchers have accounted for about 15 percent of the overall literature 
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pertaining to  internal wave  phenomena.  Several of the more recent studies 

conducted by Russian researchers are described in Apel et al. (2006). 

2.1.1 Scott-Russell “Wave of Translation” 

The first solitary wave observed was not an internal wave; rather, it was a 

report of a solitary surface wave in an inland water body.  When reviewing the 

literature, one will find that most papers begin with some causal reference to the  

Scottish naval engineer John Scott-Russell (1806-1882) and his chance 

encounter near Edinburgh in 1834.  While working at the Union Canal, Scott-

Russell happened to observe a solitary wave traveling along the free surface of 

the in-land canal.  In his subsequent accounts of the event, Scott-Russell (1838, 

1845) reported that a well-defined mound or hump of elevated water was 

generated on free-surface when a canal barge being towed came to an abrupt 

stop.  This early observer also reported that he was able to follow the wave-like 

structure for a mile or two before loosing sight of it.  He estimated that the 

amplitude of the elevated wave was 1-to-2 feet (or about less than a meter) in 

height with associated wave length of about 30 feet (or about 10 m).  Scott-

Russell later referred to this wave-like structure that formed at the brow of the 

boat as a “wave of translation.”   

 

After much experimental work, Scott-Russell developed two key 

observations concerning solitary wave behavior that continue to prove to be 
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valid.  In his first observation, he was able to describe the wave speed (velocity) 

for a solitary wave as a function of wave height using the following expression:   

 ( )
1
2η= +⎡ ⎤⎣ ⎦c g D  (2.1) 

where g, D, andη are, respectively, the gravitational constant of acceleration, the 

undisturbed water depth, and the maximum height of the solitary wave, as 

measured from the undisturbed water level (Newell 1983, p. 1127).  In the 

second observation (Miles 1980, p. 12), Scott-Russell determined that wave 

breaking occurs when D ≈ η.  Additional details concerning the Scott-Russell 

discovery can be found in Emmerson (1977), Bullough (1988), Craik (2004), and 

Darrigol (2003). 

 

What was especially intriguing about this discovery was that the type of 

wave observed by Scott-Russell was inconsistent with prevailing linear wave 

theory first advanced by George Biddell Airy (1801-1892) and later expanded 

upon by George Gabriel Stokes (1819-1903).  Moreover, Scott-Russell’s wave was 

reported to have retained its shape as it traveled along the shallow canal.  

Airy/Stokes wave theory, on the other hand, argued that a wave of finite 

amplitude cannot propagate any substantial distance without a change in its 

form – that is to say, the wave’s amplitude would decay in favor an increase in 

its wavelength.  Moreover, surface waves were believed to travel as a collection  
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or group of waves or wave trains and not as lone entities as observed by Scott-

Russell.  See Craik (2004). 

 

Although Scott-Russell was able to later recreate his wave of translation 

experimentally in wave tank, his published account was met with skepticism 

within the broader scientific community at the time, and it was several years 

before there was a plausible mathematical explanation for what was observed in 

Scotland.  Craik (2005, pp. 32-33) suggests that the publication of Stoke’s 

seminal paper on water theory in 1847 (Stokes 1847) may have eclipsed early 

recognition of the significance of Scott-Russell’s discovery as there were any 

number of investigators contemporaneously engaged in hydrodynamic wave 

research.  See Table 3. Also see Wehausen and Laitone (1960). Boussinesq (1872, 

1877) and Lord Rayleigh (1876) later introduced mathematical proofs 

demonstrating theoretical existence of a “wave of translation.”  They 

demonstrated that a wave of finite amplitude could propagate without changing 

form due to the balance between nonlinearity and dispersion.  Nonlinearities, it 

has been found, tend to steepen the wave front owing to the increase in wave 

speed and amplitude. 
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Table 3.  Outline of Water Wave Theories. 
 

THEORY DESCRIPTION REFERENCES 

Airy Waves (sinusoidal) Waves of small amplitude in deep water Laplace (1776), Airy (1845) 

Stokes and Gerstner Waves 
(trochoidal) 

Waves of finite amplitude in deep, 
intermediate, and shallow water 

Gerstner (1802), Stokes (1847), 
Froude (1862), Rankine (1863), 

Rayleigh (1877) 

Cnoidal Waves Waves of finite amplitude in  intermediate 
to shallow water 

Korteweg and deVries (1895), 
Keller (1949) 

Solitary Waves 
(nonlinear) 

Solitary or isolated waves of finite 
amplitude in shallow water 

Scott-Russell (1844), Boussinesq 
(1871), Rayleigh (1876), McCowan 

(1891) 

 

Ernshaw (1847) was the first (albeit unsuccessfully) attempt to provide a 

mathematical explanation for solitary waves whereas Bazin (1865) later 

reported that he was successfully in his efforts to recreate Scott-Russell’s wave 

tank experiments in a long branch of the Canal de Bourgone, near Dijon.  More 

recently, Monaghan and Kos (2000) reconstructed the Scott-Russell 

experimental wave tank apparatus and later used computer simulations to 

clarify as well as independently confirm certain details of the reconstructed 

experiment. 
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2.1.2 The K-dV Equation 

In 1895, D.J. Korteweg (1848-1941) and G. de Vries (1866-1934) derived a 

mathematical proof validating the plausibility of Scott-Russell’s observed wave.  

Based on their own wave tank experiments, Korteweg and de Vries (K-dV) also 

observed that waves similar to those of Scott-Russell’s, when they occurred in 

shallow rectangular canals, demonstrated lower wave frequencies and higher 

wave amplitudes than a “typical” surface wave.  In 1895, they formulated the so-

called K-dV equation which bears their names and is today considered a critical 

turning point in the modern study of nonlinear wave behavior for it serves as a 

prototypical mathematical model for solving nonlinear partial differential 

equations (PDEs – Bais 2005).   

 

In simplified dimensional form (Osborne and Burch 1980), the K-dV 

equation can be expressed as a third order PDE: 

 
3

3 0η η η ηαη β∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ic
t x x x

 (2.2) 

where x and t denote position and time, and ( , )x tη  defines the displacement of 

the surface of the liquid or, alternatively, the interface displacement between the 

two liquid layers, ci is the linear wave speed, α is a coefficient of nonlinearity, 

and β is the dispersion coefficient.  The K-dV equation assumes a weakly 

nonlinear wave under inviscid conditions, and is unique for it has as its periodic 

solution (which they named “cnoidal wave”) in the form of: 
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 ( )02
0 sech

x c t
η η

−⎡ ⎤
= ⋅ ⎢ ⎥Δ⎣ ⎦

 (2.3) 

where η0 is the maximum soliton amplitude, t  is time, and ∆ is the characteristic 

wave length, defined as: 

 2

0

12β
αη

Δ =  (2.4) 

Equation 2.3 is valid as long as the total water depth is significantly 

larger than two times the crest-to-trough distance (characteristic width) of the 

internal wave.  Under certain conditions, the nonlinear and dispersive terms 

found in equation 2.2 – α  and β  – are in balance and, as discussed later, when 

this happens, the physical circumstances are stable enough for the formation of 

internal waves, including solitary waves. Although mathematically cumbersome, 

the K-dV equation has proven to be a fairly robust tool for first-order qualitative 

modeling and prediction of small-to-moderate amplitude wave behavior.  See 

Miles (1990).  Since publication of the K-dV equation, other mathematical 

solutions for nonlinear wave PDEs have been derived to help explain the 

existence of solitary waves.  Newell (1983) and Apel et al. (2006) examine a 

variety of alternatives to the K-dV equation (model). 

 

When investigating internal wave behavior, researchers have found it 

convenient to rely on a simplified (shallow-water) model of stratification 

consisting of two fluid layers. The upper fluid layer has a thickness and a 
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density designated, respectively, 1h  and 1ρ  whereas 2h  and 2ρ correspond to the 

same properties of the lower fluid layer.6  Here, the density variation between 

the two fluid layers is given as ρ
ρ

.  Thus, when considering the K-dV equation, 

the nonlinear and dispersion coefficients α  and β  can be expressed in terms of  

1h  and 2h  as: 

 0 1 2

1 2

3
2
c h h

h h
α −
= ⋅  (2.5) 

and 

 0
1 26

c h hβ = ⋅  (2.6) 

When taking into account the densities of the respective fluid layers, the wave 

celerity can defined as:  

 ( ) 1
2 1 1 2 2

0
2 1 1 2

g h h
c

h h
ρ ρ
ρ ρ

−⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (2.7) 

Lastly, the linear wave speed ic  can be expressed as a function of β, the 

wavelength λ , and the phase speed 0c : 

 0 2

4
ic c β

λ
= +  (2.8) 

                                                 

6 Alternatively, some of the literature refers to 1h  and 2h  as, respectively, d+  and d− . 
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2.1.3 Early Reports of ISW Phenomena 

The first deep-water observation of an “internal” wave of translation is 

reported by Maury (1861).  He described the presence of a strong “tide rip” in the 

absence of any perceptible current at the entrance of the Malacca Straits in the 

Indonesian Seas.  Although there was no additional description of the event to be 

found in the literature, the occurrence of internal waves in the area today is well 

documented (Susanto, Mitnik, and Zheng 2005).  

 

In 1893, there was a second report of an internal wave occurrence which 

did receive detailed scientific follow-up.  At the time, the Norwegian explorer 

Fridtjof Nansen (1861-1930) was leading the so-called Fran Expedition of 1893-

1896 in an attempt to reach the geographic North Pole.  As the expedition 

approached Russia’s Taimyr Peninsula, along the Kara Sea coastal region of the 

Arctic Ocean, near Siberia, it was reported that his ship encountered some type 

of invisible force impeding its forward progress in the water – hence the presence 

of “dead water” as later defined by Bascoum (1980).  Subsequent study by 

Ekman (1904) suggested that the hydrodynamic scenario encountered by the 

Fran was one in which a thin layer of fresh water from a melting glacier had 

come to rest on top of a denser layer of sea water without mixing.  Following 

recreation of this stratified density scenario in a wave tank, Ekman 

demonstrated experimentally that a ship’s wake could create an “invisible” 
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(internal) wave at the boundary of the two fluid layers.  His experiment revealed 

that the ship’s forward progress had been hindered from below the water surface 

by an internal wave that had formed at the salt water/fresh water boundary.  

Ekman also learned that the amount of flow resistance introduced by the wave’s 

presence increased in proportion to the size of its amplitude.   The growing 

internal wave would continue to slow the ship’s progress until the wave’s celerity 

allowed it to overcome and pass the ship.   Ekman found that the process of wave 

generation is particularly efficient when the ship’s draught is comparable to the 

depth of the upper fluid layer.  Long (1972) provides an illustration of how dead 

water phenomena can occur in a stratified fluid system similar to that first 

investigated by Ekman. 

 

A much recognized but less-studied example of a solitary wave is the tidal 

bore.  A tidal bore is a tidally-generated solitary wave that occurs on the free 

surface and generally occurs at the mouth of shallow rivers.  The bore forms 

when the incoming tide is forced into the narrowing river mouth, and the bore 

grows in height until a single wave forms and moves upstream.  Tidal bores are 

analogous to hydraulic jumps and can be modeled as such (Tricker 1965). They 

are important to consider as their formation have been shown to be sensitive to 

the magnitude of the Froude number − the inverse of the Richardson number 

(Lynch 1982) − which happens to be an area of interest to this research.  
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Chanson (2009, 2010) describes the properties and behaviors of bore-like 

phenomena associated with surface waves.  Wei et al. (1995) presents a 

numerical model describing the formation of an undular bore using shallow-

water-wave equations. 

 

Malandain (1988) reports that there are multiple references to tidal bores 

in the literature, the earliest being on the Qiantang River, near Hangzhou, in 

China sometime during the 7th Century B.C.  See Zuosheng, Emery, and Yui 

(1989).  About 70 localities in 16 countries world-wide are reported to experience 

some form of tidal bore phenomena to varying degrees.  Bartsch-Winkler and 

Lynch (1988) have compiled an extensive catalog of these locations.  

 

Researchers periodically report evidence of internal wave phenomena 

during the 1930s-1960s in conjunction with the study of ocean currents.  

Sverdrup, Johnson, and Fleming (1949) provide a summary of observations 

made by physical oceanographers in the 1930s.  Other reports are described by 

Munk (1941), Ufford (1947), Emory (1956), and Lafond (1961a).  These and other 

studies and investigations are summarized in Ichiye (1966).  However, it is 

worth noting that internal wave phenomena captured in data recordings were 

not recognized by oceanographers as such at the time.  Measurements of 

oscillating phenomena below the ocean surface were frequently confused with 
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some type of aberrant tidal turbulence rather than an example of internal wave-

like phenomena (Gould 1971). 

 

When evaluating the observational data described in some of these 

studies, researchers generally relied on internal wave theories developed by 

Fjeldstad (1933) which set forth the following depth-density relationship used to 

define the wave speed in a shallow fluid system as: 

 
1

1 2 1 2 2

1 2 1

g h hc
h h

ρ ρ
ρ

⎛ ⎞−
= ⋅⎜ ⎟+⎝ ⎠

 (2.9) 

Fjeldstad’s depth-density formulation assumes that 1 2

1

ρ ρ
ρ
−  is small, on the 

order of about 0.01 percent, and that the ISW wavelength is large relative to the 

total depth of the fluid system.  Consequently, the density term can and is often 

dismissed reducing equation 2.9 to: 

 
1

1 2 2

1 2

h hc g
h h

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (2.10) 

The generally small velocities observed for internal waves in situ are attributed 

to the influence of the density term.  

 

When considering internal waves in the context of water depth, Roth, 

Briscoe, and McComas (1981) suggest there are some differences between ISWs 

that form in waters deeper that 200 m compared to those ISWs that form in 

shallow waters (e.g., less than 200 m).  Recognizing these differences, Bogucki  
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Table 4.  Summary of Surface and ISW Properties in a Two-layered Fluid 
System.  Taken from Bogucki and Garrett (1993) citing Ostrovsky and 

Stepanyants (1989) and Whitman (1974).  Surface ISW shown for the purposes 
of comparison.  Assumes h2 > h1, first order theory. 

WAVE TYPE  
WAVE PROPERTY 

SURFACE SHALLOW WATER DEEP WATER 

Phase speed  co of an 
infinitely long, infinitesimally  

small wave 
( )

1
2

1 2'g h h+⎡ ⎤⎣ ⎦  
( )

1
1 2 2

1 2

1
*2

1

'

'

h h
g

h h

g h

⎛ ⎞
⎜ ⎟+⎝ ⎠  ( )

1
2

1'g h  

Velocity, c 
1 2

11
2o

ac
h h

⎛ ⎞
+ ⋅⎜ ⎟+⎝ ⎠

 

( )2 1

1 2

11
2o

a h h
c

h h
−⎡ ⎤

+ ⋅⎢ ⎥
⎣ ⎦

 

*

1 2

11
2o

ac
h h

⎛ ⎞
+⎜ ⎟+⎝ ⎠

 
1 2

31
8o

ac
h h

⎛ ⎞
+ ⋅⎜ ⎟+⎝ ⎠

 

Amplitude and wavelength ( )
2

2
1 2

4
2 3
wL

a h h⎛ ⎞ = ⋅ +⎜ ⎟
⎝ ⎠

( )22
1 2

2 1

4
2 3
w h hL

a
h h

⎡ ⎤⎛ ⎞ = ⎢ ⎥⎜ ⎟ −⎝ ⎠ ⎢ ⎥⎣ ⎦
 

2
2 *

1 2
4

2 3
wL

a h h⎛ ⎞ = ⋅ ⋅⎜ ⎟
⎝ ⎠

 

2
1

4
2 3
wL

a h⎛ ⎞ = ⋅⎜ ⎟
⎝ ⎠

 

Shape η(x,t) 
( )2sech
0.5 w

x ct
a

L
−⎡ ⎤

⋅ ⎢ ⎥⋅⎣ ⎦
 ( )2sech

0.5 w

x ct
a

L
−⎡ ⎤

⋅ ⎢ ⎥⋅⎣ ⎦
 ( ) 2

1
0.5 w

a

x ct
L

−⎡ ⎤
+ ⎢ ⎥⋅⎣ ⎦

 

* if h2 >> h1 
 

and Garrett (1993) also suggest that some of the major ISW properties (i.e., 

phase speed, wave speed) can likewise be differentiated.  See Table 4, above. 
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2.1.4 More “Recent” Developments 

It would be more than fifty years before there was widespread interest 

once again in the study of internal waves.  Helfrich and Melville (2006) suggest 

that there were two key developments responsible for changing perceptions 

regarding the study of internal waves from hydrodynamic curiosities to areas of 

greater scientific interest. The first development concerned the publication of a 

1965 paper in Physical Review Letters by Kruskal and Zabusky.  These two 

researchers had been using a digital computer to evaluate non-linear wave 

phenomena such as the collision of two solitary waves.  Prior to performing their 

computer simulations, there was the expectation that the two colliding solitary 

waves would consume and cancel each other upon impact.  However, the 

computer simulations revealed just the opposite.  Kruskal and Zabusky 

demonstrated that two solitary waves could collide without any subsequent 

change in either of their respective wave speeds or amplitudes. In their later 

paper on the subject, Kruskal and Zabusky also coined the term "soliton" in 

recognition that the solitary wave obeyed the principal of superposition.  

Another outcome of the Kruskal and Zabusky study was that they independently 

derived the 1895 K-dV equation.  [Hirt, Nichols, and Romero (1975) later used 

the Marker-in-Cell or MAC numerical technique, perfected by Welch et al. 

(1965), to produce a computer-generated animation of two solitary waves 

colliding and yielding the same outcome predicted by Kruskal and Zabusky.]  
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Gardner et al. (1967) soon thereafter demonstrated that a soliton was a 

dominant solution to the K-dV equation.   

 

The second key development identified by Helfrich and Melville (2006) 

was the confluence in the 1960s-1970s of three independent scientific endeavors 

– the exploration of the ocean, advances in applied mathematics, and the 

introduction of remote sensing techniques, as noted earlier.  

 

• Perry and Schimke (1965), for example, are cited for being the first to 

instrumentally measure an internal wave in the Andaman Sea, near 

the Bay of Bengal, rather than infer its existence indirectly from 

scientific observations (i.e., field data).  They documented groups of 

internal waves with amplitudes as large as 80 m and wavelengths 

2000 m long on the main thermocline at a depth of 500 m in 1500 m-

deep water.  [These observations were later confirmed by Osborne and 

Birch (1980).]   

 

• In the area of remote sensing, Ziegenbein (1969) is recognized for first 

demonstrating that the presence of internal waves below the ocean 

surface can be detected by measuring subtle variations in the texture 

of the water surface by measuring the scatter of radar signals. 
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Previously, it had been possible to identify internal waves only from 

aerial photographs (Shand 1953) based on a surface expression (or 

footprint) first referred to as a “slick” (Ewing 1950).  However, from 

low-Earth orbit (generally less than 2000 km), it became possible to 

observe and photograph the Earth’s surface, including the oceans, 

remotely from vantage points greater than those previously possible 

using aircraft (Colvocoresses 1974).  Internal waves were first 

observed from space as part of the 1975 Apollo-Soyuz mission (Apel 

1979) and later, using Landsat satellite imagery (Apel et al. 1975). In 

1978, synthetic-aperture radar or SAR was placed on the SEASAT 

satellite.  Unlike Landsat, SEASAT was the first satellite specifically 

designed to collect data on oceanic phenomena (Fu and Holt 1982).  

The SAR allowed for the acquisition of higher-resolution images 

necessary for the measurement of key ocean attributes.  In this regard, 

the SEASAT imagery was particularly well-suited for recording the 

subtle variations produced on the ocean’s surface by internal wave 

orbitals occurring at depth.  Since then, internal waves have been 

observed regularly from space. Examples of Landsat and SAR imagery 

can be found in Figures 4 and 5, respectively.7   

                                                 

7 LaFond (1959) later described the existence of ripples (turbulence) due to shearing 
velocities in the water created by alternating up-welling and down-welling flow streams.   The 
orbital motion of water particles associated with an internal wave causes areas of divergent and 
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Figure 4.  Aqua MODIS (or Moderate Resolution Imaging Spectroradiometer) is 
true-color satellite image of ISW trains around the island of ΄Abd-al-Kūrī (12° 11' 
N, 52° 14' E), located between the Gulf of Oman and the Indian Sea.  Internal 
waves of depression can be identified by the presence of dark contours (lines) in 
the image; internal waves of elevation can be identified by the presence of light 
contours.  Image dated August 27, 2003.  Image credit:  NASA. 

                                                                                                                                                       

convergent motion at the sea surface. These features are visible in a SAR image as bands of low 
and high backscatter (dark and bright bands) due to a decrease and an increase of the surface 
roughness, respectively.  See Figure 5. 
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Figure 5.  European Remote-Sensing Satellite (or ERS-2) SAR image showing 
large-amplitude ISWs around the Dongsha atoll (20° 31' N, 116° 44' E), in the 
South China Sea.  Internal waves of depression can be identified by the presence 
of dark contours (lines) in the image; internal waves of elevation can be 
identified by the presence of light contours. Image dated June 23, 1998.  Orbit 
16598.  Frame 0387-423. Copyright © 2010 European Space Agency.  
Reproduced by permission.   
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• Last, Helfrich and Melville give credit to Gardner et al. for providing 

an exact analytical solution to the K-dV equation.   

 

In recent years, researchers have also been evaluating alternative 

methods for investigating ISWs through the use of acoustical techniques.  These 

techniques generally rely on measuring the acoustic energy or back-scatter 

generated by the passing wave front.  See, for example, Sandström, Elliott, and 

Cochrane (1989) and Warn-Varnas et al. (2003). 

 

With assistance from Apel, Jackson (2004) compiled a catalog of about 300 

images, taken mostly from space, that show evidence of ISW phenomena 

occurring at more than 50 locations around the globe (Figure 6).  Most of the 

ISW reports occur in the Northern Hemisphere, where there is the largest 

percentage of the continental land mass, or some extension thereof (Figure 7). 

Jackson’s compilation also suggests that the occurrence this type of wave form is 

more frequent in nature than previously thought8  ─ on the order of about 1100 

occurrences in any year.  

                                                 

8 To illustrate this point, the occurrence of a catastrophic 1700 tsunami, another type of 
internal wave, in Japan was never fully accounted for until the early 2000s with the discovery of 
geologic evidence of the same event in Washington State.  See Atwater et al. (2005).  Extensive 
reviews of the literature by Weigel (2006), for example, suggest that tsunamis are geologically 
rare events (i.e., Ager 1993) that are seldom reported historically.  However, the advent of 
remote sensing technology has demonstrated that the occurrence of internal wave-like 
phenomena is not as rare as once thought. 



 

 
Fi

gu
re

 6
.  

Lo
ca

tio
ns

 o
f o

bs
er

ve
d 

IS
W

 p
he

no
m

en
a.

 B
as

ed
 o

n 
da

ta
 c

om
pl

ie
d 

by
 J

ac
ks

on
 (2

00
4)

 w
ho

 id
en

tif
ie

d 
 

m
or

e 
th

an
 5

0 
lo

ca
tio

ns
 g

lo
ba

lly
 w

he
re

 IS
W

s 
an

d 
IS

W
 w

av
e 

tr
ai

ns
 o

cc
ur

.  
So

m
e 

lo
ca

tio
ns

 e
xp

er
ie

nc
e 

m
ul

tip
le

  
IS

W
 o

cc
ur

re
nc

es
 o

ve
r 

tim
e.

 
 

42



  43 

 

90

68.8

20.7

41.1

47.5

56.2

61.6

72.4

77

76.5

77.6

76.7

89.6

96.9

99

84.2

19.5

0

10

31.2

79.3

58.9

52.5

43.8

38.4

27.6

23

23.5

22.4

23.3

10.4

3.1

1

15.8

80.5

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

90 N

70 N

50 N

30 N

10 N

10 S

30 S

50 S

70 S

90 S

De
gr

ee
 L

at
itu

de
Percent Surface Area

Ocean Land
 

Figure 7.  Percent distribution of Earth’s surface area by type and by latitude. 
Data are for both the Northern (N) and Southern (S) hemispheres.  About 39 
percent of the Northern Hemisphere is covered by the continental land mass 
compared to 19 percent in the Southern Hemisphere.  Overall, the land to ocean 
ratio in the Northern Hemisphere is about 1:1.5; in the Southern Hemisphere, 
the ratio is about 1:4.  Data obtained from United Nations Atlas of the Oceans.  
Available at www.oceansatlas.org.    
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Although Jackson (2009) recently proposed an empirical model for 

estimating the frequency of internal wave occurrence at a particular geographic 

location, accurate annual frequency estimates of ISW occurrences in nature 

generally do not exist (Ostrovsky and Stepanyants 1989).9  Nevertheless, as 

discussed later in this dissertation, closer examination of the Jackson (2004) 

compilation reveals that there is a temporal influence to the occurrence of ISWs. 

 

2.2 Internal Wave Mechanics 
 

Recalling the processes and conditions depicted in Figure 2, researchers 

generally agree that the prevailing environment for the generation of internal 

waves can be attributed to the interaction between stratified waters and local 

variations in seafloor topography.  In the open ocean, the motion of surface 

waves is generally unaffected by the ocean floor.  The orbital motions of water 

particles at the ocean’s surface decay with depth, well-before reaching the 

seafloor. However, as is the case with surface waves, most researchers 

                                                 

9 Because the recording ISW behavior in real-time can at times be impractical, 
developing order-of-magnitude-level frequency estimates for internal waves might be possible 
through the use of expert judgment.  As suggested by its name, the opinions (views) of recognized 
subject matter experts can be obtained through a formal elicitation process.  Questions cannot be 
answered by more traditional lines of scientific inquiry so the opinions of qualified individuals 
can be used as a substitute for data when subject to quantification (Dalkey and Helmer 1963).  
The elicitation technique, in general (Meyer and Booker 1990), has found wide use in both 
engineering (Hora and Iman 1989, Chhibber, Apostolakis, and Okrent 1992) and earth science 
applications (Hunter and Mann 1989, Senior Seismic Hazard Analysis Committee 1995). 
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acknowledge that irregularities in the seafloor topography, in the form of a 

prominent physiographic feature, are a key factor influencing the formation of 

internal waves.  See Bell (1975) and Ivey, de Silva, and Imberger (1995), for 

example. Thorpe (2001) is another useful reference to consult.  Munk (1941) and 

LaFond and Rao (1954) previously argued that when topographic conditions 

permit, internal tides are likely the principal forcing function responsible for the 

formation of an internal wave.  They also found that internal tides introduce 

instabilities into the density profile which lead to turbulent mixing.  See Garrett 

and Kunze (2007) and LaFond and Roa (2007).   

 

As mentioned above, when the surface expression of internal wave-like 

phenomena were first identified in satellite imagery, it was frequently in 

proximity to the ocean-continental slope/shelf transition zone (Apel et al. 1975).  

Closer to shore, submarine canyons or glacial scours are now recognized as 

secondary generating mechanism for internal wave formation (Shepard and 

Marshall 1973, Hotchkiss and Wunsch 1982).  These V-shaped topographic 

features are common along the continental shelf/continental slope transition 

(Daly 1936, Shepard and Dill 1966).  Some canyons are associated with the 

mouths of major river systems whereas some are not.  Hickey (1995) has 

estimated that submarine canyons and canyon-systems incise between 20 and 50 

percent of the North American continental shelf between the equator and 



  46 

 

Alaska.  Improvements in sonar mapping techniques and computer processing of 

the data obtained there from have led to higher-resolution images of this major 

marine physiographic feature (Pratson and Haxby 1997). 

 

Ambient hydrostatic equilibrium, in which every water particle in the 

water column is in a state of neutral buoyancy, may be perturbed by a 

combination of the factors cited in Table 1, to produce an internal wave.  Since 

tides, stratification, and irregular topography are common marine features, 

internal waves and solitary wave-like features have been found to be ubiquitous 

across the globe wherever stratified waters and shallow bathymetry coincide.  In 

the Jackson (2004) compilation, at least marine 54 sites associated with the 

formation of internal waves were identified, not all of which are coincident with 

the continental shelf/continental slope.  Researchers have identified other 

marine settings where internal waves can form.  These settings are listed Table 

5.  Once formed, the ensuing internal waves can be defined as a single wave or, 

more commonly, as groups of waves (or wave trains) ─ usually 3 to 10 in number 

─ that can be seen on the ocean’s surface.  Typical magnitudes for selected 

internal wave parameters formed along the continental shelf are given in Table 

6.  The internal wave that occurs at depth generates almost no surface 

manifestation − that is to say, there is almost no variation in the free surface  

water elevation to suggest that an internal wave, at depth, is present.  Any
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Table 5.   Physiographic Settings for Internal Wave Generation. 
 

SETTING CONTEXT REFERENCES 

Sill/Shelf 
Topographic transition from a deep to shallow-sea 
environment at the continental slope-shelf  leads to 

the breaking of internal waves 
Baines (1973, 1974), 

Hibiya (1986) 

Submarine Canyon Narrow steep-walled incisions within the continental 
shelf characterized by turbulent tidal currents Kunze et al (2002) 

Strait Geographically narrow stretch of sea connecting two 
larger water  bodies subject to strong tidal currents Gargett (1976) 

Island-like 
Active volcanoes, coral islands and reefs, banks, 

atolls, and guyots subject to the to and fro of ocean 
currents 

Bell (1975), Holloway and 
Merrifield (1999),  

Niwa and Hibiya(2001) 

Fjord, Loch 

 
Steep-walled, deep topographic feature subject to 

stratified mixing involving continental fresh water and 
oceanic saline water   

Smith and Farmer (1977) 
Farmer and Smith (1978, 1980)  

Closed Water Bodies 
Large standing body of stratified water such as a lake 

or small ocean which temporal changes in 
temperature and/or density can take place when 

subjected to wind stress. 

Mortimer (1952), Hunkins and 
Fleigel (1973),  Farmer (1978), 

Boegman et al. (2003) 

Mid-ocean Ridge 
Tidal flow in association with weakly-stratified water 

over seafloor spreading ridge in abyssal ocean 
leading to internal wave breaking 

Ledwell et al. (2000), 
Rudnick et al. (2003), 
Thurnherr et al. (2005) 

River 
Gravity current from river discharges into coastal 

waters causing wave convergence between the two 
systems  

Nash and Moum (2005) 

 

 
 

 



  48 

 

Table 6.   Typical Scales for Mid-latitude Continental Shelf–Type Internal 
Waves.  Assumes a stratified (two-layered) fluid system. Derivations from the 
values listed in this table can be large.  Adopted from Apel et al. (2006, p. 63) 

unless otherwise noted. 
 

PARAMETER VALUE 

Wave Front Length (km) † 1 − 5 

0η  (m) 0 − 30 

1h  (m) 5 − 25 

2h (m) 100 

Wavelength (m) 50 − 500 

Distance Between ISW Fronts (km)† † 15 − 25 

Relative Density Difference 0.001 

Wave Phase Speed, c (m/s) 0.20 − 1.0 

Current Velocity (m/s) 0.10 − 1.0 

Wave Packet Lifetime (hr) 24 − 48 

Potential Wave Energy Yield (Jm-2) ~ 4 †††  

†      Group of waves. 
††     Distance between two ISW trains. 
†††     Estimated by Pielou (2001).  For the purposes of comparison, the potential energy yield associated with a surface wave 
of equal height in the open ocean is approximately 1256 Jm-2 (Pond and Prichard 1983).  An internal wave has much less 
energy than a surface wave of equal height because the density difference along the pycnocline is very slight compared to 
the air-water interface (i.e., a surface wave).  However, by virtue of potentially greater amplitude, the potential energy yield 
of an internal wave can be substantially larger than that of a surface wave. 
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surface expression that might occur would take place when the wave orbitals 

were sufficiently close to the free surface to allow them to interact with surface 

waves commonly as groups of waves or wave trains.  The wave trains were 

usually comprised of waves in groups numbering from 3 to 10.  Although they 

can vary both spatially and temporally, internal waves and internal wave trains 

can be seen in imagery and photographs, and their properties indirectly 

estimated using those sources (Li, Clemente-Colón, and Friedman 2000). 

 

The ocean surface interruption that ultimately gives rise to a surface-

roughness is generally thought to result in a modulation that allows internal 

waves to be identified in imagery (Gargett and Alpers 1985).  The association 

between the orbital patterns responsible for the surface appearance observed 

was first suggested by LaFond (1959).  LaFond’s hypothetical rendition of an 

orbital path for an internal wave (Figure 8), in turn, appears to be based on 

Defant (1961) crediting Bjerknes and others (1933).  Moreover, the geometry of 

the orbital path itself based a mathematical expression developed by Lamb 

(1847).  This expression describes the motion of progressive waves forming 

between two fluids of different densities.   

 

As depicted in Figure 8, the wave-particle orbitals are ellipsoidal rather 

than circular, as would be the case typically with a linear-type wave commonly
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Figure 8.   Sinusoidal orbital pattern characteristic of an internal wave.  Arrows 
indicate flow patterns around dashed streamlines.  Small rectangles define areas 
of surface-roughness or slicks that can be observed in photographs and satellite 
images.  From LaFond (1959). 

 

seen on the water surface. LaFond (1961b) also established that the movement 

of water particles, in adjacent fluid layers immediately above and below the 

pycnocline, are in directions opposite to that of each other.10   LaFond’s 

                                                 

10   According to Lamb (1847), the vertical displacement at the interface of a two-layered 
system can be expressed as: 

cos( )kx tη α σ= −  

and the horizontal velocity flow u′ in the upper layer 1h is: 



  51 

 

conceptualization, depicted in Figure 8, comports well with observations of 

internal wave phenomena in situ.  See Figure 9. 

 

The question thus arises as to what combination of physical processes 

and/or conditions cited in Table 1 might lead to the generation of an internal 

wave?  Moreover, once they form, how do internal waves behave?  In answering 

these questions, the reader is reminded that internal waves are recognized as 

non-linear phenomena.  As discussed in Campbell (1989), for any given set of 

physicochemical conditions (generating mechanisms), one cannot predict which 

specific set of conditions are necessary to produce a specific outcome (response), 

as is the case with linear systems ─ specific examples being the prediction of the 

force between two masses.  Given a specific outcome (response), one cannot 

describe the specific set of initial and boundary conditions that will produce the 

desired response.  In a linear system, such as a linear spring-mass-damping 

system, for example, a given subsequent trajectory of motion may be obtained by 

solving for the required time-varying force input to the system.  However, some 

researchers (e.g., Thorpe, Briscoe) have identified certain environmental 

conditions (Table 1) considered to be favorable for the generation of internal  

                                                                                                                                                       

1

cos( )au c kx t
h

σ
⎛ ⎞

′ = − −⎜ ⎟⎜ ⎟
⎝ ⎠

 

where a is the wave amplitude at the pycnocline.  
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waves.  It is likely that the non-linear interactions among these conditions 

locally play an important role in the forcing of larger marine systems. 

 

When considering the physical processes and conditions identified in 

Table 1, collectively, and then attempting to establish their relative 

contributions to the formation of an internal wave, this effort can prove to be 

problematic as the coupling between the respective processes is poorly 

understood. Because of the cascading effects of nonlinear interactions among 

these conditions, it is often not possible to reconstruct the exact origin of 

observed internal waves (Staquet and Sommeria 2002).  Gerkema and 

Zimmerman (1995), though, have attempted to reduce the complexity of this 

problem by proposing a simple progression (sequence) consisting of the following 

processes to account for internal wave phenomena: 

 

baroclinic tide → topographic interaction → internal tides →internal solitary waves 

  

An alternative, still more simplistic approach might be to consider internal wave 

behavior in the context of sources and sinks. 

2.2.1 Key Internal Wave Forming Factors (Sources) 

Internal waves are generated in regimes where the barotropic tidal 

current encounters irregularities in bottom topography.  The topography acts as 
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a wave-maker owing to oscillatory “to and fro” motions associated with tidal 

cycles.  The individual elements comprising this internal wave-forming scenario 

are described briefly below. 

2.2.1.1  Stratification 

Internal waves form at depth and propagate in any fluid where the 

vertical stratification is strong and well-defined (Lighthill 1978).  Stratification 

can be due to vertical temperature or salinity gradients in the water column.  

Internal waves are generated when the density interface is disturbed.   

Disturbances are often caused by tidal flows that propagate along (parallel to) 

the density interface.  In freshwater environments, the variation in density is 

caused primarily by temperature (a thermocline).  In brackish marine 

environments, the variation in density is due to salinity (a halocline).  Two water 

masses having the same density may have different temperatures and salinities, 

as varying values of each can result effectively in the same density.  As a rule, 

therefore, temperature is more important than salinity when determining fluid 

density.  Because temperature and salinity can vary spatially, it is not unusual 

to find warmer waters below cooler waters, or less saline waters below more 

saline waters.  See Sverdrup, Johnson, and Fleming (1949).   

 

A strong vertical density gradient is referred to as a “pycnocline.”  Areas 

where freshwater and saltwater bodies meet, such as estuaries and river deltas,  
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have well-defined pycnoclines.  Depending on the season and the latitude, the 

thickness and depth of the pycnocline below the water surface can vary.  In the 

open ocean, the pycnocline generally extends from about 120 to 270 meters below 

the surface (LaFond 1962).  Pycnoclines are most prevalent in the lower 

latitudes of the open ocean as the temperature- and salinity-based density 

variations are usually the greatest in comparison to the higher latitudes.  At the 

higher latitudes (50 to 60 degrees), the thickness of the pycnocline begins to 

lessen or becomes almost non-existent owing to the lack of variation in the 

density of the water column.  A permanent halocline usually coincides with the 

top of the permanent thermocline.  See Figure 10.   As noted earlier in this 

dissertation, when a pycnocline begins encounter or “feel” the seafloor, there is 

the potential for the formation of an internal wave.  Using SAR imagery, some 

researchers (Zheng, Yan, and Klemas 1993, Li, Clemente-Colón, and Friedman 

2000) have been able to indirectly estimate the depth of the pycnocline by 

calculating the group velocity of internal wave packets.  

 

The properties of the pycnocline appear to influence the form and location 

of internal waves (Apel et al 2006).  For example, returning to equation 2.2 and 

the non-linear parameter α and the dispersion parameter β, the sign of the 

dispersion parameter β is always positive for oceanic internal waves whereas the 

sign of the non-linear parameter α  may be both positive and negative.  The  
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Figure 10.  Deep ocean pycnoclines.  From Ingmanson/Wallace.  Oceanology:  An 
Introduction. 1E. Copyright © 1973 Brooks/Cole, a part of Cengage Learning, 
Inc., Reproduced by permission.  www.cengage.com/permissions. 

combination of the α and the β parameters determine the polarity of the internal 

wave.  For example, if α is negative so will the polarity of 0η , and the internal 

wave corresponds to an internal wave of depression. Depression-type internal 

waves tend to favor marine scenarios where a shallow pycnocline overlies a 

deeper layer of water, as might be the case during the Spring-Summer months.  

Conversely, if α  is positive so will the polarity of 0η , and the ensuing internal 

wave is a wave of elevation.  Elevation-type internal waves tend to favor a 

scenario in which a there is a shallow sea with strong mixing and a deep 
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pycnocline near the seafloor, as might be the case during the Winter months.  

Recalling equation 2.5 and the non-linear wave parameter α, internal waves 

propagating in a system defined by a thin upper fluid layer resting over a deeper 

fluid layer (h1 < h2 ) always produce a depression-type internal wave.  When 

internal waves form on a thin, near-bottom fluid layer (h1 > h2 ), the resulting 

internal wave is a wave of elevation.11  Recalling Figure 8, the flow direction for 

water particles in a depression wave is clockwise; the flow direction for an 

elevation wave is counter clockwise.  The seasonal influence on thermal 

stratification of ocean waters, and thus ISW formation, appears to be well-

supported by the distribution (timing) of ISW reports in imagery.  See Figure 11. 

 

When considering a variable (sloping) topography, Kaup and Newell 

(1978) suggest that the polarity of the incident interfacial wave ─ i.e., either an 

internal wave of elevation or depression ─ can be reversed at some vertical plane 

defined as h1 = h2.  At this so-called “turning point,” there is a corresponding 

change in the sign of the difference between h1 and h2. Once an internal wave 

advances to a location where this difference becomes negative, that is to say h1 < 

h2, the incident wave will experience a reversal in its polarity. Knickerbocker 

and Newell (1980) numerically examined polarity reversal whereas Helfrich and 
                                                 

11 This dissertation focuses primarily on the breaking behavior of internal waves of 
depression in a two-fluid system.  Long (1972), on the other hand, has examined some of the 
factors the influencing the behavior internal waves of elevation in a two-fluid system. 
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Melville (1986) demonstrated this transition experimentally.  Vlasenko and 

Hutter (2002) produced a numerical simulation that shows the evolution of an 

internal wave through the turning point theoretically used to define this change 

in polarity.  Reported observations of this particular aspect of internal wave 

behavior, though, are particularly rare in nature.  Lui et al. (1998) report that 

phase shifts seen in the SAR images of internal waves in the South China Sea 

are evidence of a shift (a reversal) in the polarity of the internal wave orbital.  

More recently, Orr and Mignerey (2003) and Shroyer, Moum, and Nash (2009) 

were able to document the reversal of an internal wave’s polarity in situ.   Zhao 

et al. (2003) were able to observe to polarity reversal in satellite imagery. 

2.2.1.2  Tidal Influences 

Many of the physiographic environments identified earlier in Table 5 rely 

on the influence of tides as forcing function contributing to the development of 

an internal wave. A number of investigators (Helland-Hansen and Ekman 1909, 

Ufford 1947, Arthur 1954, and Reid 1956) have previously commented on the 

close correlation between the fluctuating thermocline and tidal periodicity.  

Haurwitz (1954), though, previously questioned the correctness of some of these 

correlations and hence the implied synchronicity between tidal variations and 

internal wave generation.  Jackson’s (2004) compilation showing the geographic 

distribution of reported ISW occurrences have identified certain marine settings 

around the globe ─ the Norwegian Shelf, the Strait of Messina, and the Strait of 
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Gibraltar ─ as ISW “hot spots” owing to the important influence of tidal forces in 

internal wave formation.  Nevertheless, most researchers continue to endorse 

the notion that the waxing and waning of tidal currents act as a wave-maker 

capable of producing internal waves (Farmer and Smith 1980, Haury, Briscoe, 

and Orr 1979, Hibiya 1986 and 2004, Lamb 1994).   

 

Tidal behavior has been the subject of intense study by both mariners and 

scientists for several millennia (Cartwright 1999, Reidy 2008). Tide-generating 

forces present in the ocean arise primarily from the differential attraction 

between the Earth, the Moon, and the Sun, in a manner consistent with 

Newton’s law of universal gravitation.  Small differences in the direction and 

magnitude of these forces give rise to tides.  As the Earth rotates about its axis, 

tidal-generating forces produce two maxima (high water) and two minima (low 

water) ─ or semidiurnal waters ─ about every 24 hours.  The fluctuation 

(oscillation) between maxima and minima levels is responsible for the 

alternating currents and displacements typically associated with tidal behavior.    

 

Estimating these levels (i.e., the ocean’s response to tidal forces) is 

essentially algebraic. Sea level changes at any given geographical location in the 

ocean can be expressed as the sum of the cosine functions for the principal tidal-

forcing constituents ─ M2, K1, S2, etc. (Pugh 1987). See Table 7. The principal  
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Table 7.  Amplitude Functions for Principal Constituents of Tidal Harmonic 
Forcing.  Taken from Wahr (1995). 

 

NAME ORIGIN AMPLITUDE FUNCTION 
(cm) 

M2 Principal lunar 63.19 

S2 Principal solar 29.40 

N2 Larger lunar elliptic 12.10 

K1 Luni-solar declinational 36.88 

O1 Principal declinational 26.22 

P1 Principal declinational 12.20 

 
 

tidal-forcing constituents can be amplified by diurnal and semidiurnal 

fluctuations of the pycnocline.  Since in many places, tidal-generated sea level 

changes can be several meters it is clear that significant tidal amplification 

occurs in many marine settings due to topographic effects encountered along the 

seafloor.  The strongest internal waves generated are in the tidal amplification 

range of around 0.4 to 0.5 m. They are mostly attributed to the M2 tidal 

component. 



  62 

 

2.2.1.3  Topographic Influences 

As a supplement to the June 1968 issue of its magazine, the National 

Geographic Society published its famous shaded-relief map of ocean floor 

showing prominent topographic features to the underlying geology. The 

1:30,412,800-scale map reflected a stylized interpretation of seafloor bathymetry 

information first presented by Bruce Heezen and Mary Tharp of the Lamont 

Geological Observatory of Columbia University (now the Lamont-Doherty Earth 

Observatory) during the 1950s is shown in Figure 12a.  See Lawrence (1999) and 

Doel, Levin, and Marker (2006).  Upon inspection, what the Heezen-Tharp map 

revealed was that the ocean floor had several distinct physiographic features – 

foremost among these were the abyssal plains, rift valleys in association with 

sea-floor spreading centers, and the continental margins defined by the 

continental shelves and the transitional continental slopes.  A less stylized 

interpretation of these features, based on improved subsea mapping techniques, 

has been prepared by Amante and Eakins (2009) for the National Oceanographic 

and Atmospheric Administration (NOAA) and can be found in Figure 12b. 
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Figure 13. Physiographic map illustrating an example the continental shelf-
continental slope transition.  Taken from Cacchione and Pratson (2004).  
Reproduced by permission of American Scientist, magazine of Sigma Xi, the 
Scientific Research Society. 

Garrett (2003) has referred to the continental shelf/continental slope 

transition as the “great [internal] wave maker” owing to their geographic 

extensiveness.  The continental shelf is a shallow, sea-floor platform that, 

although submerged, is clearly an extension of the continental land mass (Figure 

13). This topographic feature represents about 15 percent of the ocean floor 

surface area.  See Table 8. Globally, the continental shelves range in depth from 

about 20 m to about 550 m below sea level with an average depth of about 
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Table 8.  Hypsometry and Bathymetry of the Earth's Surface.  Taken from 
Wyllie (1971) citing Scheidegger (1963), Menard and Smith (1966), and Ronov 

and Yaroshevsky (1969). 

% EARTH SURFACE 
PHYSIOGRAPHIC FEATURE AREA 

(106 km2) 
% LAND OR 

OCEAN INDIVIDUAL CUMULATIVE 

Continental Land Mass 149.0 100 29.1 29.1 

Continental Shelf/Continental Slope 55.4 15.3 10.9 40 

Ocean:            Abyssal Ocean Basin 
Floor* 151.5 41.8 29.7 63.3 

Mid-Ocean Ridges and Rises 118.6 32.7 23.3 169 

Continental Rise 19.2 5.3 3.8 120.8 

Island Arc and Trench 6.1 1.7 1.2 120 

Volcanoes 5.7 1.6 1.1 117.1 

Other Submarine 5.4 1.5 0.9 100 

* including seamounts 

133 m (Emery 1965).  Horizontally, they can vary in width from slightly less 

than 1 km to almost 15,000 km with an average width of about 78 km (Op cit.).  

Slopes are generally about 1° with the exception being the land mass 

surrounding the Philippines archipelago where the angle of the continental slope 

is about 11°.  Most of the continental shelf surface area was exposed during the 

waxing and waning of Pleistocene-age glaciation (2.588 million to 11,550 years 

before present) which helps to account for its generally irregular topography.  
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The limits of the continental shelf are abruptly defined by the continental slope. 

Topographically, the continental slope is described as a narrow 20 km-band 

of submerged land whose average grade is about 4° and extending to a depth of 

about 130 m vertically below sea level.  Shepard (1973) provides a description of 

how these features vary globally from continent to continent. The abrupt change 

in grade of the continental shelve/continental slope occurs over a relatively short 

distance – about 20 km – and is considered by most researchers as a key factor 

contributing to internal wave formation in this particular marine setting. 

 

There literature indicates that there are other topographic features 

depicted in Figure 12 besides the continental shelf/continental slope also known 

to influence the formation of internal waves in the ocean.  They include MORs, 

seamounts, and islands. 

 

Mid-ocean ridges.  Close inspection of both the Heezen-Tharp map (Figure 12a) 

and the NOAA map (Figure 12b) indicates that most dominant physiographic 

feature in each of the ocean basins are MORs.  The data compilation in Table 8 

indicates that MORs, and their associated transform fault systems, account for 

nearly a quarter (about 23 percent) of the earth’s surface and even a higher 

proportion of the ocean floor ─ nearly a third.  The geologic significance of MORs 

was first highlighted when their discovery helped to unify plate tectonic theory 
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by establishing the geodynamic forcing mechanism believed to be responsible for 

continental drift (Heezen, Tharp, and Ewing 1959). MORs represent areas where 

the earth’s crust forms and spreads (Wilson 1963 and 1965, Heirtzler 1968, 

Jacoby 1981).  Globally, the collective length of the MOR system is about 65,000 

km and in some places, its elevation can rise as much as 500 m above the ocean 

floor (Heezen 1960).   

 

In recent years, MORs have gained attention once again for helping to 

explain mixing in the deep ocean.  Researchers concluded that some mixing of 

abyssal waters takes place beyond the continental margins and is likely 

attributed to internal wave phenomena (Munk and Wunsch 1998, Wunsch and 

Ferrari 2004).  Independently, Polzin et al. (1997) and Ledwell et al. (2000) 

found that the MOR, by virtue of its high elevation relative to the abyssal plane 

(Small 1998), can induce enhanced tidal mixing in the deep ocean which, in turn, 

has led to studies evaluating the influence of these features on internal wave 

formation (Bell 1975, Balmforth, Ierley, and Young 2002, Garrett and Laurent 

2002, Nycander 2005, Vlasenko and Alpers 2005, and Legg and Huijts 2006). 

 

Seamounts.   When they were first discovered in the Pacific Ocean, just prior to 

the Second World War, seamounts were considered natural curiosities as there 

was no clear geologic explanation for their occurrence (Murray 1941, Betz and 
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Hess 1942, Hess 1946).  Following years of study, though, they are now 

recognized as extinct submarine volcanoes that formed over so-called “hot spots” 

on the ocean floor closely associated with sea-floor spreading centers (McBirney 

1963, 1971; and Staudigel and Clague 2010).  Early estimates first placed the 

number of seamounts globally at close to 10,000 (Menard 1964) followed by an 

update some years later by Rogers (1994) whose estimated their numbers to be 

around 30,000 based on additional mapping of the ocean floor.  Current 

estimates based on both additional subsurface mapping and statistical theory 

suggest that the global seamount population ranges from between 100,000 to as 

many as one million (Wessel, Sandwell, and Kim 2010).  As a result, seamounts 

represent a significant areal fraction defining the abyssal ocean floor ─ 

estimated to be about 28.8 million km2 or about 8 percent of the ocean floor 

surface area (Etnoyer, Wood, and Shirley, 2010).  Based on these numbers, 

seamounts may also be considered to be an important source of internal wave 

generation. 

 

The significance of seamounts hydrodynamically rests with the fact that 

they do not protrude above the ocean surface.  Topographically, they are they 

have near-vertical relief which, in some areas, can be as much as 4 km above the 

seafloor (Heitzler et al. 1977). Because of their somewhat extreme relief and the 

fact that they are generally isolated, investigators report that seamounts can 
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influence the hydrodynamics of the open ocean by modifying currents (Vastano 

and Warren 1976) and producing variations in local flow fields (Roden, Taft, and 

Ebbesmeyer 1982).  This is achieved through a combination of steady-forcing 

(i.e., Taylor columns12) as well as periodic tidal forcing that can stratigraphically 

trap currents13 (White and Mohn 2002, Brink 1989, Chapman 1989, Lavelle and 

Mohn 2010).   

 

Islands.   The Jackson (2004) atlas reveals that many internal wave observations 

are in close proximity to islands. There are many thousands of islands globally 

(Arnberger and Arnberger 2001) and most of these occur as extensions of the 

continental landmass.  There are also islands that are not associated with the 

continents that have formed as a result of either diastrophic or volcanic forces 

(Keating et al. 1987).  They number close to 900 (Menard, 1986) and include 

active yet isolated volcanic islands, coral islands, banks, atolls, and guyots at or 

above sea level.   

 

When considering the formation of internal waves, it is these more remote 

islands that are of research interest for it is believed that they influence internal 

wave formation in a manner somewhat differently than seamounts.  For 
                                                 

12   Based on theories first proposed by Proudman (1917) and Taylor (1917). 

13   In a manner not unlike that of coastally-trapped waves.  See Brink (1989, 1991). 
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example, because islands protrude above sea level, there is no opportunity for 

the onset of Taylor column phenomena, as is the case for seamounts.  

Alternatively, Heywood, Barton, and Simpson (1990) have suggested that the 

flow past isolated islands can be likened to the flow around a circular cylinder in 

a laboratory tank used to study the influence of the Reynolds numbers on the 

formation of rotating eddies and wake effects leading to the generation of a 

classic “vortex street.”  In addition to these rotation effects (Gerkema 1996), 

other local environmental factors recognized to influence internal wave 

formation in proximity to islands generally include stratification, baroclinic 

tides, bathymetric variations, and buoyancy-induced instabilities (Stevens et al. 

2005).  Also see, for example, Wolanski and Deleersnijder (1998), Wolanski et al. 

(2004), and Zhao and Alford (2006). 

2.2.1.4 Perturbing and Restoring Forces 

Despite its extensive nature (~70 percent of the Earth’s surface), with few 

variations, the ocean demonstrates nearly stable and uniform stratification 

(Pedlosky 1979).  Only rarely and sporadically does one encounter statically 

neutral or unstable regions in the stratification of the oceans and major seas 

(Wunsch and Ferrari 2004).  When perturbations occur in the stratification take 

place, there is the potential for internal waves to form.  As noted at the 

beginning of Section 2.2.1 of this dissertation, there are many physical factors 

capable of producing the perturbations that lead to ISW formation.   



  72 

 

Internal gravity waves resemble surface or gravity waves in that they rely 

on gravity as a restoring force.  When a fluid parcel is displaced in a stably-

stratified water column, it will attempt to return to its equilibrium position 

under the influence of gravity in a manner that is (theoretically) well-understood 

(Cushman-Roisin and Beckers 2009).  Small density differences between the 

respective fluid layers in the ocean lead to small buoyancy forces acting on a 

perturbed water particle at the interface.  The resistance of the fluid parcel to 

external perturbations can be expressed in terms of the dimensionless 

Richardson number Ri.  This parameter generally defines the stability of a 2D 

stratified fluid system dominated by shear flow. Physically, the Richardson 

number is the ratio of stabilizing buoyant forces to destabilizing shear forces, in 

the presence of a velocity gradient, that varies with depth.  Mathematically, it 

can be calculated using either of the following expressions: 

 2 22

1Ri( )
Fn

g
zzz

u u
z z

γγ

ρ

∂⎛ ⎞∂
⎜ ⎟∂⎝ ⎠∂= − ⋅ ≈ −

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (2.11) 

where Fn  is the densimetric Froude number: 

 horizontaluFn
g H

=
′

 (2.12) 

where g' is the reduced gravity or 1 2

2

g
ρ ρ
ρ
−

⋅ .   Typically, the horizontal velocities 

are induced by tidal motions.  A decrease in the density gradient or an increase 

in the velocity gradient within the water column can cause the pycnocline to 
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become locally unstable.  Miles (1961, 1963) and Howard (1961) found that 

transition to turbulent flow can be achieved theoretically when Ri locally falls 

below 0.25 anywhere within the water column.14  Conversely, stability within 

the system is assured when Ri(z) exceeds 0.25 ─ the likelihood of turbulent 

mixing is small and stratified shear flow dominates.15    

 

The restoring buoyancy force acting on a vertically-displaced fluid particle 

within the water column can be characterized by the Brunt-Väisälä or buoyancy 

frequency.  Physically, the Brunt-Väisälä frequency 2N  is a measure of the 

strength of system stratification and is generally a function of depth.  This 

parameter can be defined as: 

 2

0

N ( ) gz
z
ρ

ρ
∂

= −
∂

 (2.13) 

 and it represents the intrinsic frequency of oscillations of a fluid parcel about its 

equilibrium position.  Depending on the strength of the stratification, the fluid 

parcel will require any number of cycles to restore itself to equilibrium.  Buoyant 

                                                 

14 Howard and Maslowe (1973) note that instability also depends (to a limited extent) on 
the local velocity and density profiles.   

15 In more recent studies of this topic, there have been suggestions of the existence of 
both “global” ( Ri ) as well as “local” Richardson numbers ( Ric ).  For example, there is a growing 
body of experimental and observational data that indicates that turbulence can survive when Ri 
>>1 (Galperin, Sukoriansky, and Anderson 2007).  Under such an arrangement, and to ensure 
continuity with the Miles-Howard criterion, Ri > Ric where Ric > 0.25.  Also see Zaron and Moum 
(2009) 
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forces thus mechanically drive or damp the restoring oscillations based on the 

properties of the pycnocline.  

 

The Richardson number can also be used to understand the influence of 

buoyant forces on pycnocline equilibrium by considering an alternative 

formulation to equation 2.11 in the form of: 

 
2

2
NRi( )z
u
z

=
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠

 (2.14) 

When considering shear flow in the context of equation 2.14, when it exceeds 

twice the (Brunt-Väisälä) stratification or 

 2Nu
z
∂

>
∂

 (2.15) 

then internal waves can break to produce turbulence and turbulent mixing via a 

progression in K-H instability progression, as discussed below. Criminale (1973) 

discusses the role of critical shear flow in internal wave formation and breaking 

in more detail. 

 

More strongly-stratified fluids (i.e., ρ1 << ρ2 ) have higher frequency 

oscillations, because the restoring force for vertical displacements is larger; for 

weakly stratified fluids, the opposite is true.  Internal waves can occur at 

frequencies less than the Brunt-Väisälä frequency.  Philips (1966) notes that 2N  

represents a maximum value when the thermocline is at its greatest variation, 
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and decreases above and below it.  When 2N  is a maximum, there are a finite 

number of modes.  In the first mode, the pycnocline has a single vertical maxima 

(node).  In the second mode, there are two maxima (nodes) that are 180° out-of-

phase.  Mode-2 is also known as a “varicose waves” (Lamb 1932, Moum, Nash, 

and Klymak 2008).   

 

If conditions are such that Ri(z) < 0.25, then the basic flow regime is 

unstable and can encourage the development of K-H–like rolls or billows owing 

to the growth in the amplitude of the disturbance.  This phenomenon has been 

widely studied by Chandrasekhar (1961), Turner (1973), Drazin (2002), and 

others.  These features begin as a collection of vorticity “kernels” within some 

water parcel (Batchelor 1967) and can be conducive to the onset of internal wave 

formation (Defant 1961) as they can grow into zones of dynamic instability that 

can support both linear and non-linear tendencies, as suggested by earlier 

equation 2.2.  

 

Wave breaking can be defined as the production of turbulence and the 

irreversible dissipation of energy.  In the case of internal waves, breaking 

corresponds to the occurrence of pycnocline overturning.  Thorpe (1987, 2004) 
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suggests that the transition to K-H instability (and ultimately breaking16) can 

take place in a series of discrete stages, as depicted in Figure 14, and can 

ultimately produce an internal wave with a remnant of the “cat’s eye” as 

illustrated in Figure 15. The vertical scale over which breaking can physically 

occur is relatively small compared to the amplitude of the internal wave ─ on the 

order of several meters (Eriksen 1978, Smyth and Moum 2000).  The “cat’s eye” 

commonly associated with K-H turbulence/breaking transition have been 

identified in situ by several internal wave researchers (Thorpe and Hall 1974, 

Matsuno et al. 1997, Li and Yamazaki 2001, Moum et al. 2003).  

 

The change in internal wave properties (and behavior) in many ways is 

similar that of a surface wave in open water approaching shallow water.  As the 

deep water originated-wave enters shallow water, it begins to “feel” the bottom.  

As this happens, the wave undergoes a transformation in a series of steps that 

involve changes to its amplitude, wave- length, and energy.  This transformation  

                                                 

16 Thorpe (1994) also notes that pycnocline overturning such as that suggested by these 
exhibits does not always imply internal wave breaking but it is a necessary condition.  A physical 
state under which isopycnal overturning can take place can be defined as 

max 1
u

s
c

≡ >  

where s corresponds to the internal wave steepness.   
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Figure 14.  Progression of Kelvin-Helmholtz stability in a two-layered system.  
Taken from Gregg (1973) based on an unpublished study by S.A. 
Thorpe/National Institute of Oceanography (UK). Copyright © 1973 Scientific 
American, a division of Nature America, Inc.  All rights reserved. 
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Figure 15.  Representation of streamlines for a developing (dynamically 
unstable) internal wave in a two-layered system.  IIA ─ Upper and lower fluid 
layers moving in the same direction.  IIB  ─ Upper and lower fluid layers moving 
in opposite directions.  Taken from Defant (1961a) citing Bjerknes and others 
(1933).  Reprinted from Physical Oceanography, vol. 2, A. Defant (ed.), Fig. 236, 
p. 566, Copyright © 1961 Pergamon Press. 

is generally referred to as “shoaling” in its earliest stages and ultimately leads to 

the wave “breaking.” 

2.2.2 Internal Waves and Topography (Sinks) 

Once formed in the ocean, internal waves can travel considerable distance 

without any appreciable change in character.  Although not all internal waves 

require the influence of topography to form at the onset, when they do encounter  
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 (significant) variations in submarine topography, their properties can be 

altered. As mentioned earlier in this dissertation, this alteration/transformation 

typically manifests itself on the ocean surface through subtle variations in the 

texture of surface waves and can be observed, albeit indirectly, by evaluating 

high-altitude photographs and/or satellite imagery.  As is the case with surface 

waves, internal waves have been found to shoal and break (Emery and 

Gunnerson 1973).  The shoaling/breaking process for an internal wave has been 

depicted schematically by Lui et al. (1998) in Figure 16. 

 

Different types of surface waves break differently and there have been 

many studies over the years to better understand shoaling and breaking as these 

phenomena are recognized as serving an important role in shoreline ecology.  

Key studies in the past include Iversen (1951), Biesel (1952), Patrick and Wiegel 

(1955), Wiegel (1964), and Galvin (1968, 1972).  A more recent synopsis of wave 

breaking phenomena was prepared by Peregrine (1983).  Nagashima (1971) 

suggests that the examination of breaking surface waves represents a 

reasonable analog against which the results of experimental investigations and 

numerical simulations of internal wave shoaling and breaking can be 

compared.17  

                                                 

17 Elmore and Heald (1969) note that waves behave in fundamentally the same manner 
subject to the properties of the fluid medium they occur in.  It can be argued that surface waves 
also represent internal waves as air is also a type of fluid, albeit the density of air is much less 
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Figure 16.  Major surface features for shoaling ISWs.  Figure (Lui et al. 1998) 
shows photographic as well as SAR signatures for a theoretical internal wave in 
a two-layered system passing from relatively deep water (h1 < h2 ) to relatively 
shallow water  (h1 > h2 ).  Reproduced by permission of the AGU.   

2.2.2.1 Shoaling  

As described in the previous section, internal waves frequently form in 

waters not generally associated with the continental shelf.  From these deep 

waters, internal waves travel landward until they reach what might be 

considered shoaling waters.  If the pycnocline maintains a constant depth, there 
                                                                                                                                                       

than that of water.  Consequently, it is both useful and appropriate to rely on surface water wave 
behavior (i.e., Komar 1976, Mei and Liu 1993) as analogs for evaluating ISW breaking behavior. 
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exists the possibility that the wave will ultimately undergo a change in its 

polarity owing to a landward decrease in the depth of the seafloor.  As is the case 

with surface waves, an internal wave would be expected to shoal when its orbital 

paths encounter the seafloor.  And again, like surface waves, shoaling would be 

expected to reduce the internal wave’s forward velocity and in doing so lead to a 

reduction in wavelength while producing an increase in wave amplitude.   

 

 Although a satisfactory theoretical explanation exists describing shoaling 

and a subsequent change in internal wave polarity, observation of this 

phenomenon in situ is rare for internal waves and has proven difficult to 

validate.  Shroyer, Moum, and Nash (2009), and others, have been able to 

document the reversal of polarity in the field for an internal wave off of the coast 

of New Jersey. 

2.2.2.2 Breaking 

Following shoaling, the next major stage in wave evolution, and the one 

typically associated with the greatest expenditure of energy is wave breaking.  

Wave energy is adsorbed and converted to heat.  The gentler the slope of the 

obstacle (seafloor) the more wave energy is converted.  The forward motion of an 

advancing wave is slowed as it encounters waters of declining depth.  Wave 

particle speeds are slowed-down slightly more at the bottom of wave orbitals 

than at the top as a result of changing seafloor slope.  The resulting differential 
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forward movement in combination with the increased wave steepness causes the 

wave to become vertically unstable.  It is generally recognized that waves break 

because the velocity of particle motion at the crest of the wave front exceeds the 

internal wave’s overall phase velocity.  Because the quantity of water preceding 

the wave front is insufficient to fill the wave crest, thereby allowing for a 

symmetric wave form, the crest consequently topples forward, collapsing the 

wave thereby causing it to “break.”  For surface waves, breaking generally occurs 

when the wave amplitude is about 1.3 times the wave depth.  Once breaking 

commences, it occurs quickly.  An example of a breaking surface wave in profile 

and progression is depicted in Figure 17. 

 

 Galvin (1968) suggests that there are four types of breaking waves – 

spilling, plunging, collapsing, and surging.  Quantitatively, this taxonomy is 

based on the natural slope of the beach m, wave period T, and either deep-water 

or breaker height, HO or HT. Qualitatively, though, the Galvin taxonomy relies 

subjectively) on the characteristics of the wave crest to classify the breaking type 

morphology.  As illustrated in Figure 18, spilling breakers can be distinguished 

by an unstable wave crest that cascades down the shoreward face of the wave 

producing a foamy surface of the face of the wave and cascades down the 

shoreward face of the wave producing a foamy water surface.  In the case of 

plunging breakers, the crest curls over the shoreward face of the wave and falls  
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Figure 17.  Breaking progression for a plunging-type surface wave.  Taken from 
Mason (1952). 
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Figure 18.  Principal surface wave breaker types as defined by Galvin (1968).  
Reproduced by permission of the AGU. 
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over onto the beach, resulting in a high splash. In collapsing breakers, the crest 

remains unbroken while the lower part of the shoreward face steepens and then 

collapses, producing an irregular turbulent water surface.  Lastly, the wave crest 

remains unbroken in the case of surging breakers and the front face of the wave 

advances up the beach with minor breaking.  

  

 When considering internal waves as a separate wave class, Emery and 

Gunnerson (1973), recommended a somewhat different taxonomy for describing 

breaking behavior. These researchers examined 114 thermal isotherms in the 

Santa Monica Bay area of California and suggested that internal wave breaking 

could be qualitatively organized into seven classes.  These classes are described 

below and illustrated in Figure 19:   

   

 Class 1.  Internal waves with no effect by shoaling bottom: isotherms 

similar at different depths.  

Class 2.  Internal waves with no effect by shoaling bottom: wave 

pattern superimposed on general temperature slope due to 

upwelling.  

Class 3.  Internal swash: shallower 'isotherms precede deeper ones;  

marked steepening of wave front.  

Class 4.  Strong internal swash: definite wave run-up.  
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Figure 19.  Seven internal wave breaking classes proposed by Emery and 
Gunnerson (1973).  Class type is designated by numbers in the respective boxes. 

Class 5. Internal surf: temperature inversion.  

Class 6. Internal surf: discrete bolus of cold water along the bottom.  

Class 7. Internal surf: extreme irregularity in wave form near the 

bottom. 

 

In terms of the relative frequency of occurrence, Emery and Gunnerson 

found that of the 114 thermal sections reviewed, 40 percent could be designated 

Classes 1 or 2 (no effect of shoaling bottom), 39 percent could be designated 

Classes 3 and 4 (internal swash up the bottom slope), and 21 percent designated 

Classes 5, 6, or 7 (breaking internal waves ─ internal surf).  As an area of future 
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scientific inquiry, Emery and Gunnerson recommended that attempts be made 

to quantify the respective breaking classes.   

 

Boluses can either be transmitted landward or reflected seaward 

depending on the angle of the incident ISW and/or obstacle slope.  Using a 

tsunami-type wave as a hydraulic model, Heller, Unger, and Hagar (2005) 

examined the basic features of bolus formation, including run-up, in connection 

wave breaking.  See Figure 20.   Wallace and Wilkinson (1988), Helfrich (1992), 

Michallet and Ivey (1999), Bourgault and Kelly (2003), Venayagamoorthy and 

Fringer (2006), Bourgault, Kelley, and Galbraith (2008) have investigated the 

formation and behavior of boluses, motivated by interest in understanding the 

role of such features in inducing boundary mixing in coastal systems. These 

studies indicate, in the case of Leichhter et al. (1996), for example, that internal 

bores may be particularly important in redistributing cool water, suspended 

particles, dissolved nutrients, and plankton.  To better understand how far-

reaching bolus effects might be experienced, Synolakis (1987) has investigated 

the run-up features of solitary waves. 

 

For the purpose of completeness, it is worth noting that tidal bores are 

another example of a breaking solitary wave. For a tidal bore to form, two 

conditions must be met.  First, the tides in the adjoining tidal body must be 
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Figure 20.  Non-dimensional numerical simulation of solitary wave showing 
profiles of bolus formation and surge (run-up). Exhibit shows surface wave 
profile on a sloping beach (1:10) and internal velocity distributions at various 
time steps n.  Taken from Heller, Unger, and Hagar (2005). Reproduced by 
permission of the American Society of Civil Engineers. 
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exceptionally high.  Second, the receiving inlet (a river) must be shallow, with a 

gently-sloping bottom and have a funnel-shaped estuary.  The bore forms when 

the incoming tide is forced into the narrowing river mouth, and grows in height 

until a single wave forms and moves upstream (Lynch 1982).   Tidal bores can 

reach up to 6 m in height above the standing water level.  The earliest reported 

reference in the literature to tidal bores is about 1837, almost a decade before 

the Scott-Russell discovery.   

2.2.2.3 Summary 

What the literature reports is that as a wave (or wave train) approaches 

the continental land mass, it begins to shoal by virtue of the wave particle 

orbitals intersecting a progressively-rising continental slope and/or continental 

shelf.  Once shoaling begins to take place, there is a predictable series of steps 

which result in the breaking of the wave as the depth of the water is now 

insufficient to sustain the wave’s form (as well as its properties).   

 

For the purposes of this research, it is useful to establish a terminology 

that can be used later to describe the simulated behavior of an internal wave as 

it shoals and breaks.  As noted earlier in this dissertation, there is the possibility 

(theoretically) for a reversal in the internal wave’s polarity to occur when the 

water depth condition corresponding to h1 = h2 is satisfied.  The breaking of an 

internal wave can be divided into four distinct phases effectively representing its 
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life-cycle:  shoaling, breaking, bore, and run-up.  As discussed below, these 

designations are primarily subjective and based in large measure on observed 

changes in pycnocline geometry as the wave shoals through the course of the 

numerical simulation. 

   

Shoaling Phase.  Shoaling represents the initial phase of the internal wave 

transformation.  The onset of shoaling is first evident when there are changes in 

the geometry of the internal wave streamline contours as the wave moves from 

deep to shallow water.  Recalling Figure 8, the geometry of the streamline 

contours in open water is primarily elliptical.  However, that geometry changes 

when the seafloor (or a submarine obstacle) is encountered.  The streamline 

contours at the leading edge of the internal wave will refract or bend parallel to 

the slope of the seafloor.  Soon thereafter, the geometry of the pycnocline (the 

density discontinuity) itself will begin to change.  It will become less sinusoidal, 

more asymmetric, and the pycnocline will steepen while its wavelength decays.  

The leading edge of the internal wave will also refract in such as way as to 

mirror the seafloor slope.  At some point later in this phase of the progression, 

the pycnocline will appear to become entrained by the seafloor and behaves as if 

it is washing down the seafloor slope, in a direction opposite to that of the 

internal wave trains’ forward momentum.  This phenomenon is generally 

referred to as “backrush” or “wash-down.’ 
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Breaking Phase.  At some point in the progression, the backrush of the leading 

face of the internal wave will cease although the trailing face of the internal 

wave will continue to progress up-slope.  This creates a situation in which the 

trialing portion of the internal wave is advancing ahead whereas the leading 

portion appears to be retreating in the opposite direction ─ down-slope.  From 

inspection of Figure 15, it can be observed that the internal wave will steepen to 

some point where it ultimately develops a crest-like feature that becomes 

unstable.   This instability leads to increased shear at the face of the density 

discontinuity after which the wave essentially rolls over on itself, throwing its 

mass forward and downward, and in doing so, forming K-H─like features.  This 

overturning event corresponds to “breaking.”    

 

Bore Phase.  Internal wave breaking is followed by phase where the ISW 

essentially decomposes as a recognizable form.  The once well-defined, sinusoidal 

internal wave has now devolved into a non-symmetric wave-like feature 

characterized by turbulence and turbulent mixing.  Tidal bore forms can range 

from a single, wave front in the shape of a “roller” or “bolus,” not unlike that 

typically associated with a hydraulic jump, to a collection of undular bores  

(Small, Sawyer, and Scott 1999) followed by a train of secondary whelps; all of 

these forms demonstrate positive elevation. That is to say the elevation of the 

bore, as defined by the pycnocline, is not trough-like.  Regardless of their form, 
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these ISW remnants are essentially confined to sub-pycnocline waters (or the h2 

layer) and mix with ambient waters as they surge up-slope. Experimental 

observations of tidal bores indicate a rapid deceleration of wave speed as well as 

large variations in localized velocities.  An example of the bore phase in wave 

breaking is illustrated at time step n = 16 in Figure 20.  Also see Koch and 

Chanson (2008, 2009). 

 

Run-up Phase.   This phase corresponds essentially to the end of the ISW life-

cycle.  The remnants of the ISW, in the form of a bore, continue to advance or 

wash upslope.  For surface waves, run-up is generally defined to be the 

maximum vertical extent of wave up-rush on a beach above the still water level 

(Sorensen 1997).  For ISWs, run-up would correspond to the elevation of the 

pycnocline in the h1 layer relative to its’ quiescent (undisturbed) position at t = 0. 

An example of the run-up phase associated with wave breaking corresponds to  

time step n = 22 in Figure 20.   
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CHAPTER III 
 

COMPUTATIONAL METHODOLOGY 

3.1  Background 
 

Numerical simulations of physical phenomena provide a useful means for 

evaluating those phenomena not readily measurable or amendable to 

measurement in situ.  Following the introduction of the high-speed digital 

computers, researchers have been able to simulate hydrodynamic phenomena at 

will through the use of mathematical models employing numerical methods 

applied to a structured grid.  In fact, some of the earliest studies (Fromm 1963)18 

focused on the finite approximation of the Navier-Stokes equation for viscous, 

incompressible fluids. 

                                                 

18 Preliminary results of this and other experimental work is described in Fromm and 
Harlow (1963) and Harlow, Shannon, and Welch (1965). 
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Over the years, CFD techniques have reached a level of maturity that 

permits increased accuracy in modeling predictions.19  As a consequence, there 

are a number of texts on the subject in particular as well as some of the ancillary 

issues associated with those calculations whose intent is to provide useful advice 

to CFD practitioners.  To name a few, they include, Chow (1983), Ferziger and 

Perić (2002), Hildebrand (1968), Lapidus and Pinder (1982), Scannapieco and 

Harlow (1995), Roache (1998b), and Wesseling (2004).   

 

In seeking numerical solutions to hydrodynamic equations, researchers 

nevertheless have been confronted by a common set of computational challenges 

(Harlow and Fromm 1965, Harlow and Amsden 1970) including questions 

concerning: 

• how the hydrodynamic problem is to be computationally represented; 

• how the governing equations are to be mathematically approximated; 

• the degree of accuracy expected in the calculation; 

• how numerical instabilities in the calculation will be addressed; and 

• the appropriateness of the computational technique in relation to the type 

of hydrodynamic problem. 

 

                                                 

19 Subject to certain conditions (Oberkampf, Blottner, and Aeschliman 1995, Roache 
1997, and Oberkampf and Blottner 1998). 
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To address these as well as other issues facing CFD practitioners, Roache 

(1972, 1998a), for example, outlined a basic computational methodology for 

solving incompressible flow problems in a rectilinear (Eulerian) reference 

domain with regular boundaries.  Roaches’ recommended computational 

approach also included guidance on how to numerically solve Navier–Stokes 

derivations of the vorticity-stream function equations – equations which as 

discussed below – provide the mathematical foundation of this research.  The 

simplest model that supports the formation of an internal solitary wave can be 

defined as a stratified two-fluid system with a small density discontinuity (i.e., a 

pycnocline).  This model can provide a qualitative description of the dominant 

internal wave of mode-1.  Under such a paradigm, it is possible to study of the 

time-dependent motion of a viscous, incompressible fluid in 2D Cartesian 

coordinates using an Eulerian mesh.  Roaches’ guidance is still both appropriate 

and useful for this type of modeling arrangement, and key elements of that 

guidance have been employed, as discussed in the following pages.   

3.2  Governing Equations 
 

The fundamental equations for 2D incompressible flow of a Newtonian 

fluid with no body forces and constant properties are the Navier–Stokes 

momentum equations and the continuity equation (Lamb 1932, Schlichting 

1968).  The Navier-Stokes equations, equations 3.1 and 3.2 below, describe how 
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fluid velocity changes with time.  Equation 3.3 is the continuity equation 

expressing the conservation law for fluid flow.  These equations are written in an 

Eulerian frame of reference – that is to say one in which the fluid moves through 

a space-fixed reference domain.  In their primitive, dimensional form (as 

indicated by the over bars) these partial differential equations (PDEs) are:  

 
2 2

2 2

1u u u p u uu w
t x z x x z

υ
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⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂
+ =

∂ ∂
 (3.3) 

where u and w are, respectively, the horizontal x and vertical z components of the 

fluid velocity vector [L/T], and p, ρ, and υ  correspond respectively to the fluid 

properties of pressure [M/T·L2], mass density [M/L3], and kinematic viscosity 

[L2/T].  

 

Past CFD experience suggests that successful numerical solution of the 

governing equations can be achieved using a vorticity−stream function approach.  

Following mathematic manipulation, including the elimination of the pressure 

term p and the introduction of other variables (described below), it is possible to 
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transform these equations into dimensionless Boussinesq forms20 expressed with 

respect to vorticity ξ and the stream function φ:  

 ( ) ( ) 21 1
Re Sc

u w
t Q x z
γ γ γ γ∂ ∂ ∂ ⎛ ⎞+ ⋅ + = ⋅∇⎜ ⎟∂ ∂ ∂ ⋅⎝ ⎠
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 2
2Q
ξϕ∇ =  (3.6) 

Equation 3.4 is the diffusive transport equation for the density anomaly 

γ defined as 1 2

2

ρ ρ
ρ
− .  Equation 3.5 describes the parabolic vorticity transport 

equation.  Equation 3.6 is the Poisson equation that relates the stream function 

to the vorticity within the flow field.  The dimensionless Schmidt number Sc, 

defines the ratio of the kinematic viscosity υ  to the mass diffusivity mD [L2/T], is 

introduced in Equation 3.4.  Equation 3.4 also introduces the dimensionless 

Reynolds number Re describing the ratio of inertial fluid forces to viscous fluid 

forces.  In equation 3.5, Fn refers to the Froude number for the system – another 

dimensionless parameter that compares inertial forces to gravitational forces.21  

                                                 

20 The Boussinesq (1903) approximation is often used to simplify the Navier-Stokes 
equations to allow for both theoretical analysis and numerical computation.  The basis for this 
approximation is that there are some fluid systems in which the temperature varies little and 
the density therefore can be considered to be relatively constant.  Consequently, the density term 
can be neglected in the analysis with the exception of the buoyancy term.  In the study of 
internal waves, the Boussinesq approximation has proven to be useful (Long 1965). 

21 For the purposes of this research and consistent with the earlier-referenced Boussinesq 
approximation, the Froude number used is actually a “densimetric” Froude number. 
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Equations 3.4 through 3.6 also make reference to a dimensionless normalizing 

parameter Q  defined as: 

 LQ
D

=   (3.7) 

The rectilinear coordinate form of the Laplacian operator ∇ ² referenced in 

equations 3.4 through 3.6 is defined as: 

 
2 2

2
2 2 2
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Other parametric relationships in the equations above include the following:  

 

2

0 0

1,

Fn , Re , Scm

mm

u wQ Q
z x

u w
z Q x

c c D
Dg D

ξ

∂ϕ ϕ
∂

υ
υ

⎫∂ ∂
= ⋅ − ⋅ ⎪

∂ ∂ ⎪
⎪∂ ⎪= = − ⋅ ⎬∂ ⎪
⎪⋅

= = = ⎪
⋅ ⎪⎭

    (3.9) 

 

where co describes the wave celerity [L/T] and g is the gravitational acceleration 

constant [L/T2] at sea level (9.8 m/s2 or 32 ft/s2).   

 

Finally, to further simplify the analysis, it is useful to express all of the 

system parameters described in the aforementioned equations in non-

dimensional forms by applying certain mathematical transformations.  These 

transformations are listed in Table 9. 
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Table 9.  Definition of Select System Parameters. 
 

PARAMETER DESCRIPTION 

xx
L

=  x coordinate  [Dimensionless] 

zz
D

=  z coordinate  [Dimensionless] 

0

uu
c

=  Velocity vector in the x direction  [Dimensionless] 

0

ww
c

=  Velocity vector in the z direction   [Dimensionless] 

0t c
t

d
⋅

=  Time  [Dimensionless] 

 

3.3 Computational Approach 
 

As was the case with the previously-described Navier-Stokes and 

continuity equations, equations 3.4 through 3.6 are also written in a space-fixed 

reference frame through which the fluid moves as a function of time.  The 

solutions for the vorticity and stream function are obtained through an explicit 

time-marching numerical integration process.  By graphing the numerical 

solutions at each successive time-step (using MATLAB), it is possible to generate 

a simulation that represents the translation of the internal wave through the 

modeling domain ─ in effect, a “virtual” internal wave. 
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Roache (1972, 1998a) has recommended a mathematical approach for 

solving the time-dependent Navier-Stokes equations for an isothermal, 

homogeneous fluid.  This approach relies on a “computational cycle” with well-

defined steps.  This approach, depicted in Figure 21, is summarized below and 

described in more detail in the following paragraphs.  

 

Step No. 1 in Roache’s recommended approach begins with the definition 

of a computational domain over which a mesh or grid is superimposed.  The 

mesh (or grid) discritizes the spatial domain for the analysis and in doing so 

defines the locations for which solutions to the finite-difference analogs of the 

Navier-Stokes equations are obtained.  The second step (Step No. 2) in the 

recommended approach is to specify those initial and boundary conditions for the 

vorticity and the stream function that apply to this domain. 

 

Having defined the computational domain as well as the applicable initial 

and boundary conditions, Step No. 3 in Roache’s recommended approach is to 

obtain a solution to the vorticity transport equation − one of the governing 

equations underpinning this research.  This equation estimates the rate of fluid 

circulation or ξ∂
∂t

– for the interior points of the computational domain.   
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Figure 21.  Steps in Roache's (1972, 1998a) recommended approach for solving 
the Navier-Stokes equations. 
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Following the calculation of vorticity, the solution of the finite difference 

analog of the Poisson equation is obtained in Step No. 4.  As mentioned earlier in 

this dissertation, this equation relates vorticity to the stream function, thereby 

describing the mass-rate of fluid flow through the system.  Using the most recent 

values of ξ and φ obtained for all interior points of the computational domain, 

the last step in the process (Step No. 5) is one in which updated (source) values 

of vorticity are calculated for use in the next time step ∆t. 

 

The calculation cycle described above is repeated by advancing to the next 

time step by some specified time increment t + ∆t, thereby “marching” the 

vorticity solution ahead in time.  Mathematically, this is called an explicit 

method, solution of which can be expressed as: 

 new old tt ξξ ξ ∂
∂= + Δ ⋅  (3.10) 

The computational procedure ends when the pre-defined number of time steps 

has been completed or some convergence criterion (also pre-defined) has been 

satisfied.  

 

The mathematical approach outlined above was developed by Roache 

(1972, 1998a) for a homogenous isothermal fluid.  However, the system model 

considered in this research relies on a density-stratified fluid.  Spatial variations 

in the density stratification will take place over time as a result of advective and 
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dispersive forces.  Consequently, there is the need to computationally account for 

these variations by introducing a PDE that can be solved simultaneously with 

vorticity and the stream function equations. 

3.3.1 Finite Difference Approximations 

When employing the finite difference method, the PDEs are replaced by 

difference equations which must be satisfied for a finite set of locations (or 

nodes) on a grid that defines the computational domain.  At each node location in 

the computational domain, the numerical solution to the equations of interest 

relies on an algebraic approximation obtained from adjacent grid nodes 

representing an averaged value.  Solutions to these equations are thus obtained 

through a succession of closely-spaced time increments in which the solution will 

evolve or asymptotically approach steady-state subject to both initial and 

boundary conditions.  The finite differences, therefore, apply to both time and 

space variations.  If both the time and space increments are sufficiently small, 

then the calculated results can be expected to generally match the true solution 

to the original (governing) PDEs.  Using a digital computer, Harlow and Welch 

(1965) were the first successfully to employ this type of numerical method to 

obtain solutions to the Navier-Stokes equations.   
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 To understand how this mathematical method works, consider for 

example, some flow field property f(a) for some fluid.  The first derivative of f(a) 

corresponding to some small sampling interval h is: 

 ( ) ( ) ( ) ( )
f a h f a

f a HOT h
h

+ −
′ = +  (3.11)

Neglecting HOT(h) or the higher-order terms of h, for a properly behaved 

function the forward Taylor Series expansion of  f'(a) at some arbitrary point xo 

is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 2
20 0

0 0 0

0
0

1! 2!

( )
!

n
n

n

f x f x
f x a x a x

f x
a x R a

n

+ ⋅ − + ⋅ − +

⋅ − +…
 (3.12) 

By neglecting the HOTs once again as well as the residuals ( )nR a , the expansion 

of f'(a) with some minor algebraic manipulation reduces to: 

 ( ) ( ) ( )f a h f a
f a

h
+ −

′ ≈  (3.13) 

  

Through the introduction of nodal subscripts i, the finite difference form of 

equation 3.13 can be expressed as:  

 ( )n i ii f ff
h h

+ −∂
≈

∂ Δ
 (3.14) 

This formulation corresponds to the “forward” (or “upwind”) finite difference 

approximation of f'(a) because it involves the values of the function at the i 

location (node) as well as the n i+  location. 
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The truncation or local error associated with the approximation depicted 

in equation 3.14 is on the order of ∆h or a first order accuracy in space.22  This 

error represents the difference between the PDE solution and the finite 

difference equation approximation.  If the computational mesh were infinitely 

small, then an exact solution of the PDE could be obtained irrespective of the 

finite differencing scheme employed.  However, in practice only a limited number 

of difference cells can be introduced into any computational domain.  Thus, the 

resulting truncation error generated in the calculation is a function of grid 

quality (spacing or coarseness) and flow gradient ─ or how rapidly the flow field 

property changes in space.  Because local truncation errors can be transported, 

advected, and diffused throughout the computational domain, it is important to 

select a numerical method that minimizes the transmission of those errors while 

at the same time demonstrating numerical stability.  

3.3.2 Numerical Scheme 

One of the challenges in CFD studies is the need to manage the 

uncertainties and errors that cause mathematical simulations to differ from the 

true or exact values of the phenomena that might be observed in nature.  When 

the vorticity-stream function equations are discritized into finite difference 

                                                 

22 Other finite difference analogs of '( )f a can be obtained by expanding backwards to the 
preceding point n−i, which also is first order accurate, or by subtracting the “forward” and the 
“backward” expansions to obtain a centered-difference approximation which has a truncation 
error on the order 2hΔ which is second-order accurate in space. 
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equations, the reduced algebraic expressions are generally more diffuse 

(dispersive) than the original PDEs so that the simulated system appears to 

behave differently in comparison to the physical system being modeled. The 

amount and character of the differences depends on the complexity of the 

particular system being simulated and the type of discretization method used.  

Mathematically, numerical or false diffusive errors can be introduced into the 

simulation as a result of discritizing the advection-dispersion equations.  

Numerical dispersion errors are generally proportional to the magnitude of the  

ratio between the inertial forces to the frictional forces or the non-dimensional 

Reynolds number.  See, for example, Kao, Pao, and Park (1978). 

 

The numerical method selected for use in this study is a one-step explicit 

finite difference scheme.  This scheme possesses both the transportative and 

conservative properties described by Roache (1972, 1998a).  Central differencing 

in space and forward differencing time are used, except for the non-linear terms 

of the governing equations, for which a special upwind method was applied.  The 

special upwind method was introduced by Torrance and Rocket (1969) and has 

truncation errors that appear as false viscosity23 and false diffusion24.  

                                                 

23  Another source of error in CFD concerns numerical stability.  It is also associated with 
the time-steeping scheme.  These errors can cause the solutions to ‘oscillate’ about some solution.  
Roache (1972, 1998a) refers to this oscillatory tendency to overshoot or undershoot some 
mathematical solution as ‘dynamic instability.’   
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As mentioned above, as the Reynolds number increases, these false 

computational effects begin to mask both the real viscosity and diffusion.  In 

order to limit these effects, an explicit numerical scheme possessing zero 

numerical diffusion was adopted in this research.  This numerical scheme was 

first introduced in one-dimensional form by Valentine (1987) as ETUDE − 

Explicit in Time Up-stream Difference Estimate.  The 2D version of ETUDE was 

subsequently developed by Tannous and Valentine (1989) under the general title 

of the “transportative upwind scheme.”  ETUDE is accurate to second order so 

that it reduces the numerical viscosity and false diffusion to zero.  

 

The finite grid structure shown in Figure 22 can be used to illustrate how 

the 2D version of the ETUDE numerical scheme works in the context of any 

generic finite difference cell.  Once again consider some flow field property ( )f a .  

The subscripts i and j denote the locations of the nodes in the x and z directions, 

respectively.  Along some vertical face z of any generic grid cell in the 

computational domain, a value of ( )f a can be expressed as follows: 

                                                                                                                                                       

24 False diffusion can arise when an upwind differencing method is used to discretise 
CFD equations.  Although this differencing method provides results closer to analytical ones, 
when the fluid flow is not aligned with grid system, the upwind differencing method causes the 
transported properties to appear to be ‘smeared.’  The resulting numerical error has a diffusion-
like appearance; hence false diffusion.  Higher-order finite differencing schemes may be more 
accurate than upwind differencing but the numerical solution may become unstable.  False 
diffusion is discussed in more detail by Patankar (1980) and Ferziger and Perić (2002). 
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Figure 22.  Finite difference grid. 
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for which 1
d au t

Q
x α= ⋅ ⋅ ⋅ Δ′Δ  and az w tα′Δ = ⋅ ⋅Δ , where ua and wa are the averaged 

face velocities, and dα  is a dimensionless constant that controls false diffusion 

within the numerical scheme.  It is worth noting that for equation 3.16 to be 
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valid, 0aw < .  Similar expressions for equations 3.15 and 3.17 were derived for 

the other three faces of the generic finite difference cell (Figure 22).  For 

example, along the lower horizontal x face of these cells, a value for ( )f a can 

similarly be expressed as:   

 2 1
2

( ) ( )( ) ( )
2

f a f a zf a f a z
z

⎛ ⎞− Δ⎛ ⎞′= − ⋅ + Δ⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠⎝ ⎠
      (3.17) 

where                                  
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f a f a x

x

f a f a
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x

− −
−

−

− ⎫⎛ ⎞
′= − ⋅ Δ ⎪⎜ ⎟Δ⎝ ⎠ ⎪
⎬

−⎛ ⎞ ⎪′= − ⋅ Δ⎜ ⎟ ⎪Δ⎝ ⎠ ⎭

 (3.18) 

Again, for equation 3.18 to be valid, 0au < . The value of α necessary for 

achieving zero numerical diffusion has been determined by Valentine (1987) to 

be 0.5 and is the same value selected for this research.   

3.3.3 Key Modeling Assumptions 

As mentioned earlier, the modeling domain (computing region) for this 

research is a stratified, two-layered system defined within an x-z coordinate 

system similar to that depicted in Figure 23.  Upon inspection, it can be seen 

that this 2D arrangement, in profile, is geometrically not unlike that of a three-

dimensional (3D) wave tank or flume commonly used to experimentally study 

hydrodynamic behavior, including internal waves.  This idealized system 
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Figure 23.  Depiction of computational domain used in this study.  This figure 
shows the pycnocline in relation to the location of the step or potential wells 
used to artificially generate internal waves for the purposes of the numerical 
simulation.  “EW” means elevation well whose density is ρ2.   “DW” means 
depression well whose density is ρ1.   This figure is not to scale and the 
proportions are approximate. 

consists of a homogenous fluid of density ρ1 and depth h1 overlying another 

homogenous fluid of density ρ2 > ρ1 and depth h2.  The two fluids are assumed to 

be immiscible.  A system configured in this manner is frequently used to 

evaluate the dynamics of internal wave behavior (Long 1956, Yih 1974).  

Numerically, it is also possible to simulate an internal wave and observe its 

behavior as it propagates through this virtual domain.  Obstacles with various 

geometries can also be introduced into the modeling domain that are 

topographically analogous to what might be found in a marine setting.  Such 

features typically include seamounts, ridges, shelves, and continental slopes.  As 

part of the simulations, the internal wave encounters these computational 

analogues, resulting in changes to its behavior.  That is to say, the solutions to 

the governing equations will vary owing to the introduction of additional 

boundary conditions besides those already defining the physical limits of the 
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computational domain. Reporting on and quantifying what those changes 

comprise the core of this research.   

 

The physical dimensions of the modeling domain used in this research can 

be represented by a reference length L horizontally and a reference depth D 

vertically corresponding, respectively, to the x–z coordinate plane.  Consistent 

with the aforementioned wave tank analogue, L is about an order of magnitude 

greater than D (e.g., L >> D ).  To predict the temporal variation of the flow field 

properties, this modeling domain can be discritized by subdividing the two axes 

into a finite number of uniformly-spaced nodes.  The resulting nodal mesh 

resembles a rectilinear matrix comprised of individual computational cells where 

the governing equations are solved.  The dimensions of this computational mesh 

can be defined using the indices m and n, consistent with the number of 

subdivisions assigned to the respective axes.  The local distance between the 

adjacent nodes (computational cells) on this mesh is x  and z  where =
Lx
m

 

and =
Dz
n

.    The dimensions L and D can also be used to define an aperture 

coefficient or aspect ratio Q that is useful in normalizing those equations that 

form the numerical basis for this study. 
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 With the computational domain defined, it is possible to obtain solutions 

to the governing equations by solving them on a digital computer.  By 

introducing the subscripts i and j (Figure 22), corresponding to number of 

subdivisions assigned to each axis, it is possible to create a unique identifier (a 

doublet pair) for each computational cell that can be used to identify both the 

location and the sequencing for the required calculations, consistent with the 

specified number of time steps.  By convention, the first computational cell 

occurring in the lower left-hand corner of the mesh is treated as the origin and is 

assigned the coordinates (1, 1). 

 

Reports of internal waves in nature are commonly associated with the 

existence of a well-defined pycnocline.  By convention, this is the interface 

defining the respective fluid layer densities; the less-dense, fresh water on top 

and the denser, more-brackish water layer on the bottom. Hence, ρ2 > ρ1. The 

fresh water layer is assigned a reference depth h1 [L] and a density ρ1 [M/L3] 

whereas the brackish water layer below the interface has a reference depth h2 

and a density ρ2.  Also, 1 2D h h= + .  The fluids are incompressible, but can mix 

through mass transfer processes.  

 

Computationally, generation of an internal wave within this system can 

be achieved in at least two ways.  The first way is to use a “step” or “potential” 
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well containing fresh water at density ρ1 that extends into the lower fluid with 

density ρ2.  See Figure 23.  At time t = 0, the barrier between the two fluids is 

assumed to be disappear instantaneously.  A second internal wave generation 

method is to force fluid flow through the computational domain (Dirichlet 

boundary conditions) in a manner analogous to tidal motion.  The ensuing ISW 

produced by either generating method has a wave celerity defined as: 

 ( )
( )

1 21 2
0

2 1 2

( ) h hgc
h h

ρ ρ
ρ

⎡ ⎤⋅⎡ ⎤⋅ − ⎢ ⎥= ⋅⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3.19) 

 

In conducting this research, certain simplifying assumptions were adopted 

when performing the numerical simulations: 

• The two fluids are initially of densities ρ1 and ρ2, but are miscible and will 

mix with time; and 

• The system boundary for the free surface is rigid, but frictionless (i.e., slip 

boundary condition applies). 

3.3.4 Specification of Time-step  

It is important to recognize that governing equations 3.4 through 3.6 are 

coupled and need to be solved simultaneously.  However, in achieving parallel 

solutions for time-marching computer simulations, there is the potential for non-

convergence if the time-step ∆t selected is too large.   
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Numerical stability in finite differencing schemes can be achieved by 

imposing so-called Courant stability conditions.  Courant conditions (Courant, 

Friedrichs, and Levy 1967) are best explained by considering some flow field 

property ( )f a at some point (xi, yi).  As explained above, the finite difference 

solution being sought at (xi, yi) depends on information obtained from contiguous 

computational cells located at adjoining nodes i – 1 and i + 1.  To achieve 

numerical stability, it is important that the physical property being transported 

(vorticity and/or the density anomaly) does not move to the next computational 

cell at (say i + 2 ) at a rate faster than the magnitude of the time-step t specified 

in the calculation.   The time step must be small enough so that the distance the 

property in question is transported in one time step is less than the physical 

dimensions of the cell.  In the 2D case presented here, a differencing scheme is 

said to be Courant stable when the following condition is satisfied:  

 yx u tu tCr
x y

⋅Δ⋅Δ
> +

Δ Δ
 (3.20) 

where Cr is the dimensionless Courant number.  Courant stability is thus 

maintained when Cr ≤ 1.  Alternatively, the Courant stability condition can be 

expressed as follows:   

 
, ,

min , ji

i j i j

yxt
u v
⎡ ⎤ΔΔ

Δ < ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.21) 
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To minimize the round-off error associated with this numerical scheme 

and facilitate numerical convergence of the calculations, the dimensionless time 

increment ∆t selected for this study was set as 1.0 x 10-3. 

3.4 Boundary Conditions 

To obtain a unique solution to the governing PDEs, additional information 

about the physical state of the modeling domain is required.  It is necessary to 

complement the system of governing equations previously described in Section 

3.2 with a set of boundary conditions.  These boundary conditions mathematic- 

ally define the confines (and hence the geometry) of the modeling domain as well 

as the values to be applied to the dependent variables of interest (e.g., φ and ξ ) 

at these margins.  The initial conditions are simply the values of the dependent 

variable specified everywhere within the computational domain.   

 

The modeling domain for which the governing equations are to be solved 

was illustrated earlier in Figure 24.  The boundaries that define the limits of 

this system are all solid interfaces in that there are no mass or volume fluxes 

across them.  These boundaries have received designations B1 though B4.  See 

Figure 24.  The boundary conditions for the stream function, density anomaly, 

and vorticity are given in Table 10.  The floor (or “base”) of the modeling domain 

at B2, defined by the plane 0z = . A “no-slip” or zero velocity boundary condition  
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Figure 24.  Boundary condition designations corresponding to Table 10.  This 
figure is not to scale and the proportions are approximate. 

 

 

Table 10.  Boundary Conditions for Computational Domain. 
 

BOUNDARY 
(Figure 24) x PLANE z PLANE 

STREAM 
FUNCTION 

φ 

DENSITY 
γ 

VORTICITY 
ζ 

B1 x = 0 0 < z < 1 0ϕ =  0
x
γ∂
=

∂
 

2

2x
ϕξ ∂

=
∂

 

B2 0 < x < 1 z = 0 0ϕ =  0
z
γ∂
=

∂
 

2
2

2Q
z
ϕξ ∂

= ⋅
∂

 

B3 x = 1 0 < z < 1 0ϕ =  0
x
γ∂
=

∂
 

2

2x
ϕξ ∂

=
∂

 

B4 0 < x < 1 z = 1 0ϕ =  0
z
γ∂
=

∂
 0ξ =  
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is applied along this plane which ensures that both the horizontal and vertical 

components of the velocity vector are zero.  By convention, the stream function 

along the base is also defined as zero.  However, as suggested by equation 3.4, 

wall vorticity along a no-slip surface will be generated.  Diffusion and the 

subsequent advection of wall-produced vorticity can alter the fluid flux through 

the modeling domain (Roach p. 140).  No-slip conditions would also apply to any 

obstacle contiguous to the B2 boundary surface. 

 

The free surface of the modeling domain at B4, is defined by the plane z = 

1.  This particular type of boundary introduces an additional level of numerical 

complexity to hydrodynamic simulations owing to the need to consider the 

kinematic effects created by an air-liquid interface.  However, the need to 

consider free surface effects in the simulation can be obviated by imposing a so-

called “rigid lid” condition or approximation.  First described by Fromm (1963) 

and Fromm and Harlow (1963), a “free-slip” condition is one in which it is 

assumed that the free surface boundary coincides with the outermost (most 

distal) streamline.  Vorticity, vertical velocity, and other kinematic effects are 

understood to become asymptotic along this particular streamline by assuming 

there are no shear stresses.  Consequently, with the normal velocity vector w 
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assumed to be zero, only the tangential velocity vector u can (numerically) 

develop as the simulation progresses towards a solution. 25 

 

The B1 (upstream) boundary corresponds to the plane along which the 

internal wave initially forms and from where it subsequently propagates 

through the modeling domain. 

 

The downstream (outflow) boundary at the B3 location corresponds to the 

computational terminus of the modeling domain.  Although most researchers 

agree that if the length of the modeling domain L is sufficiently long − that is to 

say as x approaches infinity, the boundary conditions specified at this location 

would essentially have no influence on the numerical solution being sought.  

Modeling at the outlet will generally have only a local effect on the flow field. 

Nevertheless, as this site might be computationally unimportant, researchers 

have been particularly concerned with how to specify boundary conditions at the 

B3 location to ensure that realistic free-flow or open conditions at the modeling 

terminus are maintained as part of any simulation.26  

                                                 

25  The rigid lid condition refers to the assumption that the solution to the two-layered 
system can be modeled by also assuming that the system depth D remains constant.  Moreover, 
the rigid lid condition is generally valid so long as the thickness of the upper fluid layer h1 is 
greater than the maximum wave amplitude ai   for an elevation-type ISW. 

26  Roache (1972, 1998a) describes several approaches reported in the literature that 
have been used to define boundary conditions at this computational terminus without endorsing 
any particular treatment.  One common approach is to equate the computational cells along the 
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vertical B3 boundary m to values calculated in the cells in the preceding column ─ e.g., at the 
1m − location.  Nevertheless, most researchers are unanimous in the view that the outflow 

boundary conditions need to be specified in such as way as to not either introduce errors or 
numerical instabilities into the simulation.   
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CHAPTER IV 
 

NUMERICAL SIMULATIONS 

4.1 Internal Solitary Wave Parameters 
 

Researchers have found that an experimental wave-tank system defined 

by a shallow, two-layered (stratified) fluid is the simplest physical model that 

can be used to support the formation of an ISW. Interfacical waves can be 

mechanically-generated and evolve into ISWs as a result of advective and 

dispersive forces.  A computational (numerical) model analogous to this 

arrangement can allow for a straightforward comparison of the calculations 

obtained using a digital computer with both analytical and experimental results.    

 

 Like other types of waves, the key parameters used to describe an ISW 

are generally its amplitude ai and its wavelength Lw.  A convenient way to 

compare experimental data to theoretical predictions is to utilize these 

relationships. Another important parameter is the total water depth D through 

which the ISW propagates.  In a two-layered system defined by h1 and h2, the 

displacement parameter ( )tη  represents the ISW profile and is the interfacial 
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Figure 25.  Internal Solitary Wave Features.  Elevation-type ISW shown. 
Parameters depicted in this figure are described elsewhere in this dissertation. 

surface along which the two fluid layers meet. In profile, the incipient ISW can 

be either a wave of depression or a wave of elevation.  Internal waves of 

elevation are typically associated with depth scenarios defined by h1 > h2; the 

respective fluid layers have densities ρ1 and ρ2 .  Internal waves of depression 

usually form when the depth scenario is such that h2 > h1.  Figure 25 shows some 

of these properties graphically in relation to the profile for a hypothetical ISW of 

elevation within a two-layered stratified system. 

 

As discussed below, it is possible to estimate ISW properties using 

established mathematical theories (e.g., Michallet and Barthélemy 1998).  By 
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applying these theories, ISW properties can be measured and calculated at fixed 

locations in a pre-defined computational domain such as that depicted in Figure 

17 by post-processing the data obtained from this research with MATLAB-based 

worksheets. 

4.1.1 Wave Speeds, co and C 

 The ideal ISW speed or celerity co can be calculated for any particle 

located along the interfacial density surface based on the following relationship, 

assuming a small infinitesimal difference in density: 

 ( ) ( )2 1 2 1

2 2 1
o

g h h
c

h h
ρ ρ
ρ

⋅ − ⋅⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (4.1) 

 

An (actual) ISW phase velocity c that results from the numerical 

simulation can also be calculated by selecting a fixed particle location along the 

density interface (pycnocline) and measuring the time differential t  or 2 1t t−  it 

takes for that particle to travel some defined distance x  or 2 1x x− .  In this 

manner, the ISW phase velocity can be expressed as =
xc
t

. 

4.1.2 Wave Amplitude, ai 

 As suggested by the pycnocline geometry shown in Figure 25, the most 

distinguishing feature of an ISW is its form – typically a single sinusoidal wave 
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either of elevation or depression.  As is the case with other types of water waves, 

the ISW amplitude ai corresponds to the maximum vertical displacement of a 

particle measured at the wave crest or, alternatively, the wave trough from its 

initial undisturbed (horizontal) position to some new position ( )tη  along the 

pycnocline surface (Figure 25).  As discussed in the paragraphs that follow, the 

wave amplitude is a key property that can be used to derive other important 

ISW parameters. 

4.1.3 Wavelength, Lw 

Unlike gravity or surface waves, that have finite wavelengths, the 

wavelength of an ISW is theoretically infinite (asymptotic).  As a practical 

matter, though, the wavelength of the ISW can be defined as the horizontal 

distance between two corresponding yet opposing locations along its profile, as 

represented by the pycnocline (Figure 25).  A characteristic wavelength Lw can 

thus be approximated (Koop and Butler 1981) by either of the following 

equations: 

 1 ( )WL x dx
a

η
∞

−∞
= ∫  (4.2) 

 1

0

( )
t

W t

cL t dt
a

η≈ ∫  (4.3) 

where ( )tη  is the interface displacement between the respective fluid layers, the 

horizontal coordinate x corresponding to η(t), and t0 and t1 defining an 
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incrementally small time increment such that η(t0 ) ≈ η(t1) ≈ 0.  This relationship 

has also been referred to as the “integral length scale.” 

4.1.4 Wave Energy, E 

Wave energy is generally proportional to the square of the wave 

amplitude.  The total energy ET for an ISW is the sum of its potential energy and 

kinetic energy.  Once it has reached steady-state, Bogucki and Garrett (1993) 

have estimated the total energy contained within an ISW as: 

 1

0

2 ( )
t

T t
E C g t dtρ η= ∫  (4.4) 

where 2 1ρ ρ ρ= −  and t0 and t1 are time estimates such that 0 1( ) ( ) 0t tη η≈ ≈ .   

 

For the purposes of the numerical simulations, equation 4.4 can be used to 

estimate the energy of the ISW after it has encountered an obstacle.   It is 

possible to contrast this estimate with a potential energy value for the system 

before the simulation is initiated.  The potential energy for the system at 0t can 

be expressed as a function of the length of the potential well, as suggested by 

Saffarinia (1991): 

 
2

0
32

ηρ ⎛ ⎞⋅⎛ ⎞= ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠
PW

P
LE
Q D

 (4.5) 
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4.2 Benchmark Trials 
 

As mentioned earlier, researchers have traditionally relied on 3D wave 

tanks (or flumes) to study ISWs.  The tanks have been fitted with cameras or 

instrumented with electronic probes to allow the wave’s properties to be 

measured as it propagates through the experimental apparatus.  Obstacles of 

different types have also been introduced along the floor of these setups to allow 

researchers to observe under how a propagating wave interacts with these 

obstructions under controlled conditions.  Some earlier wave tank studies are 

listed in Table 11. 

 

The experimental configuration just described can be achieved “virtually” 

using computer programs that employ numerical methods solving hydrodynamic 

equations.  As is the case with an experimental wave tank, it is possible to 

introduce different topographic features into the computational domain by 

specifying additional boundary conditions that correspond to the obstruction’s 

geometry.  Through the course of the computer simulation, a “mathematical 

response” is evoked resulting in a numerical solution different from that 

obtained when the obstacle is absent.  In this manner, it is possible to take a 

snap-shot of the ISW at any time during the numerical simulation and in doing 

so, record its properties as they evolve following the wave-obstacle interaction.   
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Table 11.   Summary of Experimental Investigations of ISW Phenomena using 
Wave Tanks. 

 
 BOUSSINESQ 

PARAMETER 
1

2

h
h

 c 
[cm/sec] 

ia
D

 

Kao, Pan, and Renouard 
(1985) 0.01 −

0.95 7.6
33 27.9

 0.85 0.01 ─ 0.2 

0.017 11
22.5

 16 

0.033 11
24

 15.3 Helfrich and Melville (1986) 

0.053 11
22.5

 15.9 

0.056 ─ 0.1 

Wallace and Wilkinson 
(1998) 0.013 ─ 0.051 37

13
 11 ─ 22 

 
0.015 ─ 0.14 

Martin, Walker, and 
Easson (1998) 0.025 −

7.5 10
40 20

 9.71 ─ 12.61 
 

0.5 ─ 0.14 

0.54
12.94

 

7.27
2.97

 Michallet and Barthélemy 
(1997, 1998) 0.025 

8.29
1.95

 

13.52 ─ 23.78 0.002 ─ 0.22 

Ariyaratnam (1998) 
Hsu and Ariyaratnam 
(1998) 

0.028 −
3 20
35 20

 10.85 ─ 15.5 
 

0.06 ─ 0.25 

Michallet and Ivey (1999) 0.012 ─ 0.044 −
3 20
35 20

 5.6 ─ 11 
 

0.1 ─ 0.2 

Kuo (2005) 
Cheng (2006) 0.025 −

10 40
40 10

 
 

0.054  ─ 0.432 

Chen (2006) 0.024 ─ 0.03 −
10 35
30 5

 9.23 ─ 14.78 
 

0.04 ─ 0.25 



  127 

 

4.2.1 Computational Domain 

A key CFD issue is whether the numerical simulation produces results 

that match physical reality.  By their very nature, mathematical models are 

abstractions of physical systems based on numerous assumptions and 

simplifications. The standard computational method for achieving this “reality” 

determination is to perform multiple computational trials (or realizations)  based 

on a progressively increasing grid density.  That is to say, the computer 

simulations are repeated at using a finer mesh until it is found that there is no 

significant change in a particular outcome as a result of increased computational 

resolution. Stated differently, the simulation results have been found to converge 

to the same results.  The results can then be compared to actual field records or 

experimental data collected by other researchers, to establish the accuracy (and 

predictability) of the numerical simulation tool. 

 

To establish the numerical accuracy of the computer simulations that 

form the foundation of this research, it was first necessary to conduct a series of 

production trials (or benchmark simulations) of the computer code and compare 

those results with experimental data collected by other researchers.  

Experimental data were available from earlier published studies that relied on 

mechanically-generated ISWs.  The wave tanks were usually configured to be 

either 40 cm- or 50 cm-deep and were up to 12 m long. A two-fluid system was 
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generally created by using two liquids with different specific gravities such that 

ρ2 > ρ1.  A solitary interfacial wave was induced either by using a vertical sluice 

gate that would mechanically-produce step-like conditions that would later 

evolve downstream into an ISW or by tilting the entire experimental apparatus 

at one end until the desired ISW evolved.  Previously, Kao, Pan, and Renouard 

(1985) provided some practical advice on how to mechanically-generate ISWs in 

an experimental setting so as to minimize the dispersive wave train associated 

with an artificially-generated internal wave that typically occurs as an artifact of 

the generation process.27 

 

For the purposes of this research, a virtual “step or potential well” was 

used as a surrogate for the sluice gate used by some researchers to artificially 

generate an ISW.  A review of past research associated with wave tank 

experiments (Chen et al. 2007) has revealed that the gravity collapse of a step 

well produces a wake that transitions into an ISW of elevation ─ a potential well 

                                                 

27 When mechanically generating internal waves in an experimental apparatus, Kao, 
Pan, and Renouard (1985) derived an equation that proportioned the dimensions of the step well 
depth 0η  to its length LPW.  Their intent was to minimize the magnitude of the dispersive wave 
train typically found to be associated with mechanically-generated internal waves. As a rule of 
thumb, suggest the following algorithm: 

( )
1

2 2
1 2

0 1 2

1 42
3PW

h h
L

h hη

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⋅
⎢ ⎥⎜ ⎟−
⎢ ⎥⎝ ⎠⎣ ⎦
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of depression yields an ISW of depression whereas a potential well of elevation 

yields an ISW of the same polarity. 

 

Two computational scenarios (domains) were selected for use in the 

comparison with experimental data – one series of trials corresponding to a 40 

cm-deep configuration (in the z direction) and the other configuration 

corresponding to a dimensional 50 cm-deep configuration (in the x direction).  

The length of the computational domain was 500 cm as this distance was 

considered to be sufficient to allow for the formation and measurement of an 

ISW that had essentially reached steady-state.  Various combinations of h1 to h2 

were selected to evaluate how different stratification scenarios influence ISW 

properties.  It was possible to calculate certain system-specific input parameters 

for the simulations (e.g., Re, Fn) based on fixed values of h1, h2, 1ρ , and 2ρ .   

These parameters were calculated using a Mathcad®-based engineering 

spreadsheet (Parametric Technology Corporation 2007).  An example 

spreadsheet used to make these calculations and derive the specific parameter 

values is shown in Appendix A. 

 

To ensure the numerical simulation trials were converging with reported 

experimental data, a variable finite-difference mesh (grid) was imposed over the 
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computational domain encompassing five different grid densities.  These grid 

densities were multiples of 1, 2, 3, 4, and 5. 

 

The basic numerical calculations were performed using a FORTRAN-95-

based computer programs28 compiled using a Lahey compiler (Lahey Fortran 90 

1997).  Initially, the compiled programs were executed on a Hewlett-Packard 

(HP) Pavilion dv8000 computer.  Later, a Dell Inspiron 1545 computer with 

expanded computing capability (3.46 GB of RAM vs. 2GB of RAM for the HP) 

was used.   Computational results from the FORTRAN programs were processed 

with original programs written using the student version of MATLAB 

programming software. 

4.2.2 Key System Parameters and Initial Conditions 

Table 12 summarizes the initial conditions and system parameters used 

for both the benchmark trials and simulations involving topographic obstacles.  

Inspection of this table shows that eight different stratification scenarios (i.e., 

dimensional depth ratios) were selected at simulated depths of 40 cm and 50 cm.  

Four potential well depths 0η   – dimensional depths of 5 cm, 10 cm, 15 cm, and 

20 cm – were selected for producing a wake-generated ISW in the various  

                                                 

28  The computer program used was originally developed by H.-P. Pao, T.W. Kao, K. 
Saffarinia, and H. Xiao of the Catholic University of America, and was subsequently modified by 
this investigator for the purposes of this research. 
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Table 12.  System Parameters Selected for the Numerical Simulations. 

h1 
[cm] 

 
h2 

[cm] 
ISW  

TYPE Re Fn Sc 
 

c0 
[cm/sec] 

40 cm Simulated Depth 

35 5 Elevation 4.454 0.56 833 11.2 

30 10 Elevation 3.857 0.06 833 11.1 

10 30 Depression 3.857 0.06 833 11.1 

50 cm Simulated Depth 

10 40 Depression 7.528 0.068 833 15.1 

15 35 Depression 8.624 0.078 833 17.3 

20 30 Depression 9.22 0.084 833 18.5 

40 10 Elevation 7.528 0.068 833 15.1 

30 20 Elevation 9.22 0.084 833 18.5 

 

depth configurations. Inspection of this Table 12 indicates that eight different 

stratification scenarios (i.e., dimensional depth ratios) were selected 

corresponding to simulated wave tank depths of 40 cm and 50 cm.  When 

different step-well depths where combined with different stratification scenarios, 

the result yielded about 32 permutations available for the simulation trials.  

Each simulation or “production run” was performed for about 8000 time steps, 

and the size of each non-dimensional time step ∆t was 0.001 to ensure that the 

Courant condition was maintained – that is to say the Courant number was 
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small compared to unity (based on particle velocities and the local mesh 

spacing). To achieve the differences in density necessary for generating an ISW, 

the density of the upper fluid layer 1ρ was set to 999 kg/m3 (corresponding to 

fresh water) whereas the density of the lower fluid layer 2ρ   was assigned a 

value of 1030 kg/m3 (corresponding to brine).  These differences yield a value for 

∆ρ of 31 kg/m3.  The equivalent dimensionless Boussinesq parameterγ is -0.03 

and corresponds to the pycnocline interface defined by η(t).  When η(t) either 

achieves either maxima or minima, the wave amplitude ai corresponds, 

respectively, to either an ISW of elevation or depression. 

 

4.2.3 Results of Benchmark Simulations 

Results from the 32 benchmark simulations associated with this research 

are discussed below.  Following completion of the production trials, ISW 

amplitudes, wavelengths, and energies were calculated by post-processing the 

data with MATLAB-based programs in the form of worksheet.  The MATLAB-

worksheet calculated these measurable ISW properties at specific locations and 

time-steps at four fixed locations in the computational domain.  An example 

worksheet is shown in Figure 26.  The worksheet can estimate the parameters of 

interest by first evaluating the density variation relative to the dimensionless 

Boussinesq parameter γ  at a particular location in the computational domain. 

The maximum vertical distance the parameter remains unchanged relative to  
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Figure 27.  Density-height curve showing example of pycnocline profiles.  The 
solid line is the undisturbed pycnocline profile at time zero before the start of the 
numerical simulation.  The dashed line shows how the profile of the pycnocline 
has evolved through the course of the simulation at some subsequent time t.  A 
dimensionless Boussinesq parameter of -0.03 was used in the simulation.  
Arrows indicate the magnitude of the wave amplitude ai.  (a) Depression-type 
ISW.  (b) Elevation-type ISW. 

quiescent h1 – h2 fluid interface; this vertical distance corresponds to the ISW 

amplitude ai. The parameter is later used subsequently in equations 4.3 and 4.4 

to calculate the wavelengths and energies.  Figure 27 shows the vertical 

distribution of the density profile along the pycnocline.  The figure shows the 

undisturbed pycnocline profile (solid line) at time zero, when the system is at 

rest.  The figure also shows how the pycnocline profile changes through the 

course of the computer simulation (dashed line).  The vertical displacement in 

the profile corresponds to the ISW amplitude ai.  As indicated by this figure, 
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depression-type ISWs (Figure 27a) tend to lower the elevation of the pycnocline 

whereas elevation-type ISWs (Figure 27b) tend to raise it.  Lamb (1932) and 

Defant (1961b) suggest that the amplitude of an internal wave is a maximum at 

the depth corresponding to the maximum vertical density gradient. 

 

Following completion of the benchmark simulations, the results were then 

compared to experimental data collected by Chen (2006).  That researcher 

performed a series of wave tank experiments evaluating ISW properties 

following their interaction with different types of obstacles.  In connection with 

that research, he performed approximately 180 wave tank trials.  Chen relied on 

a two-layered fluid system consisting of an upper fresh-water layer and a lower 

brine layer.  The experimental apparatus was instrumented with a series of 

ultrasonic probes that electronically measured the density variations in the 

system as the mechanically-generated wave traversed the horizontal length of 

the tank.29  Before analyzing the results, though, Chen (2006) pre-processed the 

raw data using an unspecified Fourier transformation method to, in effect, “de-

noise” them.  The impact, if any, of the Fourier transformation on the data 

(measurements) was never assessed by this particular investigator.  The Chen 

                                                 

29  The trials included obstacles representing a uniform slope, a single triangular barrier, 
two triangular barriers, a single semicircular barrier, and two semicircular barriers. 
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(2006) data set nevertheless is considered to be a reasonable benchmark against 

which this research can be compared.   

4.2.3.1 General Observations 

As expected, a depressed step well yields an ISW of depression (Figure 

28).  Conversely, an elevated step well yields a similar-type ISW (Figure 29).  At  

the beginning of the computer simulations, an ISW would evolve and form from 

a step well as the governing equations were solved at each time-step in the 

calculation.  Both sets of figures show an ISW of mode-1 followed by a lesser ISW  

of an opposite polarity as well as a wave train representing transient dispersion. 

 

For this phase of the research, only information on a well-developed ISW 

was sought.  Hence, this series of trials did not include evaluating the 

interaction of the propagating wave with an obstacle. The only criterion applied 

at this point in the research was that duration of the simulation needed to be of 

a sufficient number of time-steps to allow the ISW to achieve what might be 

considered a steady-state form (profile) so that its properties might be measured 

and its interaction with a particular obstacle quantitatively evaluated.  In this 

regard, Michallet (1988) reported that there is a need for a mechanically-

generated ISW to travel some distance from the generation point down-stream 

until the pycnocline-defined wave has reached a steady state form. As indicated 

by Figures 28 and 29, several hundred time-steps in the computer simulations 
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Figure 28a.  Non-dimensional numerical simulation showing the evolution of a 
depression-type ISW.  Shaded area highlights step well used to artificially 
generate an ISW.  Arrow indicates the direction of wave propagation at the start 
of the numerical simulation. 



  138 

 

  TS: 5900   Time: 16.76

 h1, ρ1

 h2, ρ2

z 
Co

or
di

na
te

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 6100   Time: 17.33

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 6300   Time: 17.9

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 6500   Time: 18.47

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 6700   Time: 19.03

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

  TS: 6900   Time: 19.6

 h1, ρ1

 h2, ρ2

z 
Co

or
di

na
te

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 7100   Time: 20.17

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 7300   Time: 20.74

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 7500   Time: 21.31

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 7700   Time: 21.88

 h1, ρ1

 h2, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

  TS: 7900   Time: 22.44

 h1, ρ1

 h2, ρ2

x Coordinate

z 
Co

or
di

na
te

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 8100   Time: 23.01

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 8300   Time: 23.58

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 8500   Time: 24.15

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 8700   Time: 24.72

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

  TS: 8900   Time: 25.28

 h1, ρ1

 h
2
, ρ2

z 
Co

or
di

na
te

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 9100   Time: 25.85

 h1, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 9300   Time: 26.42

 h1, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 9500   Time: 26.99

 h1, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 9700   Time: 27.56

 h1, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

  TS: 9900   Time: 28.13

 h
1
, ρ1

 h
2
, ρ2

z 
C

oo
rd

in
at

e

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 10100   Time: 28.69

 h
1
, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 10300   Time: 29.26

 h
1
, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 10500   Time: 29.83

 h
1
, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 10700   Time: 30.4

 h
1
, ρ1

 h
2
, ρ2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

  TS: 10900   Time: 30.97

 h1, ρ1

 h2, ρ2

x Coordinate

z 
Co

or
di

na
te

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 11100   Time: 31.53

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 11300   Time: 32.1

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 11500   Time: 32.67

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
  TS: 11700   Time: 33.24

 h1, ρ1

 h2, ρ2

x Coordinate
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 
Figure 28b.   Continued.
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Figure 29a.  Non-dimensional numerical simulation showing the evolution of an 
elevation-type ISW.  Shaded area highlights step well used to artificially 
generate an ISW.  Arrow indicates the direction of wave propagation at the start 
of the numerical simulation. 
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Figure 29b.  Continued. 



  141 

 

were usually required before an internal wave demonstrating a well-defined 

(steady-state) form was produced. However, slightly more time-steps were 

needed for an elevation-type wave to reach steady-state than for a depression-

type wave. These differences can be attributed to slight variations in the 

respective Reynolds numbers for the two systems ─ 48.767 10
DEPRESSION

−×  vs. 

49.372 10
ELEVATION

−× ─ suggesting that the formation of an ISW of elevation is 

dominated by turbulent (restoring) forces.  For the purposes of the benchmark 

trials, the number of time steps (i.e., the duration of the simulation) needed to 

achieve steady-state was thus determined by trial and error.  

4.2.3.2  Detailed Observations 

Four aspects of the numerical simulation trials associated with the 

benchmark simulations thus far deserve some limited discussion.   

 

Internal Solitary Wave Development.  The first detailed observation concerns 

how the ISW evolves in a wave tank from a step well.  This issue was first 

explored by Kao, Pan, and Renouard (1985) who where able to empirically relate 

the number of solitons NISW  experimentally-generated to the potential well 

depth 0η  as: 

 1 2
02 2

1 2

3 1
2

PW
ISW

L h hN
h h

η
π

−
≤ +  (4.6) 
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Chen et al. (2007) later used video imagery to document the event sequence 

leading to ISW formation by varying the magnitude of 0η .  As part of their 

investigations, Kao, Pan, and Renouard attributed the mechanical formation of 

an ISW in an experimental apparatus to gravity “wave collapse.” Upon further 

review, Chen et al. (2007) found that overturning motions, similar to K-H 

vortices, producing internal bores (also known as “rollers” or “gyres”) during the 

transient phase of wave formation, were responsible for the mechanically-

generated ISWs once the sluice gate was removed.  Chen et al. also found that 

clockwise overturning of the pycnocline produces ISWs of the depression-type 

whereas a counter-clockwise overturning produces ISWs of the elevation type.  

After a transient phase of wave formation, the primary ISW develops into a 

leading wave (front) followed by a dispersive wave train.  The sequence of events 

leading to the overturning motion of the potential well and the subsequent 

formation of both a depression-type and elevation-type ISW as illustrated, 

respectively, in Figures 30 and 31.   These simulations comport with the 

photographic observations reported by Chen et al. (2007). 

 

Kelvin–Helmholtz Features.  The second detailed observation is that inspection 

of Figures 30 and 31, at the early (transient) stages in the simulations 

(specifically time steps 500 to 900), reveal what appears to be the formation of K-

H─like features.  These features occur along the pycnocline, in the vicinity of 
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Figure 30.  Sequence of events leading to the evolution of a depression-type ISW.   
Multiple isopycnals are shown with the pycnocline highlighted. 
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Figure 31.  Sequence of events leading to the evolution of an elevation-type ISW. 
Multiple isopycnals are shown with the pycnocline highlighted in blue.  
Streamlines are shown by dashed lines.  Non-dimensional numerical simulation 
shows clockwise overturning of the step well. 
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the step well.  When the resolution of the simulation is increased with additional 

isopycnals along the pycnocline (Figure 32), the K-H─like features become more 

pronounced and appear analogous to those features described in the literature 

by researchers and illustrated earlier in Figures 14 and 15.   

 

Sinusoidal Profile. The third detailed observation is that once the ISW achieves 

a steady-state profile, the sinusoidal shape characteristic of such waves becomes 

evident.  Figures 33 and 34 correspond, respectively, to one time step in each of 

the simulations depicted in earlier Figures 30 and 31. Figures 33 and 34 depict 

the pycnocline, streamlines (or the trajectory of the velocity field), and flow-field 

orientation for a mode-1 type ISW of elevation and depression, respectively.  The 

features captured in these simulations are consistent with the ISW features 

reported in the literature.  The pycnocline (or density interface) is shown by the 

solid blue line.  Streamlines are shown by dashed lines.  Non-dimensional 

numerical simulation shows clockwise over-turning step well first hypothesized 

by Defant (1961a) who cited Bjerknes and others (1933).  See earlier Figure 15.  

Careful inspection of the figures also indicates that the directions of the velocity 

vectors in the simulation above and below the pycnocline are opposite to each 

other, consistent with reports by LaFond (1961). 
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Figure 32.  Example of K-H─like features associated with the formation of an 
ISW during a non-dimensional numerical simulation.  The pycnocline is 
highlighted in red. 
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Figure 35.  Examples of normalized velocity vectors for an ISW.  (a1) Depression-type 
ISW.  Above the pycnocline (dotted line), the profile illustrates a flow pattern consistent 
with a clockwise flow regime as the velocity vectors occupy those quadrants designated I 
and III.  The simulation depicts fluid flow from the right-to-the-left above the pycnocline.  
Below the pycnocline, the flow is left-to-right. See earlier Figure 30.  (a2) Elevation-type 
ISW.  Above the pycnocline, the profile illustrates a flow pattern consistent with a 
counter-clockwise flow regime as the velocity vectors occupy those quadrants designated 
II and IV.  The simulation depicts fluid flow from the left-to-the-right above the 
pycnocline.  Below the pycnocline, the flow is flow from the right-to-left.  Also see earlier 
Figure 31.  Exhibits “b” and “c” display, respectively, the horizontal and vertical 
components of the normalized velocity vectors. 

Velocity Profiles.   The last detailed observation concerns the velocity vectors.  

Figure 35 shows the normalized velocity components for both depression-type 

and elevation-type ISWs.  Profiles include both the horizontal and vertical 

velocity vectors. Two points are noteworthy with respect to this figure.  The first 

point is that both profiles in the exhibit show strong horizontal velocity in the 

vicinity of the pycnocline.   The second point is that the profiles themselves 
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comport with the respective polarity orientations of the velocity vectors for the 

two internal wave types.  For example, the velocity vectors for a depression-type 

ISW (Figure 35a) demonstrate a clock-wise flow pattern about the pycnocline 

consistent with the detailed simulation results shown in Figure 32. When 

examining the velocity profiles for an elevation-type ISW (Figure 35b), those 

profiles are consistent with the detailed simulation results shown in Figure 34 ─ 

in this case, the velocity vector orientation reflects a counter-clockwise flow 

pattern. 

 

4.2.3.3 Comparison to Chen (2006) Data 

Figure 36 shows the results of the production trials for five different grid 

densities and four different values of η0. Previous ISW experiments involving a 

stratified, two-layered system generally demonstrate a linear relationship 

between the depth of the step well η0 and the magnitude of the incipient internal 

wave amplitude ai.  The results of the production trials shown in Figure 36a 

confirm this correlation.  This figure also reveals how local errors associated also 

the finite difference method affected the magnitude of the simulated wave 

amplitude.  For example, for small values of η0 (5 cm), the benchmark trial 

results are generally clustered (closely-spaced).  However, for larger values of η0 

0 (20 )cmη , the results of the benchmark trial results are more widely-spaced, 

suggesting more dispersion (error) in the calculated results.  Figure 36b 
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Figure 36.  Benchmark trials showing the effect of grid density on potential well 
depth η0 and ISW amplitude a.  (a) Dimensionless benchmark trials for five 
different grid densities.  (b) Benchmark trial data shown in relation of median 
and range of Chen (2006) data. 

illustrates how well the results of the numerical simulation trials with respect to 

grid size compare with the mean and range of experimental data collected by 

Chen (2006).  The experimental variation in the Chen (2006) data is evident by 

virtue of the magnitude (length) of the variance bars about the mean (Figure 

36b). 

4.2.3.4 Other Observations and Comparisons 

Four additional aspects of the numerical simulation trials associated with 

the benchmark trials thus far deserve some limited discussion.   
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Figure 37.  Benchmark trials showing the relationship between potential well 
depth η0 and ISW amplitude a.  (a) Non-dimensional trials for 40 cm-deep tank 
scenarios.  (b)  Non-dimensional trials for 50 cm-deep tank scenarios. 

Relative Fluid Layer Depths.  Another parameter affecting wave amplitude 

appears to be the depth configuration of the computational environment as 

defined by the two fluid layers h1 and h2.  Figure 37 shows the results of the wave 

tank trials for eight simulated dimensional depth configurations ─ either 40 cm 

or 50 cm ─ for both elevation- and depression-type ISWs.  Overall, the results 

indicate that the normalized wave amplitude increases more rapidly for the 40 

cm-simulated depth configuration than for the 50 cm-simulation depth 

configuration.  A second overall observation is that for different values of 0η , the 

normalized wave amplitude generally increases as the ratio of the two fluid 

layers increases.  The exhibits also show that when the two fluid layers are 
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approximately of equal thickness, the rate of increase in the wave amplitude 

height tends to be less than when other depth configurations are evaluated (i.e., 

h1 << h2 or h1 >> h2).  This trend is more clearly revealed when MATLAB-

generated trend (regression) lines for the data are plotted.30  The trend lines for 

the simulated dimensional depth ratio of 35 cm/5 cm and 30 cm/10 cm (scenario 

generally defined to be h2 > h1) correspond to an elevation-type ISW; these 

regression lines are nearly parallel to each other.  By contrast, the trend line for 

the simulated depth ratio of 10 cm/30 cm (scenario defined as h2 < h1) 

corresponds to a depression-type ISW; this particular trend line is the steepest of 

the three.  Upon inspection of Figure 37, it can be observed that the same overall 

positive data trends are repeated.  It may be concluded that elevation-types of 

ISWs appear to be affected by advective/dispersive forces following their 

formation more so than depression-type waves.  

 

Wave Speed.  Differences in the relative proportions of the fluid layer depths can 

provide additional insights regarding ISW properties.  Equations 2.7, 2.9, and 

2.10 (as well as similar equations found in Table 4) indicate that speed of an 

ISW is influenced by both the depth and density of the respective fluid layers.   

                                                 

30 Although there are several mechanical (long-hand) procedures for doing so (e.g., Daniel, 
Wood, and Gorman 1971), it was found that the EzyFit 2.30 curve-fitting package developed for 
MATLAB (Ezyfit 2009) could infer (approximate) rates of change of the variables of interest 
depicted in the figures more efficiently. 
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Because the density differences between the two fluids was defined to be fairly 

small for the purpose of this research, the next series of exhibits were are 

intended to examine the influence of fluid depth on wave speed. 

 

Martin, Walker, and Easson (1998) proposed a binary classification 

system for ISWs based on wave speed.  They suggest that an internal wave may 

be classified as supercritical if its wave speed ci is greater than the phase 

velocity oc  (or greater than one).  Conversely, the ISW can be classified as 

subcritical if the wave speed is less than the internal wave phase velocity ─ ci < 

co ─ or less than one.   

 

The simulation results depicted in Figure 38 highlight the binary nature 

of the wave speed classification system. These results have been normalized to 

the depth of the upper fluid layer h1. The results illustrate that the normalized 

wave speed is proportional to the magnitude of the wave amplitude.   The trials 

corresponding to a simulated dimensional wave tank depth ratio of 35 cm/5 cm 

(an elevation-type ISW) all demonstrate supercritical wave speeds where ci > co.  

Wave speeds for the trials involving simulated dimensional wave tank depth 

ratios of 10 cm/30 cm and 30 cm/10 cm are mostly supercritical with some of the 

simulations in the sub-critical range where ci < co.  Overall, the trends of the 

simulation results depicted in the plots show how normalized
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Figure 38. Normalized wave speed vs. normalized wave amplitude for simulated 
dimensional 40 cm-deep wave tank trials. Plot shows simulation data for 48 
trials corresponding to four measurement locations once the ISW had reached 
steady-state.  Solid symbol represents a mean value for a particular simulation.   

increases in the size of the potential well depth lead to corresponding increases 

in wave speed.  

 

Figure 39 shows results of the numerical simulation trials for the 50 cm-

depth configuration involving only elevation-type ISWs.  These results generally 

comport with the 40 cm dimensional configuration just described. The trends of 

the simulation results continue to illustrate that wave speed is proportional to 

magnitude of the wave amplitude.  Wave speeds for the 30 cm/20 cm simulated 

dimensional wave tank depth configuration are all subcritical whereas the wave 
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Figure 39. Normalized wave speed vs. normalized wave amplitude for simulated 
dimensional 50 cm-deep wave tank trials involving elevation-type ISWs. Plot 
shows simulation data for 32 trials corresponding to four measurement locations 
once the ISW had reached steady-state.  Solid symbol represents a mean value 
for a particular simulation. 

speeds for the 40 cm/10 cm simulated dimensional wave tank depth 

configuration are all essentially supercritical according to the Martin, Walker, 

and Easson (1998) speed classification scheme.  Figure 40 shows results of the 

numerical simulation trials for the 50 cm-deep dimensional configuration but 

now involving only depression-type ISWs.  The simulation results continue to be 

in general agreement with the 40 cm dimensional configuration when it comes to 

the influence of wave amplitude on wave speed. Two of the simulation 

configurations ─ dimensional depth ratios 15 cm/35 cm and 20 cm/30 cm ─ 

produced ISWs whose wave speeds were subcritical.  The computer trials 
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Figure 40.  Normalized wave speed vs. normalized wave amplitude for simulated 
dimensional 50 cm-deep wave tank trials involving depression-type ISWs. Plot 
shows simulation data for 48 trials corresponding to four measurement locations 
once the ISW had reached steady-state.  Solid symbol represents a mean value 
for a particular simulation. 

involving simulated dimensional depth ratio of 10 cm/40 cm produced ISWs 

whose wave speeds were supercritical.  An important observation that can be 

made from this aspect of the research thus far is that supercritical ISW wave 

speeds (ci > co ) were produced when one of the fluid layers’ depths was large in 

proportion to the other. 

 

Other researchers have conducted wave tank studies to evaluate ISW 

behavior.  Several of these studies were summarized earlier in Table 11.  To 

understand how the simulations described above compare to other 
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experimentalists’ work listed in that table, the normalized wave speeds for the 

benchmark trials just described were compared against more than 250 sets of 

normalized wave amplitude data reported in the literature.  This comparison is 

depicted graphically in Figure 41.  Upon inspection of this scatter diagram, it 

appears that the data are self-organized into two groups.  The first group is a 

large cluster of data that can be described as falling predominantly in the 

subcritical wave speed range (ci < co ).  The second group corresponds to what 

can be described as a more positively-trending, set of data, that are slightly 

detached from and located above the so-called subcritical group, which 

demonstrate greater correlation (physical association) and appear to falling 

predominantly in the supercritical wave speed range (ci > co ).  Figure 41 also 

shows that the data from the benchmark trials are well-nested within the 

distribution of experimental data reported in the literature.  The Chen (2006) 

data have been highlighted in this figure as have the benchmark trials data.  

Overall, both sets of data compare favorably with the literature.  This exhibit 

also indicates that the Chen (2006) data tend to favor the lower margin of the 

distribution defined by data published in the literature whereas the benchmark 

trials data tend to favor upper margin of that distribution. 

 

An additional figure of merit that can be used to evaluate the data and 

provide further insights into the simulation results is regression analysis.  In 
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Figure 42.  Comparison between benchmark trial simulations and Chen (2006) 
data.  (a) Scatter diagram.  (b) MATLAB-generated regression lines 
corresponding to respective data sets.  (c) Break-down of benchmark trials 
results by simulated dimensional depths. 

 

Figure 42(a), the Chen (2006) data and the benchmark trials data have been 

isolated in a separate scatter diagram to illustrate the relationship between 

normalized wave amplitude and normalized wave speed in more detail.  Figure 

42(b) shows how both data sets compare against their respective regression lines 

(2nd order polynomials).  The linear correlation coefficient R associated with 

these regression lines can be used to evaluate how well the simulation results 

account for the relationship between the internal wave amplitude and the wave 

speed.  MATLAB-derived R coefficients for the Chen (2006) data and the trials 

data are, respectively, 0.67979 and 0.5024, suggesting “moderate” correlation 
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between wave amplitude and wave speed.  By way of comparison, a MATLAB-

derived composite R coefficient for the data reported in the literature (Figure 41) 

is 0.47435, which is generally considered to reflect “weak” correlation between 

these two variables.  Figure 42(c) illustrates how the respective benchmark trial 

results compare to the Chen (2006) data when taking into account the depth 

configuration used in the numerical simulation trials.  The R coefficients for the 

individual benchmark trials are as follows: 

Depth Configuration R Coefficient Correlation 

15 cm/35 cm 0.99896 “strong” 

20 cm/30 cm 0.82137 “strong” 

10 cm/40 cm 0.14569 “weak” 

30 cm/20 cm 0.99068 “strong” 

40 cm/10 cm 0.99989 “strong” 
 

As indicated in the summary table above, all of the benchmark trials 

demonstrated “strong” correlation with the exception of the trial whose 

simulated dimensional depth ratio was 10 cm/40 cm.  

 

What is particularly noteworthy about Figure 41 is that the exhibit shows 

how pervasive experimental variation can be among the respective studies by 

graphically displaying the normalized results. In a generic sense, Fisher (1932) 

was the first to examine the influence of experimental design on experimental 
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outcomes. The exhibit clearly shows this relationship.  In this context, these 

differences represent fixed sources of error, and can correspond to the design or 

configuration of the experimental wave tank apparatus itself including its 

dimensions, the physical properties of the respective fluids used, the influence of 

side effects (reflection) on internal wave properties (e.g., 3D effects), and 

instrumentation methods. The other source of variation in experimental 

outcomes can be attributed to random sources.  Simply stated, there inevitably is 

some variation in the measurement of any particular physical property (Taylor 

1987).  When considering the spread in the data depicted in Figure 41, some of 

the variation in the results shown will reflect, to varying degrees, measurement 

errors. 

 

Viscous Decay (Damping).  In nature, waves cannot travel indefinitely without 

some change in amplitude as they will attenuate owing to the effects of viscous 

damping (as well as other factors).  Keulegan (1948, 1959) was one of the first 

researchers to experimentally investigate the role of viscous damping in the 

decay of long infinitesimal waves. From Keulegan’s work, Leone, Segur, and 

Hammack (1982) subsequently derived an expression that could be used to 

predict how an ISW would decay in a two-layered fluid system as a result of 

viscous damping.  In dimensionless form, this equation is: 
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 (4.7) 

where S is the distance between some downstream observation station i +1 and 

the preceding observation station i.  Physically, the decay factor K  describes the 

rate of viscous damping attenuates the wave amplitude ai.  The non-dimensional  

equation relating the decay constant K to other system parameters described 

elsewhere in this dissertation is: 

 
( )( )

( )1
4

2
1 22 1 2

2 1 21 2

2 21
212

h hh h hK
w h w h hg h h

υ
ρ

⎡ ⎤ ⎡ ⎤+⎛ ⎞⎧ ⎫⎢ ⎥= + + +⎢ ⎥⎨ ⎬⎜ ⎟
+ ⎩ ⎭⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

 (4.8) 

where w defines the width of the wave experimental tank. 

 

The next two figures in this dissertation examine the influence of viscous 

damping effects on ISW amplitudes using different types of normalized 

parameters. Four different potential well wave depths η0 are evaluated ─ 

dimensional depths of 5 cm, 10 cm, 15 cm, and 20 cm.   This series of exhibits 

also depict simulation results for three different depth/stratification 

configurations ─ 10 cm/40 cm, 15 cm/35 cm, and 20 cm/30 cm.  To aid in the 

visualization of the simulation results, MATLAB-generated best-fit curves have 

been fitted to the data points to illustrate trends. Through trial and error, it was 

found that the mathematical function that best-fits the data from the numerical  
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Figure 43. Rates of viscous damping for four different depression-type ISW 
amplitudes in three different depth configurations. Plots show data for 80 trials 
(simulations). 

 

simulations depicted in this series of exhibits was a power function in the 

general form of ( ) ( )ny n a x b= + .  See Spanier and Oldham (1987). 

 

Figure 43 examines the rate of viscous damping in terms of equation 4.7.  

Consistent with that equation, the MATLAB trend lines fitted to the data 

suggest a strong tendency for ISWs to decay as a function of the distance 

traveled from the generation point.  When considering the different depth 

configurations, the data trends in Figure 43 also show that when the depth 

configuration is such that h1  ≈ h2 (i.e., simulated 20 cm/30 cm depth), the rate of 

viscous damping appears to be greater than for depth configurations that might 
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Figure 44  Effects of viscous damping on amplitudes of ISWs of depression for 
three different depth configurations as a function of distance traveled from the 
generation point. Plots show data for 80 trials (simulations). 

 

be considered analogous to a shallow pycnocline where h1 << h2 (i.e., the 

simulated 10 cm/40 cm depth).  One conclusion that might be drawn this figure 

is that once formed, ISWs decay more rapidly in stratified waters of 

approximately equal depth (i.e., a depth configuration similar to that 

corresponding to a 10 cm/40 cm depth scenario).  Moreover, the simulation 

results suggest that the rate of viscous damping is greater for larger amplitude 

ISWs 0( 20 cm)η =  than for ISWs with smaller amplitudes 0( 5 cm)η = . 

 

The influence of stratification ─ or the relative proportions of the two fluid 

layer depths ─ on viscous damping behavior can seen in Figure 44.  The figures 



  166 

 

show the normalized decay of ISW amplitude as a function of the distance the 

ISW has traveled from the point of generation.  From inspection of Figure 44 it is 

possible once again to draw some conclusions concerning the behavior of wave 

amplitude in a stratified fluid system.  Recalling Michallet (1988), that 

researcher previously noted that mechanically-generated ISWs need to travel 

some (unspecified) distance from their generation point before achieving what 

could be considered a steady-state profile.  When considering Michallet (1988), 

the first observation that can be drawn from Figure 44 is that viscous damping 

appears to influence the simulation more rapidly in a fluid configuration defined 

by h1 << h2  ─ or what might be considered to be a (relatively) shallow, near-

surface pycnocline.  The second observation is that the normalized amplitudes 

for all trials appear to reach steady state earlier in the simulation (i.e., closer to 

the generation point) when the pycnocline is at a shallow depth.  For example, in 

the 10 cm/40 cm simulations, viscous damping effects were found to preserve at 

least 40 percent of the normalized ISW amplitude. By contrast, in the 20 cm/30 

cm collection of simulations, the percentage of normalized ISW amplitude 

preservation dropped to about 30 percent.  

 

The third observation is that the rate of decline in the normalized internal 

wave amplitude occurs over a greater distance for those simulations whose depth 

configurations are such that the two fluid depths are essentially equal.   Stated  
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differently, the influence of viscous damping on ISW amplitude decay appears to 

extend over the full extent of the simulation (i.e., a longer period of time) when 

the depth configuration resembles h1 ≈ h2 (20 cm/30 cm) ─ or what might be 

considered to be a (relatively) deep pycnocline.  By contrast, for those 

simulations where h1 << h2 (a shallow pycnocline), most of the trial results 

indicate that that the normalized wave amplitude reached steady state well-

before the mid-point of the simulation.  This observation would suggest that the 

effects of viscous damping on the amplitude of a propagating ISW are minimized 

when the depth configuration resembles that of a shallow, near-surface 

pycnocline.  Overall, the decay rates associated with the numerical simulation 

trials were found to compare favorably with earlier published studies 

summarized in Table 13. 
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Table 13.  Estimated Rates of Amplitude Decay for ISWs in Experimental 
Settings as a Function of Distance as Reported by Various Investigators. 

INVESTIGATOR PERCENT AMPLITUDE DECAY  [DISTANCE] 

Koop and Butler (1981) 30%  [7 m] 

Michallet and Barthélemy (1997, 1998) 50%  [3.56 m] 

Ariyaratnam (1998) 20%  [8 m] 

Chen (2006) 12-14%  [6 m] 

This Study 30- 40%  [6 m] 

 
 

Another perspective on the influence of viscous damping on the numerical 

simulation trials can be obtained by examining the change in ISW energy as the 

wave propagates away from the generation point.  Equation 4.4 expresses total 

ISW energy in terms of ( )tη .  Consistent with the decay trends illustrated in 

earlier Figures 43 and 44, Figure 45 shows that the rate of wave energy decline 

E  is greatest for a deeper pycnocline (h1 = h2) and the least for a shallow, near-

surface pycnocline (h1 << h2). The decay in ISW energy does not exceed 30 

percent for the simulations associated with a shallow, near-surface pycnocline 

whereas the simulations associated with a deeper pycnocline can generally 

expect to experience a more progressive decline internal energy as a result of 

viscous damping. Once again, the effects of the rigid lid assumption,
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Figure 45.  Rate of normalized energy decay for ISWs of depression for three 
different depth configurations as a function of distance traveled from the 
generation point.  Plots show data for 80 trials (simulations) energy as a function 
of ( )tη .  

 

as applied to this simulation scenario, may be more pronounced when the 

pycnocline is located close to the top of the computational domain. 

 

Overall, Figures 43 through 45 show that the rate of viscous decay for 

simulated ISWs with higher initial potential well amplitudes 0( 20 cm)η =  is more 

rapid than for simulated ISWs with smaller initial potential well amplitudes 

0( 5 cm)η = . This series of figures show is that the rate of amplitude decay itself 
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appears to be influenced by the relative depths of the two fluid layers or the ratio 

of 1

2

h
h

. 

4.3.1 Simulations Involving Topographic Obstacles 

As noted earlier in this dissertation, researchers have frequently observed 

the occurrence of ISW phenomena in proximity to the continental 

slope/continental shelf transition.  At this location, deep oceanic waters 

transitions into relatively shallower continental waters.  Moreover, this location 

generally corresponds to the point were ISWs are breaking below the water 

surface, in the presence of a well-defined pycnocline,  owing to the theoretical 

turning point condition of h1 = h2  being met.  

 

The continental land mass is surrounded by an extensional yet submerged 

shelf that is nearly horizontal. At some point seaward, this feature segues into 

the continental slope whose grade is very slight ─ in the range of 1° to 4°. At 

some locations, the continental slope is essentially absent resulting in a near 

vertical (shear) bluff that segues into the continental rise that ultimately merges 

with the abyssal plane.  A “bird’s-eye” perspective of this physiographic feature 

can be found in Figure 46.  For the purposes of the numerical simulation trials, 

this type of obstacle can be modeled in one of two ways.  It can be modeled 

simply as a horizontal shelf-like feature, as represented in Figure 47a, or as a  
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Figure 46.  Digital Images of submarine topography characteristic of the 
continental slope/continental shelf transition.  Example is for the vicinity 
Monterey Canyon, California.  (a) Black-white shaded relief image.  (b) False-
color image of bathymetry. Figures illustrate an example of the shelf and slope-
shelf topographic obstacle scenarios modeled in this research.  Investigators (i.e., 
Carter, Gregg, and Lien 2005) have long-recognized this area as representative 
of one for which the formation of ISWs is favorable.  Images generated by the 
U.S. Geological Survey/Menlo Park. 

(a) 

(b) 
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Figure 47.  Examples of types of topographic/physiographic analogs considered 
in the numerical simulations.  These geometries were numerically introduced 
into the computation domain depicted earlier in Figure 23.  Figures are not to 
scale and are intended only for illustrating the approximate location of the 
pycnocline defining this two-layered fluid system relative to the obstacle. 
 

short slope transitioning into a horizontal shelf, as depicted in Figure 47b.  

Either of these modeling scenarios is useful for demonstrating ISW breaking as 

the location of the turning point can be precisely plotted and the polarity of the 

ISW evaluated as it passes through this position. 
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Overall, six simulations corresponding to specific topographic analogs of 

submarine features likely to be encountered on the ocean floor were evaluated. 

The modeling analogs selected were considered representative of the types of 

physiographic features (Figure 48) the literature (Table 5) suggests can affect 

ISW behavior in a marine setting.  They are illustrated in Figure 47a-f. In 

addition to the two modeling scenarios described in the preceding paragraph, 

internal wave interactions with four other topographic/physiographic analogs 

were evaluated. They included an extended or long slope scenario (Figure 47c), a 

so-called “short” slope scenario (Figure 47d), a scenario involving a triangular-

like obstacle (Figure 47e), and a scenario involving a table-like topographic 

feature of limited horizontal extent type (Figure 47f).  Whereas the modeling 

configurations depicted in Figures 47a and 47b are intended to represent the 

transition from deeper oceanic waters to shallow continental waters, the 

configuration depicted in Figure 47c is intended to represent the continental 

margin of a marine system characterized by a long gradual slope.  As noted 

earlier in this dissertation, these topographic shapes are also useful analogues 

for evaluating changes how ISW properties observed in marine settings change 

following an encounter with different types of topographic features. 
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Figure 48.  Principal physiographic features found in the ocean. The relative 
proportions of these features in a marine setting is summarized in Table 8.  
Source MOS.org. 

The introduction of physiographic analogs such as those illustrated in 

Figure 47 required the specification of additional boundary conditions besides 

those listed earlier in Table 10. Such numerical amendments are necessary as 

the presence of these obstacles would, in reality, produce different physical 

outcomes.  Just as there are likely to be differences in how an internal wave 

would interact with different types of submarine obstacles in nature, the 

numerical solution to any particular computer simulation is also likely to change 

when the boundary conditions are modified. Roache (1972, 1998a) provides 

recommendations on how to specify additional boundary conditions 

corresponding to the outlines of  new surface shapes illustrated in Figure 47. 
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4.3.1.1  Shelf-Like Obstacle 

Figure 49 shows a non-dimensional, simulation between an advancing 

ISW and a shelf-like topographic obstacle (Figure 47a).  The simulation involves 

a depression-type ISW of the first mode that formed in open water and advances 

shoreward.  As indicated in the Figure 49a, the ISW is well-formed and 

generally symmetric by about TS 10,200 of the simulation.  The time series 

shows a leading depression-type ISW followed immediately by a lesser elevation-

type ISW.  A trailing dispersive wave train is also present in this exhibit.  

 

Contrary to what might be expected, evidence of the encounter between 

the ISW and the topographic obstacle is first revealed by streamline contours 

rather than by the pycnocline.  The streamline contours show the first signs of 

distortion in their geometry about TS 10,800, well-before there is any apparent 

change in the geometry of the pycnocline.  Later in the simulation, though, the 

pycnocline does begin to show some signs of asymmetry in its profile suggesting 

the hydrodynamic influence of the obstacle for the first time.  By TS 12,000, the 

ISW has become less sinusoidal.  The leading edge of the pycnocline is now “v-

like” in profile suggesting that the ISW has begun to shoal as a result of its 

encounter with the obstacle. Shortly thereafter, by about TS 12,400, the trough 

of the ISW has reached the approximate location of the theoretical turning point 

(the vertical dashed line in the figure) and the pycnocline profile is now clearly 
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Figure 49a.  Non-dimensional numerical simulation showing an encounter 
between a depression-type ISW and a shelf-like obstacle. The vertical dashed 
line corresponds to the position of the theoretical turning point defined by h1 = h2.  
Re = 9.372e4 and Fn = 0.085. 
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asymmetric.  The demonstration of asymmetry by the internal wave has also 

been extended to the streamlines whose distribution now silhouettes the outline 

of the obstacle’s vertical face. 

 

Internal wave shoaling is a term of art, and in this dissertation it is 

defined to be topographic entrainment of the pycnocline.  In this particular 

numerical simulation, shoaling appears to have reached its greatest vertical 

extent by about TS 12,600.  Later, by about TS 13,400 (Figure 49a), the 

simulation shows evidence of the growth of a bolus in the trailing-end of the ISW 

for the first time.31  Subsequent time steps in the simulation show progressive 

growth in this bolus. By about TS 14,000 or so, there appears to be sufficient 

development (and likely momentum) in the bolus to laterally advance what now 

might be considered to be an elevation-type ISW.  This new elevation-type ISW 

originates from a location beyond that defined by the turning point plane.  At 

about TS 16,200 (Figure 49b), a bore-like feature, defined by the pycnocline, now 

appears to have transformed itself into a well-developed, elevation-type ISW.  

Figure 49c shows additional time steps in the polarity transformation.  By about  

                                                 

31 An alternative explanation of this type of feature is suggested by Wessels and Hutter 
(1996), who identified the formation of a ‘gyre’ or vortex along the near side of a topographic 
obstruction as the internal wave encounters the obstacle.  They suggest that the gyre represents 
a zone of strong localized turbulence that provides a mechanism for internal wave energy 
dissipation.  As discussed later in this dissertation, the height of this obstacle relative to the 
height of the two fluid layers can be used to define the amount of energy dissipation likely to 
take place following an encounter. 
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Figure 49b.  Continued. 
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Figure 49c.  Continued. 
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TS 27,800, all earlier evidence of the depression-type ISW appears to have 

disappeared from the simulation, leaving only an ISW of elevation in its place 

suggesting that a change (reversal) in polarity is complete.  However, the 

simulation still shows the persistence of a single elevation-type ISW.  See Figure 

49d. 

 

Additional insights concerning the interaction between the ISW and the 

shelf-like obstacle can be obtained from examination of higher-resolution figures.  

From inspection of the numerical wave simulation depicted in Figure 49, it 

appears that the shoaling process begins at about TS 10,600 or so.  Moreover, 

only two aspects of the breaking progression were produced as part of the 

simulation ─ namely, the demonstration of wash-down associated with shoaling 

(at about TS 12,800) and the formation of the ISW into a bore (at about TS 

14,800).  These two wave breaking features are depicted in detail in Figure 50.  

Appendix B also contains higher-resolution figures of this particular modeling 

scenario beginning at about TS 14,800, prior to the onset of shoaling/breaking, 

and continuing through TS 16,400.   
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Figure 49d.  Continued. 
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Figure 51.  Time series plots of normalized velocity vector profiles for a 
depression-type ISW at ten uniformly-spaced locations during an encounter with 
a shelf-type obstacle.  Horizontal velocity vectors are blue (or solid) lines.  
Vertical velocity vectors are red (or dashed) lines.  The pycnocline elevation is 
depicted by a dotted line.   

Recalling Figure 35, another perspective on the ISW polarity 

transformation can be obtained by plotting profiles of the velocity vectors.  

Figure 51 shows the non-dimensional profiles of the horizontal and vertical 

velocity vectors at several locations before and after the plane of the theoretical 

turning point.  These profiles are consistent with the example of a depression-

type ISW depicted in earlier Figure 35. Figure 51 shows that the ISW speed is 

generally dominated by the horizontal velocity component at the locations 

sampled with the exception of the location defined by the plane of the theoretical 
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turning point.  At this location, there is also a strong vertical velocity component 

likely attributable to the wave’s encounter with the vertical face of the obstacle 

which happens to be coincident with the turning point plane.   What is 

interesting about this collection of velocity profiles is that examples 

characteristic of an elevation-type ISW profile are absent until the wave has 

travelled well-beyond the location of the theoretical turning point.  The velocity 

profiles reveal that a complete change in polarity is achieved at a time step 

occurring somewhere between probe locations P9 and P10.  This location 

generally corresponds to TS 31,400 in the simulation (Figure 49d). 

 

To better understand how the polarity transformation takes place, a 

second time series of evenly-spaced velocity profiles is presented in Figure 52.  

These profiles are uniformly-spaced between probe locations 9 and 10 identified 

earlier in Figure 51.   This figure shows that as the simulation proceeds in time, 

the horizontal velocity vectors migrate from locations associated with a 

depression-type internal wave (Quadrants II and IV) to locations expected to be 

associated with an elevation-type wave (Quadrants I and III).  This figure also 

shows that there is a progressive increase in the magnitude of the vertical 

velocity vector component relative to the horizontal velocity vector until the 

former exceeds the magnitude of the later.  After the transformation in polarity 

is complete ─ that is to say the horizontal velocity vectors have migrated to new 
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Figure 52.  Detailed time series plots of normalized velocity vector profiles for a 
depression-type ISW transitioning to an elevation-type ISW.  Figure shows 
uniformly-spaced time series plots beginning at the Probe 9 location depicted in 
Figure 51.  The pycnocline elevation is depicted by a dotted line.  

locations in opposite quadrants (specifically Quadrants I and III), the magnitude 

of the vertical velocity vector once again becomes small relative to the horizontal 

velocity vector. 

4.3.1.2  Slope-Shelf Scenario 

 This non-dimensional simulation begins once again with an already-

formed depression-type ISW of mode-1 advancing in open water and after a 

fashion, advancing to a position where it encounters a short incline whose slope 

is about 2°.  At its’ crest, this incline segues onto an elevated plateau that is 

horizontal for its full extent.  The theoretical turning point is located along the 
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face of the incline between its toe and its crest.  Physically, this modeling 

scenario is the same as the shelf-only scenario described in the previous section 

of this dissertation in all ways with one exception ─ the introduction of a short 

incline at the face of the shelf.  According to investigations conducted by Pratson 

and Haxby (1996), the geometry of this modeling scenario is similar to that 

which might be encountered at a number of locations along the margins of the 

continental United States (see Figure 46).  The time-series numerical simulation 

for this so-called “slope-shelf” scenario (earlier Figure 47b) is depicted in Figure 

53. 

 

Unlike the shelf-only scenario (Section 4.3.1.1), the slope-shelf scenario 

shows evidence of interaction between the advancing ISW and the obstacle much 

earlier in the simulation by virtue of when changes in the symmetry of the 

pycnocline can be first observed ─ in this case, at TS 4100 (Figure 53a).  Later, 

at about TS 6200, the trough of the ISW has already crossed the theoretical 

turning point plane and the pycnocline is now beginning to demonstrate 

asymmetry in its profile.  By about TS 8000 in the simulation (Figure 53a), there 

is visual evidence (albeit slight) of the formation of an ISW bore not unlike the 

bore that is commonly associated with a breaking surface wave previously 

illustrated in Figure 20.  However, as the simulation proceeds, there is no 

overturning of the bore, suggesting that the system parameters for this 
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Figure 53a.  Non-dimensional numerical simulation showing an encounter 
between a depression-type ISW and a slope-shelf obstacle. The dashed line 
corresponds to the vertical position of the theoretical turning point defined by h1 
= h2. Re = 9.372e4, Fn = 0.085, and Q = 24 corresponding to a slope of about 2.4°. 
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simulation satisfy a condition of weak non-linearity (Vlasenko and Hutter 

2002).32   In subsequent time steps (TS 11000 – Figure 53b), this bore has begun 

to form roughly into an elevation-type ISW.   By TS 13,200, an ISW of elevation 

is clearly evident in the simulation.  However, as was the case with the shelf-

only numerical simulation trial, visual evidence of the original ISW persists 

until well-after the wave train has based the turning point location as suggested 

by a single residual stream line at TS 15,200 (Figure 53b).   

 

                                                 

32 There are two other plausible explanations for the absence of bore formation.  The first 
is that the grid spacing may be too wide to simulate this hydrodynamic feature as it passes. A 
grid spacing that was too large would tend to average-out or ‘smear’ or what might be sharper 
pycnocline profile. More sophisticated (commercial) CFD programs can compensate for this lack 
of resolution by making the grid or finite element net much finer in the vicinity of a shock wave 
or bore.  

The other possible explanation could be due to the numerical scheme itself. Once the 
wave breaks, or even close to the time before it breaks, the finite difference scheme might be 
inadequate to capture the physical details of wave breaking and overturning.  For example, if the 
two fluids in question were immiscible (oil and water), the numerical results would show a 
distinct oil phase and water phase completely connected and not oil particles dispersed in water 
as you would expect in the reality. Special CFD numerical techniques like ‘particle-in-cell’ 
(Harlow 1955, 1987) might be better suited for simulating this type of phenomenon.  In 
summary, at the time of wave breaking, the finite difference technique appears to be adequate, 
although the phenomena might demand a higher grid resolution in the vicinity of the breaking 
wave. 
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Figure 53b.  Continued. 
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Additional insights concerning the interaction between the ISW and the 

slope-shelf obstacle can be obtained from the examination of higher-resolution 

figures.  From inspection of the numerical wave simulation depicted in Figure 

53, it appears that the shoaling process begins at about TS 3800 or so.  However, 

this sequence of figures also reveals that not all aspects of the breaking 

progression occurred through the course of the simulation.  Appendix C contains 

higher-resolution figures of this particular modeling scenario beginning about 

TS 3800.  The figures in this appendix reveal that the pycnocline does not 

appear to shoal or break.  What does appear is the formation of a vortex or gyre 

along the face of the obstacle.  This feature forms as the trough of the pycnocline 

approaches the vertical plane corresponding to the location of the theoretical 

turning point. Subsequent figures from the simulation sequence show that the 

vortex does not become well-defined until after the trough has passed beyond the 

turning point plane. Later in the simulation sequence, the higher-resolution 

figures in Appendix C show that this vortex transitions into a plane or zone of 

strong upwelling flow.  These two aspects of the numerical simulation are 

depicted in detail in Figure 54. 

 

Figure 55 shows the normalized velocity profiles for both the horizontal 

and vertical velocity vectors at various probe positions in the computation 

domain as the ISW passes those locations.  Once again, these profiles are
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Figure 55.  Time series plots of normalized velocity vector profiles for a 
depression-type ISW at ten uniformly-spaced locations during an encounter with 
a slope-shelf obstacle. Horizontal velocity vectors are blue (or solid) lines.  
Vertical velocity vectors are red (or dashed) lines.  The pycnocline elevation is 
depicted by a dotted line.   

 

consistent with profiles for a depression-type ISW depicted earlier in Figure 35.  

This figure shows that the wave speed continues to be dominated by the 

horizontal velocity component at the locations sampled.  However, unlike the 

shelf-only trial, the change in polarity from a depression-type ISW to a wave of 

elevation occurs earlier in the slope-shelf simulation.  This change can be 

observed between probe Locations P4 and P5.  Figure 56 shows the details of the 

polarity reversal in the context of the velocity vector profiles. 
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Figure 56.  Detailed time series plots of normalized velocity vector profiles for a 
depression-type ISW transitioning to an elevation-type ISW.  Figure shows 
uniformly-spaced time series plots beginning at the Probe 9 location depicted in 
Figure 55.  The pycnocline elevation is depicted by a dotted line. 

4.3.1.3 Slope-Only Scenario 

The first two numerical simulation trials described in this dissertation 

demonstrated how a mode-1 type ISW interacts with obstacles representing 

analogues to the continental shelf/continental slope. Those simulations 

confirmed a key ISW property concerning the onset of wave polarity reversal. 

Theoretically, an ISW will undergo a reversal in polarity when topographic 

conditions on the seafloor relative to the water depth are such that h1 = h2, 

corresponding to when the vertical plane defining the turning point has been 

encountered. 



194 

 

Another useful scenario to evaluate is the interaction between an ISW and 

an obstacle best described as a uniform slope.  Unlike the earlier two trials, 

though, under this modeling scenario, a mature fully-developed ISW experiences 

a constantly changing (diminishing) depth condition for the duration of the 

simulation.  That is, h1 remains essentially constant during the course of the 

simulation while the depth of h2 decreases, approaching zero owing to the 

existence of the uniform slope.  As the ISW approaches and traverses the 

theoretical turning point plane, it is possible to observe the evolution of 

breaking-like phenomena.  The simulation also reveals the ultimate fate of the 

ISW once it has reached the terminus of the computational domain.  In this case, 

the simulation shows what happens to the advancing ISW when the depth of the 

h2 layer approaches zero.   

 

Figure 57a shows the non-dimensional numerical simulation in progress 

at about TS 20,000.  The ISW is a depression-type of mode-1.  Also apparent in 

the simulation is the lesser trailing elevation wave followed by the dispersive 

wave train.  At this point in the simulation, the streamlines associated with the 

leading ISW are well-developed.  Moreover, the streamline contours are also 

beginning to reveal the effects of the obstacle as their orientation (geometry) are 

already parallel to the face of the slope.  By about TS 26,000 (Figure 57b), the 

simulation shows signs of interaction between the ISW, as represented by the 
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Figure 57a.  Non-dimensional numerical simulation showing an encounter 
between an elevation-type ISW and an extended slope-type obstacle. The vertical 
dashed line corresponds to the position of the theoretical turning point defined 
by h1 = h2.  Re = 2.303e5, Fn = 0.074, and Q = 50 corresponding to a slope of about 
1°. 



196 

 

 
Figure 57b.  Continued.
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pycnocline, and slope.  The ISW appears to be less sinusoidal and more 

asymmetric in form.  As part of the interaction process, the downwind face of the 

internal wave pycnocline has become aligned with the gradient of the slope. 

 

By about TS 29,500, the trough of the pycnocline has reached the plane of 

the theoretical turning point and the profile of the ISW is clearly asymmetrical.  

Moreover, the trailing face of the ISW is beginning to rotate forward and is 

increasing in height (elevation) suggesting that a polarity transition is 

underway.  However, there is no evidence of the formation of a bolus, as had 

been the case with the previous two trials.  What is also noteworthy about this 

simulation is that the streamline contours at the front of the ISW are beginning 

to separate (i.e., spread apart) whereas the streamline contours at the back of 

the wave, in the vicinity of the theoretical turning point plane, are increasing in 

density suggesting greater (vertical) fluid particle velocities in the back of the 

wave than in the front.  By about TS 37,500 (Figure 57b), there is a well-formed 

elevation-type internal present in the simulation.    

 

A short time later, at about TS 39,500, a second well-developed elevation 

ISW has appeared in the simulation (Figure 57b).  Successive time steps in the 

numerical simulation show that a train of multiple ISWs have developed beyond 

the location of the theoretical turning point plane (Figure 57c).  Also present now 
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Figure 57c.  Continued. 
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is a collection of densely-packed streamline contours.  At about TS 56,000 

(Figure 56d), the simulation reveals that the wave train is comprised of a 

collection of uniformly-spaced ISWs progressing up the face of the slope.  The 

wave train appears to reach its maximum horizontal extent (up the face of the 

slope) at about TS 69,000 (Figure 57d).  After this time, the wave train appears 

to be defined by a quasi-stationary collection of small boluses.  In a field study by 

Bourgault et al. (2007), they observed the occurrence of these boluses.  Upon 

review of the details of this simulation, found in Appendix D, this collection of 

boluses appear to be a collection small elevation-type ISWs whose origin appears 

to be attributed to the dispersive wave train. 

 

Additional insights concerning the interaction between the ISW and an 

extended slope-type obstacle can be obtained from the examination of higher-

resolution figures.  From inspection of the numerical wave simulation depicted 

in the series of exhibits comprising Figure 57, the shoaling process appears to 

begin at about TS 21,000, as this is the approximate time in the simulation that 

the streamline contours begin to encounter the obstacle.  However, unlike the 

previous two simulations described earlier in this dissertation, Figure 57 reveals 

that breaking progression for an internal wave encountering an extended slope-

type obstacle manifests itself somewhat differently.  To evaluate the details of 

this breaking progression in more detail, Appendix D contains higher-resolution 
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Figure 57d.  Continued.
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figures of this particular modeling scenario beginning about TS 18,000 in the 

simulation.  Based on an inspection of the figures in this appendix, it can be 

observed that the ISW does appear to shoal and break, but in a manner slightly 

different from the first two simulations.  By about TS 29,000, the profile of the 

ISW is visibly asymmetric at this point in the simulation as its trough has 

reached the approximate location of the theoretical turning point plane (defined 

as h1 = h2).  Because of shoaling, the pycnocline associated with the incoming 

depression-type internal wave now appears to have evolved into a wash-down 

like feature usually considered to be a precursor to wave breaking.  At least two 

elevation-type ISWs also now appear in the numerical simulation behind the 

leading wave.   

 

As the simulation progresses, the wave-front continues to advance.  

Subsequent figures from the simulation sequence show additional elevation-type 

ISWs evolve as the wave train passes through the theoretical turning point 

plane.  By TS 48,000, about six elevation-type waves (or boluses) appear in the 

simulation.  Later in the simulation sequence, the exhibit shows that the 

collection of elevation-type waves/boluses grow in number and appear to “march” 

up the face of the slope. Recalling the ISW breaking classes proposed by Emery 

and Gunnerson (Figure 19), this simulation appears to be characteristic of the 
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“internal surf” class in that the computational scenario has produced multiple 

boluses.  Selected details of this simulation are depicted in Figure 58. 

 

Figure 59 shows the non-dimensional profiles for the horizontal and 

vertical velocity vectors at several locations before and after the location of the 

theoretical turning point.  When compared to the other trials described in this 

dissertation, this figure shows an exceedingly strong horizontal velocity 

component for the ISW, through the course of the simulation, as it advances up 

the slope.  Inspection of Figure 59 also shows that the reversal in ISW polarity 

appears to occur at some point in the numerical simulation between Probe 

locations 8 and 9.  This transition in polarity is captured when the velocity 

profiles are plotted, as illustrated in Figure 60.  Unlike the earlier trials, what is 

conspicuous about this particular modeling scenario is that there is a persistence 

of a much larger vertical velocity component, at most of the probe locations, for 

longer in the simulation. 
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Figure 59.  Time series plots of normalized velocity vector profiles for a 
depression-type ISW at ten uniformly-spaced locations during an encounter with 
an extended slope obstacle. Horizontal velocity vectors are blue (or solid) lines.  
Vertical velocity vectors are red (or dashed) lines.  The pycnocline elevation is 
depicted by a dotted line.   
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Figure 60.  Detailed time series plots of normalized velocity vector profiles for a 
depression-type ISW transitioning to an elevation-type ISW.  Figure shows 
uniformly-spaced time series plots beginning at the Probe 8 location depicted in 
Figure 59.  The pycnocline elevation is depicted by a dotted line.   

4.3.1.4  So-called Short-Slope Scenario 

The first series of numerical simulations described in Sections 4.3.1.1 and 

4.3.1.2 (respectively, the shelf and the slope/shelf simulations) successfully 

demonstrated how a depression-type ISW is transformed into an elevation-type 

ISW when the plane of the theoretical turning point is traversed.  Examples of 

the wave breaking classes produced during these simulations were limited to the 

so-called “internal swash” classes – Classes 3 and 4 as suggested by Emery and 

Gunnerson (1973) in Figure 19. Two of the simulations demonstrated quasi-
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breaking phenomena associated with the theoretical turning point, including the 

production of a bolus (albeit limited).  However, a simulation capable of 

producing a wave-breaking progression that demonstrated all four phases in the 

sequence is sought.  To this achieve the full wave-breaking progression, a 

numerical simulation involving a much-shorter slope was evaluated.  

 

The numerical simulation depicting the interaction between an ISW and 

the so-called short-slope obstacle can be found in Figure 61.  This particular 

computational arrangement comports with the experimental wave tank set-up 

used by Michallet and Ivey (1999) to successfully evaluate ISW breaking on a 

uniform slope.  For this trial, the aspect ratio Q is equal to about 23, producing 

an incline whose slope was about 2.5° degrees.  Unlike the previous numerical 

simulation trials, evidence of shoaling appears well-before the ISW has reached 

the face of the obstacle.  Figure 61a shows a well-developed ISW of a mode-1 

type at about TS 18,500 in the simulation.  The ISW has yet to encounter the 

obstacle as the geometry of the streamlines are ellipsoidal, consistent with an 

unfettered ISW advancing through open water.  By about TS 19,300, the 

streamlines are now showing signs of deformation as the orientation of the 

outermost streamline contours of the ISW are beginning to parallel to the 

obstacles’ face.  By about TS 20,300, the elevation of the pycnocline has begun to 

recede down the face of the slope.  This decline takes place while the trough of 
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Figure 61a.  Non-dimensional numerical simulation showing an encounter 
between a depression-type ISW and a so-called short-slope obstacle. Re = 
2.096e4, Fn = 0.075, and Q = 22.9 corresponding to a slope of about 2.5°. 
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the ISW itself is still distal relative to the face of the obstacle.  In subsequent 

time series, as the internal wave continues to approach the obstacle, the 

elevation of the pycnocline continues to decline demonstrating a precursor 

feature of wave breaking generally referred to as “backrush” or “wash-down.” 

The simulation also shows that the advance of the ISW is accompanied by a 

compliment of streamline contours whose geometry mirrors the face of the slope 

as the time series progresses.  

 

By about TS 21,100, the decline (decay) in the ISW’s amplitude has 

reached its lowest vertical extent in the simulation.   Figure 61b shows a 

depression-type ISW shoaling (breaking) at about TS 21,500 is evident by virtue 

of an overturning wave front.  In subsequent time steps, the simulation shows 

that there is a reversal in the decline of the pycnocline’s elevation and the 

density interface is now beginning rise and regain some of its original elevation 

(Figure 61b).  By TS 9400, an outline of a bolus is now apparent in the 

simulation.  What is also interesting about this particular portion of the 

numerical simulation is that from about TS 21,700 to TS 22,500, the location of 

the streamline orbital foci are quasi-stationary.  Moreover, as the bolus grows in 

subsequent time steps (TS 22,500 to TS 24,700), the streamline contours appear 

to both migrate in a direction opposite to that of the wave’s forward motion as 

well as diminish in intensity by virtue of a decline in their relative density.  By 
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Figure 61b.  Continued. 
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about TS 25,700 (Figure 61c), the bolus appears to have reached its greatest 

extent of advancement up the slope. 

 

The progression in the wave-breaking sequence depicted in the series of 

exhibits comprising Figure 61 is not unlike that generically described by Galvin 

(1968), Lynch (1982), and others, but also the experimental demonstration by 

Helfrich (1992) Michallet and Ivey (1999).  Additional insights concerning the 

interaction between the ISW and this type of obstacle can be obtained from the 

examination of figures possessing higher-resolution details of the simulation.  

Appendix E contains a higher-resolution sequence of the time series plots of the 

wave breaking sequence depicted in Figure 61.  These plots also include the 

introduction of velocity vectors.  In general, the four principal phases in the ISW-

breaking progression are shown in Figure 62.  These phases include the initial 

entrainment of the ISW demonstrated by “wash-down” at about TS 21,100 

(Figure 62), “wave breaking” and overturning of the pycnocline at about TS 

21,600 (Figure 62b), the formation of a “bolus” or bore-like feature at about TS 

23,100 (Figure 62c), and ultimately “run-up” or wave surge up the obstacle slope 

at about TS 25,000 (Figure 62d).  At several steps in the simulation, K-H─like 

features are also evident.   These details are revealed in the higher–resolution 

exhibits found in Appendix E. 
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Figure 61c.  Continued.
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Figure 61d.  Continued. 
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4.3.1.5 Reverse Shelf-Only Scenario 

The simulations described thus far in this dissertation begin with an ISW 

forming in deep water, travelling some distance, and then entering shallow 

water where it shoals.  Once the theoretical turning point ─ the vertical plane 

defined by h1 = h2 ─ has been traversed by the advancing ISW, a reversal in wave 

polarity can be observed.   A question that naturally arises is whether a change 

in wave polarity can be observed assuming a somewhat different modeling 

scenario – one that begins with the ISWs originating in shallow water and from 

there, traveling into deeper water.  This scenario would not be unlike that 

described by Nash and Moum (2005) when they investigated the formation of an 

ISW associated with a river discharging into the Pacific Ocean.   

 

Figure 63a shows a time-series of simulations involving a reverse shelf 

type of topographic obstacle and an ISW of elevation. Once the simulation is 

underway, the time series shows that the streamline contours associated with 

the ISW respond to changes in the obstacle geometry well-before the pycnocline 

passes the location of the theoretical turning point plane.  At about TS 17,200, 

the streamline contours appear to “pour” down the face of the shelf (Figure 63b).  

This topographic feature corresponds to the plane of the theoretical turning 

point. The crest of the ISW does not encounter the turning point plane location 

until a short time later, at about TS 19,800 (Figure 63a).  Later, at about TS 

20,800, (Figure 63b), there is evidence of the formation of a “reverse” bore
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Figure 63a. Non-dimensional numerical simulation showing an encounter 
between an elevation-type ISW and a reverse-self obstacle. The vertical dashed 
line corresponds to the position of the theoretical turning point defined by h1 = h2.  
Re = 3.314e4 and Fn = 0.085. 
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Figure 63b.  Continued. 
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which, by TS 24,800 (Figure 63c), is now a clearly-formed depression-like ISW.   

The evolution in ISW polarity reversal proceeds for about another 15,000 time 

steps in the simulation (Figure 63e) until about TS 40,400 at which time the 

streamline contours associated with the leading elevation wave disappears 

leaving only a depression-type ISW.  

 

Figure 64 shows the normalized velocity profiles of the horizontal and 

vertical velocity vectors associated with the reverse shelf-only simulation.  These 

velocity profiles are consistent with profiles for an elevation-type ISW until the 

polarity transformation is complete ─ somewhere between Probe Locations 9 and 

10.   Figure 65 also shows that the wave speed continues to be dominated by the 

horizontal velocity component at the locations sampled.   
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Figure 63c.  Continued. 
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Figure 63d.  Continued.
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Figure 63e.  Continued.
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Figure 64.  Time series plots of normalized velocity vector profiles for a 
depression-type ISW at ten uniformly-spaced locations during an encounter with 
a reverse-shelf obstacle. The pycnocline elevation is depicted by a dotted line.
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Figure 65.   Detailed time series plots of normalized velocity vector profiles for 
an elevation-type ISW transitioning to a depression-type ISW.  Figure shows 
uniformly-spaced time series plots beginning at the Probe 11 location depicted in 
Figure 64.  The pycnocline elevation is depicted by a dotted line.   

4.3.1.6  Isolated Topographic Obstacles 

The Heezen-Tharp map and subsequent spin-off maps revealed that one of 

the most ubiquitous features along the ocean floor are the many submarine 

volcanoes, seamounts, guyots, coral atolls, and banks.  As mentioned earlier in 

this dissertation, current estimates (Wessel, Sandwell, and Kim 2010) nominally 

place the number of these features at around 100,000.  In terms of surface area, 

these features account for about 8 percent of the ocean’s surface area (earlier 

Table 8).  Although they may never breach the surface, the many isolated 

topographic obstacles on found along the seafloor interrupt what can generally 



  224 

 

be a uniform (flat) abyssal landscape by virtue of their near vertical topographic 

relief.  Figure 66a illustrates how quickly the seafloor topography can change 

when this type of topographic feature is encountered.  The Healy Seamount, for 

example (Figure 66b), rises approximately 1000 m nearly vertically above the 

ocean floor.  It is this striking change in elevation relative to the otherwise 

uniform abyssal topography that researchers cite (earlier Table 1) as one of the 

key factors contributing to the formation of  ISWs, including solitary waves in 

the deep ocean.  Figure 66c illustrates an example of a MOR.  Figure 66d 

provides a birds-eye perspective of the same type of feature that also highlights 

the off-setting transform fault as well as some lesser submarine volcanic vents 

commonly associated with a MOR. 

 

For the purposes of this series of numerical simulations, these prominent 

yet isolated topographic features can be modeled in either of two ways ─ as 

analogues of rectangles (Figure 47e) or as triangles (Figure 47f). For example, 

several researchers have used an isolated triangle to model an internal wave’s 

encounter with a MOR-like feature (e.g., Guo et al. 2004, Aguilar and 

Sutherland 2006, and Petrelis, Llewellyn-Smith, and Young 2010).  A third 

potential modeling scenario would involve elliptical- or hemispherical-shaped 

obstacles.  Some researchers (i.e., Chen 2006) have examined ISW encounters 

with this particular type of geometric form in an experimental tank setting.  
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Figure 66.  Examples of isolated topographic obstacles.  (a)  U.S. Navy 
fathometer recorder trace of unnamed seamount located at 14° 20΄ N, 165° 55΄ 
W, in the vicinity of the Marshall Islands. Fathometer orientation trace is 059° 
true North. Image taken from Hess (1946, Figure 8).  (b) Digital Image of the so-
called Healy Seamount (81° 31.57΄ N, 134° 28.80΄ W).  Located about 1100 km 
north of Alaska, in the Arctic Ocean, this recently-discovered seamount is 
approximately 30 km long and 13 km wide.  The seamount rises from the 
abyssal plain at a depth of more than 3800 m to a least depth of 
2622 m. The view is from the northeast looking southwest.  In the far 
background (approximately 440 km) away is the Chukchi Plateau, in 
Siberian Russia. False-color image generated by NOAA and the Center for 
Coastal & Ocean Mapping Joint Hydrographic Center (Durham, NH). 

(b) 

(a) 
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Figure 66.  Continued.  (c) Example of MOR bathymetry profile for the East 
Pacific Rise.  The MOR can be found at the km = 0 position in the profile.  Exact 
profile location not reported.  Vertical exaggeration is 20:1. Adopted from Small 
and Sandwell (1994, Figure 1). (d)  Shipboard multi-beam bathymetry image of 
the East Pacific Rise from 9° to 11° N, at 104° W. Bird’s-eye (3D) perspective of a 
MOR looking North shows a transform fault running from the Pacific plate on 
the left  to the North American plate on the right. False-color image generated 
by NOAA/Woods Hole Oceanographic Institute.  See Ryan et al. (2009). 
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This investigator, though, considers such topographic forms unlikely in 

nature and thus an unrealistic modeling scenario given information to the 

contrary on the likely physical forms for submarine features reported in the 

literature (Menard 1984 and 1996, Shepard 1973). 

 

Introduction of isolated obstacles into a numerical simulation provides 

another opportunity for evaluating the behavior of ISWs.  It also allows 

provides the opportunity to better understand the role of the so-called “blocking 

parameter.”  Described previously by Wessels and Hunter (1996) and Sveen et 

al. (2002), the blocking parameter is used to understand what influence an 

obstacle’s (barrier’s) height might have on the transmission properties of an 

ISW. The literature distinguishes between blocking parameters that apply to 

either an elevation- type or depression-type ISW.  In the case of elevation-type 

ISWs, Wessels and Hunter (1996) defined the blocking parameter B as: 

 
2

ShB
h

=  (4.9) 

where hs is the obstacle’s height.  When a depression-type ISW is involved, Sveen 

et al. (2002) suggest that the blocking parameter ζ, describing the degree of 

interaction between an ISW and an obstacle, can be expressed as: 

 
( )

( )
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1 2
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Table 14. Suggested ISW Blocking Parameter Values and Effects. 
 

  

The blocking effects imposed by a submarine obstacle on the transmission of an 

ISW have been evaluated by a few investigators, and their findings are described 

in Table 14.  For his part, Kuo (2005) investigated the blocking parameter ζ , and 

characterized ISW interaction  as either “weak,” “moderate,” or “strong.” 

 

According to Kuo (2005), weak interaction means that the ISW is not 

affected by the obstacle’s presence.  In evaluating the behavior between ISWs 

and vertical wall-like obstacles, Sugimoto, Hosokawa, and Kakutani (1987) 

found that for a barrier of moderate height in relation to the lower fluid layer h2, 

DEPRESSION-TYPE ISW 
ELEVATION-TYPE ISW 

 (Wessels and Hunter 1996)  
Sveen et al. (2002) 

 
Kuo (2005) 

B ≤ 0.6 ISW generally not 
affected ζ < 0.45 ISW generally not 

affected “weak interaction” 

0.8 ≤ B 1.2 
ISW demonstrates 

reflection and limited 
transmission 

0.45 < ζ < 0.55 
ISW demonstrates 
(limited) breaking 

phenomena 

 
“moderate 
interaction” 

B ≥ 1.2 ISW demonstrates 
almost full refection ζ > 0.55 

ISW demonstrates 
full breaking 

phenomena and 
complete energy 

dissipation 

“full interaction” 
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an ISW could pass over it as if it were transparent whereas if the barrier was 

more than moderate in height, the transmission of the ISW is suppressed 

yielding a reflected ISW and wave train. 

 

Rectangular Obstacle.  Figure 67 shows a non-dimensional numerical simulation 

involving a depression-type internal wave and an isolated rectangular obstacle.  

The rectangular form can be used as an analogue for an isolated seamount.  For 

the purposes of this particular numerical simulation, the obstacle dimensionally 

is about twice as long (in the x direction) as it is high (in the z direction).  The 

blocking parameter ζ is equal to 1.5 so “full interaction” (Table 14) between the 

obstacle and the oncoming internal wave can be expected during the simulation.  

The simulation shows a well-developed internal wave at about TS 8500 (Figure 

67a).  The plane of the theoretical turning point is defined by the front face of the 

rectangular obstacle. 

 

At approximately TS 10,100, the streamline contours of the internal 

waves begin to encounter the obstacle.  The encounter is revealed by the 

deflection of the leading edge of the outer-most (downwind) streamline.  By TS 

10,700, the simulation shows that the ISW has become entrained and the 

pycnocline has been draw down-ward along the face of the obstacle ─ the 

location corresponding to the plane of the theoretical turning point.  The 
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Figure 67a. Non-dimensional numerical simulation showing an encounter between a 
depression-type ISW and an isolated rectangular obstacle. The vertical dashed line 
corresponds to the position of the theoretical turning point defined by h1 = h2 .  Re = 
7.528e4 and Fn = 0.068. 
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entrainment/shoaling process becomes more pronounced in subsequent time 

steps as suggested by what now appears to be a “jump” in the elevation of the 

pycnocline at about TS 11,700 (Figure 67b).  In numerical simulations conducted 

by Legg and Klymak (2008), they report the formation of these hydraulic jumps 

when: 

 1sdh N
dx ω

⋅ >  (4.11) 

where ω is the tidal frequency. 

 

Following the entrainment sequence depicted in Figure 67a, the 

simulation (at about TS 12,500) shows that a portion of the advancing internal 

wave has been suppressed by the obstacle as a result of the encounter, and is 

reflected back in the direction from whence it came as predicted by Sugimoto, 

Hosokawa, and Kakutani (1987). In subsequent time steps, a collection of 

streamline contours are present in the simulation suggesting the presence of this 

reflected internal wave.  The streamline contours associated with this reflected 

internal wave can be observed retreating back in the direction of the initial 

generation point.  This hydrodynamic aspect of the numerical simulation is 

depicted in more detail in the higher resolution exhibits found in Appendix F. 
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Figure 67b.  Continued. 
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As the internal wave/obstacle interaction continues to progress, there is 

an apparent reduction in the number of streamline contours associated with the 

transmitted internal wave suggesting a decline in both wave speed and wave 

energy.  By about TS 16,500 (Figure 67c), the outline of the earlier depression-

type ISW has reappeared in the simulation. Moreover, a second elevation-type 

ISW has now appeared. This lesser wave becomes more distinct by TS 192,000 

(Figure 67d), the last frame shown in this particular simulation sequence. 

 

The sequence of exhibits corresponding to the later stages of this 

numerical simulation also reveal that there has been some decay in the speed of 

the wave transmitted beyond the obstacle.  The wave speed decay is evident by 

virtue of a decline in both the number of streamline contours as well as an 

increase in the relative spacing of those contours.  Plots of the normalized 

velocity vectors shown in Figure 68 confirm the decline in wave speed, which is 

estimated to be about 40 percent as a result of the encounter with the obstacle.  

However, these plots also show that there is no evidence of ISW polarity reversal 

following the encounter. Despite the decline in wave speed, the plots of the 

velocity vector profiles confirm that the ISW polarity remains unchanged. 
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Figure 67c.  Continued. 
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Figure 67d.  Continued.



 236 

   

 

Figure 68. Time series plots of normalized velocity vector profiles for a 
depression-type ISW at ten uniformly-spaced locations during an encounter with 
an isolated rectangular obstacle.  Horizontal velocity vectors are blue (or solid) 
lines.  Vertical velocity vectors are red (or dashed) lines.  The pycnocline 
elevation is depicted by a dotted line.   

 

The physical configuration of the numerical simulation depicted in Figure 

68 was devised in such a way that the encounter between the ISW and the 

rectangular obstacle resulted in full interaction between the two ─ that is to say 

the non-dimensional blocking parameter ζ was approximately 0.76 implying that 

the internal wave demonstrates full breaking. The principal features of the 

wave-breaking progression associated with an isolated rectangular obstacle, 

reflecting full interaction, are shown in Figure 69 including the demonstration of 

“wash-down,”  “wave breaking,” and “bore formation.”   
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To provide another hydrodynamic perspective on how an ISW would 

interact with this particular topographic form, the simulation was repeated but 

under a different physical configuration so as to yield a different value for the 

blocking parameter ζ.  Figure 70 shows essentially the same non-dimensional 

simulation depicted in Figure 69 but configured in such a way as to evoke 

“moderate interaction” between the internal wave and the rectangular 

topographic obstacle.  The moderate interaction simulation (blocking parameter 

ζ = 0.5) produced only two phases of the wave breaking progression ─ “wash-

down” and the formation of a “bore” (Figure 70).  A simulation intended to 

demonstrate “weak interaction” (Table 14) between a rectangular submarine 

topographic obstacle and an ISW produced no discernable wave-breaking 

features. 
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Triangular Obstacle.  The time series depicted in Figure 71 once again shows a 

well developed, depression-type ISW of mode-1 at TS 8500 approaching an 

isolated triangular obstacle. The triangular form can be used as an analogue for 

an isolated MOR.  For the purposes of this simulation, the obstacle again is twice 

as long as it is high; it is essentially in the form of an isosceles triangle. The apex 

of the triangle defines plane of the theoretical turning point.  The blocking 

parameter ζ is equal 1.5 so “full interaction” can (theoretically) be expected 

between the obstacle and the incoming ISW during this particular simulation 

trial.   

 

The first frame in the simulation sequence shown in Figure 71a indicates 

that the streamline contours have not encountered the obstacle.  By about TS 

8900, the simulation shows that the most distal streamline contour associated 

with the advancing ISW has begun to encounter the obstacle as that orbital is 

beginning to show signs of distortion.  Evidence of the onset of a full encounter 

between the wave front defined by the pycnocline and the obstacle is not readily 

apparent until about TS 17,000 in the numerical simulation.  At about this time, 

there are signs of ISW entrainment by virtue of wash-down (albeit slight) of the 

pycnocline, and thus “wave breaking.”  Further pycnocline “wash-down” is 

apparent between TS 109,000 and TS 111,000 of the simulation.   
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Figure 71a. Non-dimensional numerical simulation showing an encounter 
between a depression-type ISW and an isolated triangular obstacle.  The vertical 
dashed line corresponds to the position of the theoretical turning point defined 
by h1 = h2.  Re = 6.247e4, Fn = 0.075, and Q = 24. 



  243 

 

  By about TS 113,000, the evolution of the breaking ISW is entering a new 

phase.  The pycnocline is beginning to develop signs of “roll-over” – that is to say 

the crest of the ISW is beginning to overturn onto itself or  ”break.’”  This feature 

is consistent with the next phase of the wave-breaking progression described 

earlier in this dissertation.   

 

What is also apparent during this phase of the simulation is that the 

collision between the ISW and the triangular obstacle once again produces a 

lesser, reflected internal wave.   The presence of this “artifact” is revealed by the 

collection of streamline contours that begin to form on the incident side of the 

obstacle, again as predicted by as predicted by Sugimoto, Hosokawa, and 

Kakutani (1987).  See TS 119,000 (Figure 71b).  In subsequent time steps, it is 

clear that the reflected ISW is now best described as a poorly-defined train of 

turbulence along the pycnocline whose polarity is opposite to that of the original 

incoming ISW.  See TS 133,000.  Lastly, it is worth noting that although some 

portion of the turbulent wave train is transmitted beyond the obstacle, the 

energetics of this hydrodynamic feature appear to diminish as it passes through 

the plane of the theoretical turning point, as discussed below. 
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Figure 71b.  Continued. 
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Figures 71c and 71d show the remaining time steps of the numerical 

simulation depicting an encounter between an ISW of depression and an isolated 

triangular obstacle.  These exhibits illustrate that the transmitted ISW that has 

advanced to a location well-beyond the position of the obstacle.   These exhibits 

also reveal that there has been some decay in the speed of this transmitted wave 

by virtue of both a decline in the number of streamline contours as well as an 

increase in their relative spacing. Moreover, consistent with the trial involving 

the rectangular topographic obstacle, there is once again no evidence of a 

reversal of the polarity of the ISW following an encounter with the triangular 

obstacle.  Plots of the velocity vectors contained in Figure 72 confirm that there 

is about a 40 percent decline in the wave speed following the encounter but the 

ISW polarity remains unchanged. 

 

Additional insights concerning the interaction between an ISW and an 

isolated topographic obstacle can be obtained from the examination of higher-

resolution figures.  Appendix G contains a sequence of higher-resolution time 

series plots of the wave breaking sequence depicted in Figure 71, including the 

introduction of velocity vectors.  The two principal steps in the ISW-breaking 

progression have been reproduced in the other simulations associated with this 

research and are shown in Figure 73.   They include the “wash-down” phase (at 

TS 10,700) and the ‘”breaking” phase (at TS 11,100). 
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Figure 71c.  Continued.
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Figure 71d.  Continued. 
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Figure 72. Time series plots of normalized velocity vector profiles for a 
depression-type ISW at 12 uniformly-spaced locations during an encounter with 
an isolated triangular obstacle.  Horizontal velocity vectors are blue (or solid) 
lines.  Vertical velocity vectors are red (or dashed) lines.  The pycnocline 
elevation is depicted by a dotted line. 
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The physical configuration of the numerical simulation depicted in Figure 

71 was such that the encounter between the ISW and the triangular obstacle 

evoked “full interaction” between the two.  The magnitude of the blocking 

parameter ζ was approximately 0.8.  To provide another perspective on how an 

ISW would hydrodynamically interact with this type of topographic shape, the 

simulation was repeated but under a different dimensional arrangement 

yielding different value for the blocking parameter ζ.  Figures 74 and 75 show 

essentially the same non-dimensional simulation depicted in Figure 71 but 

configured in such a way as to illustrate, respectively, “moderate” and “weak 

interaction” with the topographic obstacle.  The “moderate interaction” 

simulation (blocking parameter ζ = 0.5) essentially generated all four phases of 

the wave breaking progression (Figure 74).  As predicted by theory, the “weak 

interaction” simulation (blocking parameter ζ = 0.39) produced on a modest 

wash-down feature and a questionable bore-like feature (Figure 75) suggesting 

little or no interaction.   

 

What distinguishes the “moderate” and “weak interaction” simulations 

from the so-called “full interaction” simulation is the location of the pycnocline 

relative to the obstacle.  In the “full interaction” simulation, the pycnocline has 

migrated to a position relatively close to the obstacle as a result of entrainment 

(shoaling).  In the “moderate interaction” simulation, there is even more physical
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separation between the pycnocline and the obstacle (Figure 74), suggesting a 

lesser degree of hydrodynamic communication (in the form of shoaling) between 

the two.  Consistent with theory (Table 14), the “weak interaction” simulation 

(Figure 75) illustrates yet even more physical separation between the pycnocline 

and the obstacle implying that the presence of the topographic obstacle has 

little, if any, influence of the propagation of the ISW. 

4.3.2 Quantitative Effects of Topographic Obstacles on ISWs 

The numerical simulation trials depicted in Section 4.3.1 were intended to 

illustrate how ISWs interact with submerged topographic obstacles.  The types 

of obstacle types selected for the simulations (Figure 47) were considered 

representative of the isolated topographic forms likely to be found in a marine 

setting.  Although the simulations provided a reasonable physical representation 

of the wave breaking progression process, there is a qualitative aspect to these 

interactions that deserves some attention.   

 

It was mentioned earlier that a key parameter controlling wave-breaking 

behavior in depression-type ISWs is the blocking parameter ζ (equation 4.10).  

Cheng (2006) has suggested that there is another variable that can also be used 

to evaluate wave breaking behavior.  It is the nonlinear [blocking] parameterαNL
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and it can be expressed as 33: 

 
2

i
NL

a
h

α =  (4.12) 

 

When considering both equations 4.10 and 4.11, researchers have been 

able to characterize the interactions as “weak,” “moderate,” or “strong” (i.e., 

“breaking”).  In general, as the magnitude of the blocking parameters increase, 

the effect an obstacle’s relative height has on an internal wave’s behavior 

becomes more pronounced resulting in some moderation in the wave’s 

properties.  Some of these effects will be examined in the following pages of this 

dissertation. 

 

To evaluate the moderating influence a topographic obstacle has on ISW 

properties, 36 numerical simulation trials representing different modeling 

configurations were conducted using an isolated triangular obstacle.  Results 

from these simulations are presented in Figures 76 through 78.  In Figure 76, 

the effect of the non-linear parameter on the normalized amplitude of the 

transmitted ISW, following its encounter with the triangular obstacle, is 

illustrated.  Figure 76(a) shows the numerical simulation trial results compare 

                                                 

33 Not to be confused with the K-dV nonlinear coefficient α cited earlier in equation 2.2. 
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to experimental data collected by Kuo (2005), Chen (2006), and Cheng (2006).  

The trend of those experimental data can be approximated using a MATLAB-

generated best-fit curve in Figure 76(b).  This 2nd order polynomial curve 

indicates an inverse relationship between the magnitude of the transmitted 

wave amplitude and the non-linear parameter.  When considering the best-fit 

curve, the results from the 36 numerical simulation trials are generally in good 

agreement with the normalized experimental data reported in the literature.  As 

indicated by Figure 76(b), the 36 numerical simulation trial results straddle the 

best-fit curve.  In general, the slope of the best-fit curve suggests that wave 

speed is sensitive to a change in the magnitude of the blocking parameter. This 

exhibit also suggests that for every unit change in the non-linear parameter, 

there is a six-fold decline in the wave speed.  As the height of the obstacle is 

increased, there is a corresponding decline in the amplitude of the transmitted 

ISW. 

 

To better understand which particular simulation configuration produced 

results that closely-matched the MATLAB-generated best-fit curve, data from 

the 36 numerical simulation trials are differentiated according to magnitude of 

the potential well depth eta η  in Figure 76(c).  This figure shows that for those 

numerical simulation trials based on either η = 10 cm or η = 15 cm, simulation 

results closely match the overall trend of the best-fit curve of the normalized 
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data.   This observation would comport with Grue et al. (1999) who noted good 

correspondence between experimental results and theory for low-amplitude 

ISWs where 
2

0.4 0.5a
h

< < .  When considering this exhibit, the other issue to 

consider is that under certain system configurations, the numerical solution may 

have associated with it non-linearities that are unavoidable, hence the lack of 

correlation between some of the experimental data in the literature and the 

results of certain simulation configurations (the 10 cm/40 cm simulation) as well 

as the occurrence of some outliers (simulations where η = 20 cm).  These 

nonlinearities are once again likely attributable to the influence of the rigid-lid 

assumption. 

 

The effect of the non-linear parameter NLα  on ISW speed following its 

encounter with the triangular obstacle is shown in Figure 77.  Figure 77(a) 

shows the normalized amplitude of the transmitted ISW for 36 numerical 

simulation trials in relation to experimental data obtained by Cheng (2006).  

Figure 77(b) shows how these data compare to a MATLAB-generated best-fit 2nd 

order polynomial curve corresponding to the overall trend of those data.  Once 

again, the simulation results are in good agreement with the best-fit curve.  The 

slope of this curve indicates that the normalized wave speed is inversely 

proportional to the magnitude of the non-linear parameter.  To understand 

which particular simulation configuration produces results that might be in  
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closest agreement with the best-fit curve, the data from the 36 numerical 

simulation trials are presented in such a way in Figure 77(c) to allow them to be 

differentiated according to the magnitude of the potential well depth η. This 

exhibit shows that for those numerical simulations based on either η = 10 cm or 

η = 15 cm, results are produced that closely match the overall trend of the best-

fit curve as well as the predictions of Grue et al. (1999) concerning small-

amplitude ISWs in experimental settings. 

 

The numerical simulation trial results depicted in Figures 73 through 75 

illustrate the effects of the nonlinear parameter NLα on ISW properties following 

an encounter with an isolated triangular obstacle. The next two exhibits in this 

dissertation illustrate the effect such encounters might have on ISW energy 

transmission.  Figure 78 compares the normalized transmitted wave energy EP 

to the nonlinear parameter.  For this study, transmitted wave energy is defined 

as: 

 incident transmitted
P

incident

E EE
E
−

=  (4.13) 

 

Figure 78(a) shows the normalized wave energy associated with the 

transmitted ISW for 36 numerical simulation trials in relation to experimental 

data collected by Cheng (2006) for both triangular and trapezoidal



 
Fi

gu
re

 7
8.

  N
or

m
al

iz
ed

 e
ne

rg
y 

fo
r 

a 
tr

an
sm

itt
ed

 IS
W

 v
s.

 n
on

lin
ea

r 
pa

ra
m

et
er

 α
N

L f
or

 s
im

ul
at

ed
 5

0 
cm

-d
ee

p 
w

av
e 

ta
nk

 tr
ia

ls
  

in
vo

lv
in

g 
an

 is
ol

at
ed

 tr
ia

ng
ul

ar
 o

bs
ta

cl
e.

 P
lo

ts
 s

ho
w

 d
at

a 
fo

r 
36

 n
um

er
ic

al
 s

im
ul

at
io

n 
tr

ia
ls

. (
a)

 S
im

ul
at

io
n 

re
su

lts
 a

re
 c

om
pa

re
d 

 
to

 C
he

ng
 (2

00
6)

 e
xp

er
im

en
ta

l w
av

e 
ta

nk
 tr

ia
ls

 th
at

 in
vo

lv
ed

 b
ot

h 
tr

ia
ng

ul
ar

 a
nd

 tr
ap

ez
oi

da
l o

bs
ta

cl
es

. (
b)

 M
A

TL
A

B
-g

en
er

at
ed

  
be

st
-fi

t c
ur

ve
 o

f C
he

ng
 (2

00
6)

 d
at

a 
de

pi
ct

ed
 b

y 
so

lid
 li

ne
; d

as
he

d 
lin

e 
co

rr
es

po
nd

s 
to

 M
A

TL
A

B
-g

en
er

at
ed

 b
es

t-
fit

 c
ur

ve
 fo

r 
 

si
m

ul
at

io
ns

 p
er

fo
rm

ed
 fo

r 
th

is
 s

tu
dy

.  
(c

) N
um

er
ic

al
 s

im
ul

at
io

n 
tr

ia
ls

 d
iff

er
en

tia
te

d 
by

 m
ag

ni
tu

de
 o

f p
ot

en
tia

l w
el

l e
ta

 η
. 

261



  262 

  

obstacles.34  In Figure 78(b), the numerical simulation data are shown in 

relation to a MATLAB-generated best-fit curve corresponding to the trend of the 

Cheng (2006) data.  This 2nd order polynomial defining this curve generally 

indicates an inverse relationship between the magnitude of the transmitted 

wave energy and the nonlinear parameter. 

 

However, unlike the data plots of the transmitted wave amplitude and 

transmitted wave speed, the normalized plot of the transmitted wave energy 

indicates that while some of the simulation results rest on (or are coincident 

with) the best-fit curve, many fall below it.  A second best-fit curve 

(corresponding to a dashed line) has been added to Figure 78(b) to shows the 

trend of the data from the 36 numerical simulation trials.  Both best-fit curves 

display the same general trend suggesting that the numerical simulation trials 

have accurately captured the basic physics of the interactions between the ISW 

and an isolated topographic obstacle.  The disparity in the relative positions of 

the two curves reflects likely differences between experimental data acquired 

from wave tank trials from “data” acquired through an abstracted numerical 

simulation, in 2D, using a digital computer code. The reader is reminded that 

through the abstraction/modeling process, it is not possible to mathematically 

                                                 

34 A trapezoid can be used as another geometric variant for a seamount type of 
topographic obstacle. 
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capture (or account) for some of the hydrodynamic process expected to occur in 

concert with the wave translating physically through a wave tank in a 3D 

environment.  Another plausible explanation is that certain system configura- 

tions have a tendency to enhance non-linearities in the computer simulation 

more so than others. 

 

An alternative perspective on the influence of obstacle height on ISW 

transmission can be obtained by examining the blocking parameter ζ. Unlike the 

nonlinear parameter NLα , which relies on two variables (equation 4.11), the 

blocking parameter ζ (equation 4.10) is defined using four variables ─ wave 

amplitude, obstacle height, and the respective fluid layer depths.  Figure 79 is a 

scatter diagram that shows how the blocking parameter ζ affects the amount 

wave energy transmitted following an encounter with a topographic obstacle. In 

Figure 79(a), results from the 36 numerical simulation trials are shown in 

relation to normalized experimental data collected by Kuo (2005), Chen (2006), 

and Cheng (2006).   The data shown in this figure are limited to an encounter 

between depression-type ISWs and an isolated triangular obstacle.  The 

distribution of the experimental data suggests a tightly-clustered, linearly-

trending distribution which implies that an increase in the blocking parameter ζ 

magnitude produces a corresponding decrease in the amount of ISW energy  
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transmitted.  The trend for the statistics attributed to the numerical simulations 

is somewhat less apparent by virtue of their less-clustered distribution. 

 

The trend of the data are more clearly revealed when they are fitted with 

MATLAB-generated best-fit curves.  Figure 79(b) shows how the two data sets 

compare when best-fit curves are added ─ in this particular example, the best-fit 

curves are straight lines that indicate generally positive correlation.   Two points 

are noteworthy concerning this exhibit.  The first point is that the distribution of 

the simulation data generally falls above and slightly behind the more-linear  

trending distribution of experimental data.  The second is that the slope of the 

best-fit line for the simulation data (solid line) is higher that the slope for the 

experimental data (dashed line) suggesting a higher rate of energy loss when the 

magnitude of the blocking parameter ζ increases. Overall, it can be concluded 

that the numerical simulation trials conservatively approximate the results 

obtained by other experimentalists as they underestimate those results. 

 

A slightly different perspective on ISW energy transmission can be 

obtained by considering the wave energy transmission coefficient.  This 

coefficient ET can be defined as: 

 Transmitted
T

Incident

EE
E

=  (4.14) 
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Figure 80 compares the wave energy transmission coefficient to the 

blocking parameter ζ. Comparing those variables allows for isolated topographic 

obstacles to be indexed according to their ability to attenuate wave energy.   

Figure 80(a) compares the results from the 36 numerical simulation trials in 

relation once again to comparable data collected by Kuo (2005), Chen (2006), and 

Cheng (2006). Figure 80(b) shows how the simulation data compare to MATLAB-

generated best-fit curves. This logarithmic curve indicates an inverse 

relationship between the magnitude of the transmitted wave energy and the 

blocking parameter ζ. As the magnitude of the blocking parameter ζ increases, 

the amount of transmitted internal wave energy decreases.  

 

What is conspicuous about this particular exhibit is that a several of the  

calculated estimates from the simulations rest on the abscissa, suggesting that 

no energy is transmitted as a result of the internal wave’s encounter with the 

topographic obstacle. Although this might be true, another plausible explanation 

rests with the resolution capability of the finite difference method itself and the 

limitation of the numerical method to capture system variations that are smaller 

than the size of the grid spacing and thus beyond the resolution capability of the 

computer code. 

 



 
Fi

gu
re

 8
0.

 W
av

e 
en

er
gy

 tr
an

sm
is

si
on

 c
oe

ffi
ci

en
t v

s.
 b

lo
ck

in
g 

pa
ra

m
et

er
 ζ 

fo
r 

si
m

ul
at

ed
 5

0 
cm

-d
ee

p 
w

av
e 

ta
nk

 tr
ia

ls
 in

vo
lv

in
g 

an
 is

ol
at

ed
 tr

ia
ng

ul
ar

 o
bs

ta
cl

e.
 (a

) S
im

ul
at

io
n 

re
su

lts
 a

re
 c

om
pa

re
d 

to
 K

uo
 (2

00
5)

, C
he

n 
(2

00
6)

, a
nd

 C
he

ng
 (2

00
6)

 e
xp

er
im

en
ta

l 
w

av
e 

ta
nk

 tr
ia

ls
. (

b)
 C

om
pa

ri
so

n 
to

 M
AT

LA
B

-g
en

er
at

ed
 b

es
t-f

it 
cu

rv
es

. (
c)

 N
um

er
ic

al
 s

im
ul

at
io

n 
tr

ia
ls

 d
iff

er
en

tia
te

d 
by

  
m

ag
ni

tu
de

 o
f p

ot
en

tia
l w

el
l d

ep
th

 e
ta

 η
. 

267       



  268 

  

4.3.3 Static Stability vs. Dynamic Instability 

Earlier in this dissertation, it was mentioned that the artificial formation 

of an ISW, using a potential well as part of the numerical simulation, results 

briefly in a transient phase of wave development during which time there is the 

formation of K-H-like billows corresponding to dynamic instability within the 

fluid.   These billows form when the more dense fluid overlies the less dense 

fluid. When they grow large enough, the billows collapse into turbulence and 

turbulent mixing. Also, the numerical simulation reveals that when an ISW 

interacts with a submarine obstacle, the entrainment process (i.e., “wash-down,” 

“breaking,” “bore formation,” and “surge”) results in conditions conducive to 

hydrodynamic instability resulting in wave-breaking phenomena and the 

production of K-H-like billows.   

 

The question thus arises as to whether there might be an additional 

(quantitative) expression of instability in the simulation aside from an 

evaluation of the changing geometries of the pycnocline, isopycnals, velocity 

vectors, and the like.  The evaluation of the Richardson number in both time and 

space provides another opportunity to evaluate the behavior of the ISW in the 

presence of topographic obstacles.   

 

The ocean tends to be strongly stratified with a less-dense layer of water 

generally resting over a more-dense water layer.  This generally accounts for the 
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well-defined deep ocean pycnocline illustrated in earlier Figure 10.  As ocean 

currents tend to be weak and dominated by shear flow, turbulent mixing is 

intermittent and generally rare in a marine setting owing to the stabilizing 

influence of buoyant forces (Munk 1966). Along the boundaries of the oceans, 

mixing is driven primarily by topographic influences (Kunze and Llewellyn-

Smith 2004).  When turbulent mixing does take place in the open ocean, it can 

usually be attributed in large measure to (breaking) internal waves (Garrett and 

Munk 1979, Gregg 1980, Munk 1981).  The measure of the stability of a 

stratified fluid system such as that described above can be expressed in terms of 

the Richardson number. This number (defined by equation 2.11) represents the 

resistance of a fluid parcel within a 2D water column to external perturbations.  

Mathematically, it describes the ratio of stabilizing buoyant forces the 

destabilizing shear forces caused by a velocity gradient that varies with depth. 

 

Based on classic papers by Miles (1961) and Howard (1961), for an ideal 

2D Boussinesq fluid that is stably-stratified, a linear stable threshold for steady 

horizontal shear flows holds that the respective fluid layers are stable 

everywhere in the water column when Ri ≥ 0.25. When conditions are such that 

0.25 > Ri > 0, dynamic instability dominates the system.  When these conditions 

exist, an exponential growth in turbulence can occur at the density interface 

producing K-H vortices. Eventually, the vortices grow into interfacial waves that 
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overturn and break.  When the Richardson number is less than zero, the system 

is not stably-stratified; the upper fluid layer h1 is heavier than the lower fluid 

layer h2 and buoyant instability prevails. 

 

Another perspective on the potential for turbulence and turbulent mixing 

within a stratified system is to examine the extent to which the water column 

might be statically stable.  Oceanographers frequently rely on the evaluation of 

the normalized density gradient ED, as represented by the following equation: 

 ρ
ρ

≈ −
1

D
dE
dz

 (4.15) 

where ED can be related to the Richardson number  (equation 2.11) through the 

Brunt-Väisälä frequency (equation 2.14): 

 =2
DN gE  (4.16) 

 

Vertical stability within the water column can be defined when ED > 0 

indicating that a less-dense fluid layer rests above a more-dense fluid layer. This 

condition is the most common density configuration encountered in nature.  

When ED < 0, the system is vertically unstable suggesting just the opposite 

scenario ─ a more-dense fluid layer rests above a less-dense fluid layer thus 

encouraging strong vertical mixing (or gravitational overturning) due to the 

influence of buoyant forces.  Various combinations of the physical processes and 

conditions identified in Table 2 can produce a vertically unstable density profile.  
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When ED = 0 , the system is neutrally stable owing to the relative densities of the 

two fluid layers being approximately the same. 

 

Numerical simulations allow for the interrogation of the computational 

domain to determine the nature of the stability conditions. In this regard, 

calculation of both the Richardson number and the normalized density gradient, 

temporally as well as spatially, can provide additional insights regarding the 

hydrodynamics of the system.  The next series of exhibits show an estimated 

Richardson number and the normalized density gradient in relation to some 

examples of ISW/topographic obstacle interactions described earlier in this 

dissertation. These exhibits were selected as they show examples of “strong,” 

“moderate,” and “weak” internal-wave/obstacle interaction (Table 14).  The 

simulation exhibits are limited to trials involving both an isolated rectangular 

obstacle (Figures 81 and 82) as well as an isolated triangular obstacle (Figures 

83 through 85). In the exhibits that follow, three stability “states” are depicted 

graphically: 

State Condition Symbol 

Richardson or K-H  instability 0.0 < Ri < 0.25 ▪ 

Buoyant stability ED > 0 ○ 

Buoyant instability ED ≤ 0 ♦ 
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 As a general observation, both sets of exhibits show the formation of 

zones of instability representing all three stability states.  The region of 

Richardson instability is generally confined to locations immediately above and 

below the pycnocline.  The zone of Richardson instability also closely matches 

the geometry of the pycnocline, particularly when the simulation shows evidence 

of breaking-  like behavior ─ e.g., “wash-down,” “pycnocline overturning,” “bore 

formation,” or “surge.”  A zone of buoyant instability can be observed along the 

leeward face of the advancing ISW in both fluid layers.  An extensive zone of 

buoyant instability occurs in association with the Richardson instability zone, 

but this feature is limited to the lower h2 fluid layer, and appears to occur 

proximally to the ISW.   The balance of the computational domain is occupied by 

stably-buoyant fluid at locations generally distal to the advancing ISW.   

 

A single layer of buoyant instability can be observed along the bottom of 

the computational domain, just above the B2 boundary (Figure 24). This feature 

is a numerical artifact reflecting how the boundary conditions along this surface 

were defined.  See Table 10.   

 

 Once the ISW encounters the obstacle and wave “breaking” occurs; the 

simulations show a turbulent zone along the upwind face of the obstacle where 

all three stability states exist, albeit randomly, within the lower h2 fluid layer.  
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Once the ISW has passed beyond the location of the obstacle, the simulation 

results indicate that hydrodynamically quiescent conditions return, suggesting a 

buoyant stability state or ED > 0.    
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 
 

The key focus of the research was to examine how ISWs interact with 

topographic obstacles and examine how their properties changed when different 

obstacle geometries are encountered. The examination of ISW behavior was 

accomplished by 2D simulations, using a FORTRAN-based computer code 

employing numerical methods that relied on a simplified model of a 3D 

experimental wave tank.  The analytical approach relied on a linearized 

approximation of the Navier-Stokes and continuity equations to derive equations 

for vorticity and stream function. These equations were solved using a finite 

difference numerical scheme with appropriate boundary conditions.  The 

numerical results were post-processed using an academic version of MATLAB to 

obtain summary data and graphs.   Approximately 120 numerical simulation 

trials were conducted as part of this research.  The 2D computational results
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obtained were compared to the 3D experimental results reported in the 

literature.  

 

• This research was able to successfully generate a mode-1 ISW of both 

elevation and depression.  Once the wake-generated internal waves reached 

steady state, it was possible to measure the wave’s properties (e.g., amplitude 

and energy) and compare those to data in published studies.  The numerical 

simulation trial results generally agreed with experimental studies. 

 

• The finite difference solutions for 2D ISWs displayed a variety of 

hydrodynamic phenomena associated with this type of fluid flow. These 

solutions and key measures derived from them compare favorably with both 

qualitative and quantitative information reported in the scientific literature.   

o For example, this research successfully reproduced certain ISW 

behaviors observed and reported such as:  wave breaking, K-H like 

features, polarity reversal, wave reflection, and the production of 

multiple boluses. 

o As for the quantitative results, the numerical simulations were in 

substantial agreement with the empirical data for some parameter 

ranges.  A lack of agreement in some cases is likely due to (a) the 

artifacts of the numerical method employed or possibly (b) the 



  283 

  

inability of this 2D simulation to represent three-dimensional 

effects observed experimentally. 

 

• The simulations involving simple geometric forms, representing 

physiographic features that might be found in a marine setting and likely to 

interact with an interfacial wave, was useful in reproducing ISW phenomena 

reported in the literature.  Such simulations provide a useful exploratory tool 

in the evaluation of basic ISW properties observed in the field or re-created in 

an experimental setting. 

 

• Depending on the type of obstacle geometry encountered, different ISW 

responses were generated by these simulations.  

o Simulations involving isolated topographic obstacles were 

influenced in large measure by the magnitude of either the 

nonlinear parameter NLα or the blocking parameter ζ.  When the 

interaction between and ISW and an isolated obstacle was strong, a 

portion of the incoming was reflected rather than transmitted. 

o Simulations involving the so-called short-slope scenario 

demonstrated the full range of the wave-breaking progression.  The 

key steps in this progression included “wash-down,” “breaking,” 

“bore,” and “surge.”    
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o Changes in streamline orbital geometry were observed well-before 

there were any discernable changes in the geometry of the 

pycnocline. 

o Simulations involving monolithic-like obstacles (shelf, slope-shelf, 

and extended-slope) successfully produced reversals in ISW 

polarity. 

5.2 Recommendations 
 

The number of papers published evaluating ISW behavior in an experimental 

wave tank setting exceeds those investigations based solely on numerical 

simulations. Any one of the six geometric modeling scenarios evaluated in 

Sections 4.3.1 and 4.3.2 of this dissertation merit further detailed study as a way 

of advancing the state of knowledge concerning ISW behavior. To this end, 

investigations based on computer simulations of hydrodynamic phenomena in 

the past have proven to be an efficient and effective research tool (e.g., Vlasenko 

and Hutter 2002) and their utility to the study of ISW behavior merits further 

evaluation.  Nevertheless, questions have been raised by both practitioners and 

lay-people alike about the physical representativeness of numerical solutions. 

 

• Computer models simulating the hydrodynamic behavior of fluids have 

been available for many years. Despite their widespread availability, 
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there have also been questions raised about the reliability of such models 

in general (e.g., Oreskes, Shrader-Frechette, and Belitz 1994, Oreskes 

2000). Spedding (2003) explores some of the issues associated with 

comparing experimental result with numerical simulations. Eisenberg et 

al. (1999) have provided some general recommendations with respect to 

how to improve the reliability of computer-based models.  Coleman and 

Stern (1997), Roache (1998), and Coleman (1998) discuss how to address 

(and improve) the reliability of CFD-based computer code results. 

 

• In spite of its utility, the finite difference method can be computationally 

inefficient.  For he purposes of this dissertation, the simulations required an 

extensive computational capacity that frequently exceeded the potential of 

the computing environment used.  Finite element methods, such as 

boundary-fitted techniques, requiring fewer computational cells (and 

computer capacity), might introduce computational efficiencies and produce 

results with fewer numerical errors.  Lagrangian approaches may also lead to 

enhancements in computational precision as well as in the elimination of 

numerical artifacts. 

 

• Previous empirical investigations of ISW behavior were conducted in 3D 

environments that also included 3D obstacles.  Undoubtedly, some of the 
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differences in the simulation results are due to dimensionality.  Other 

differences between these results and the 3D investigations may be due to 

artifacts created by the experimental configurations themselves, such as, 

differences in fluid types used in the experiments, wave tank widths, aspect 

ratio of the obstacles selected, and boundary effects such as wave reflection.  

Bourgault and Richards (2007) have previously questioned the validity of 3D 

wave tank experiments when it comes to modeling ISW behavior.   

o Validation/verification studies, calibrating 3D wave tank research 

results with actual large-scale field data, would improve confidence 

in the use numerical simulations in this area of scientific inquiry. 

o As an additional line of investigation, it would be useful to explore 

under what parametric conditions a 2D simulation could be used to 

provide an adequate representation of a 3D wave tank experiment.  

Questions have been raised previously about the representativeness 

of “traditional” 2D-approaches to internal wave modeling (e.g., 

Sherwin et al 2002). 

 

• In their 1973 paper, Emery and Gunnerson proposed seven different classes 

(morphologies) for breaking ISWs.  Numerical simulations might represent 

an effective investigational approach to better understand what parameters 

can give rise to those seven different wave breaking classes.  In this regard, 



  287 

  

the calculation of the internal Iribarren number35 may prove to be useful to 

differentiate the respective classes as part of any numerical simulation (e.g., 

Aghsaee, Boegman, and Lamb 2010). 

                                                 

35 The Iribarren number ξin was first proposed by Iribarren and Nogales (1949) as a 
means of distinguishing between breaking and non-breaking waves on a plane beach.  
Mathematically, this number can be expressed as 

tan
/

b
in

i wa L
ξ =  

where tanb , ai , and Lw represent the boundary slope, is the incoming wave amplitude, and the 
wavelength, respectively . 
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APPENDIX B 

DETAILS OF NUMERICAL SIMULATION INVOLVING A SHELF-LIKE 

TOPOGRAPHIC OBSTACLE 

289 

2

The exhibits contained in this appendix depict the details of an 

interaction between a mode-1 depression-type internal wave and a shelf-like 

obstacle shown earlier in Figure 50.  The non-dimensional simulation is 

shown in-progress, at TS 3400, just prior to the onset of shoaling (breaking).    

The normalized velocity vector field (black arrows), the streamline contours 

(dashed lines), and the pycnocline (solid blue line) are shown on each figure. 

Multiple isopycnals, shown as green lines about the pycnocline, provide 

additional information on the character of the density interface during the 

simulation.  The theoretical turning point plane is the vertical dashed line 

located on the slope portion of the obstacle at a point defined by the fluid 

depth condition corresponding to 1h h= . The non-dimensional time step 

interval for each figure is equal to 200.   

 

At TS 3800, the simulation shows that internal wave has yet to 

encounter the obstacle.  The streamline contours are widely-spaced 
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suggesting relatively uniform flow in this portion of the computational 

domain.  The isopycnals are closely packed about the pycnocline suggesting a 

sharp density interface at this point in the simulation.     

 

 At about TS 11,000 (the first figure in this appendix), distortion of the 

streamline contours in the vicinity of the obstacle’s face can be observed, 

suggesting the onset of shoaling.  By about TS 12,000, the streamline 

contours are now clearly refracted in such a ways as to mirror the face of the 

obstacle.  As for the velocity field, between time steps 11,000 and 11,400 or 

so, the simulation shows that a localized cell of turbulence (a vortex) has 

begun to form within the h2 fluid layer along the face of the obstacle.  Based 

on the orientation of the velocity vectors, this vortex appears to be fed by flow 

occurring along the top of the obstacle by fluid within the same density 

horizon.  By TS 12,000 of the simulation, the vortex has become well-defined, 

with the velocity vectors indicating a strong counter-clockwise flow pattern, 

opposite in flow to that of the advancing internal wave.   

 

 At TS 12,400 in the simulation, the pycnocline is beginning to deflect 

downward, in the vicinity of the obstacle face.  This downward deflection is 

analogous to “wash-down” or “backwash” phenomena commonly associated 

with the initial phase of wave breaking.   By TS 12,800, wash-down has 

driven the pycnocline to its lowest point of entrainment.  With respect to this 



   

feature, the wash-down phenomena depicted in the simulation occurs along 

an imaginary vertical plane that is in approximate alignment with what is 

now a well-defined (and growing) clockwise cell of turbulent flow.  These 

features are in close proximity to the vertical plane defining the theoretical 

turning point.  This location corresponds to the fluid depth condition where h1 

= h2.  Careful review of the simulation at TS 12,800 shows that the lowest 

point of pycnocline entrainment (“wash-down”) is in general alignment with 

those velocity vectors defining the earlier-described vortex.   

 

As the wash-down phase continues to progress, there is a pronounced 

increase in the magnitude of the flow in the  fluid layer between the 

pycnocline and the horizontal face of the obstacle. The increase in fluid flow 

in this area is evident by the relative size (magnitude) of the velocity vectors 

in comparison to other velocity vectors also visible in the computational 

domain.  By TS 13,000, this vector field appears to bifurcate (separate) in the 

vicinity of the pycnocline entrainment point.  One component of the velocity 

field trends upwards whereas the other component appears to feeding into 

the existing turbulent flow cell (or gyre) that has remained semi-stationary at 

this general location.   

2h

 

By about TS 13,600, the character of the velocity field is such that 

there is quasi-stationary vortex at the face of the obstacle.  The growth in the 
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size of the flow field associated with this vortex appears to be a key factor 

contributing to the elevation (lifting) and advancement of the pycnocline up 

over the obstacle in a manner similar to that water advancing over a nappe 

or a weir.  In subsequent time steps in the simulation, the pycnocline appears 

to be transitioning into a bore, aided in part by the quasi-stationary vortex 

that is now producing mostly vertically-directed flow.   

 

By TS 14,800, the pycnocline has evolved into a clearly-defined bore, 

driven in part by a well-developed velocity plane of upwelling flow.  Later, at 

about TS 15,600, the arrangement of the velocity vectors at the crest of this 

bore, along the leading face of the pycnocline, indicates that there are two 

flow patterns present ─ one clockwise and the other counter-clockwise.  See 

circled area in the exhibit.  As shown in earlier Figure 44, this bore later 

evolves into an elevation-type internal wave in subsequent stages of the 

numerical simulation.  
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APPENDIX C 

DETAILS OF NUMERICAL SIMULATION INVOLVING A SLOPE-SHELF 

TOPOGRAPHIC OBSTACLE 

The exhibits contained in this appendix depict the details of an 

interaction between a mode-1 depression-type internal wave and a shelf-like 

obstacle shown earlier in Figure 53.  The non-dimensional simulation is 

shown in progress at TS 3400, just prior to the onset of shoaling (breaking).  

The normalized velocity vector field (black arrows), the streamline contours 

(dashed lines), and the pycnocline (solid blue line) are shown on each figure. 

Multiple isopycnals, shown as green lines about the pycnocline, provide 

additional information on the character of the density interface during the 

simulation.  The theoretical turning point plane is the vertical dashed line 

located on the face of the slope portion of the obstacle at a point defined by 

the fluid depth condition where h1 = h2.  The non-dimensional time step 

interval for each figure is equal to 200.   
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At TS 3400, the simulation shows that advancing internal wave has 

yet to encounter the obstacle.  As the internal wave is a depression-type, the 

velocity field demonstrates a clockwise flow pattern about the pycnocline.   

 

The streamline contours themselves are widely-spaced suggesting 

relatively uniform flow in this portion of the computational domain.  The 

isopycnals are closely packed about the pycnocline suggesting a sharp density 

interface at this point in the simulation.     

 

 At about TS 4000, distortion of the streamline contours in the vicinity 

of the obstacle’s face can be observed, suggesting the onset of shoaling.  By 

about TS 5000, the streamline contours are now clearly refracted in such a 

way as to outline the shape of the obstacle.  As for the velocity field, between 

TS 5400 and TS 6000 or so, the simulation shows that a localized cell of 

turbulence (a vortex or gyre) has formed within the h2 fluid layer along the 

face of the obstacle, near its crest.  Based on the arrangement of the velocity 

vectors, the vortex appears to be fed by fluid flow along the top of the 

obstacle.  By TS 6200 of the simulation, the vortex has become well-defined, 

with the velocity vectors indicating a strong counter-clockwise flow pattern, 

but opposite in flow direction to that of the advancing internal wave.  At this 

point in the simulation, the trough of the pycnocline is at the approximate 

location of the theoretical turning point plane.  As the internal wave is a 
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depression-type, the velocity field demonstrates a clockwise flow pattern 

about the pycnocline.   

 

For the balance of the simulation (through TS 7600), the internal wave 

continues to advance through the computational domain.  However, as can 

been seen in, the simulation did not produce any of the shoaling-like features 

that might be expected. 
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APPENDIX D 

DETAILS OF NUMERICAL SIMULATION INVOLVING AN EXTENDED 

SLOPE-TYPE TOPOGRAPHIC OBSTACLE 

The exhibits contained in this appendix depict the details of an 

interaction between a mode-1 depression-type internal wave and an extended 

(uniform) slope-type obstacle shown earlier in Figure 57.  The non-

dimensional simulation is shown in progress at TS 18,000 just prior to the 

onset of shoaling/breaking.  As the intent of this particular simulation 

scenario was to illustrate how the internal wave polarity transformation 

sequence proceeds when the plane of the theoretical turning point is 

encountered, the illustrations capturing this transformation are limited to 

the pycnocline (solid blue line) and the theoretical turning point plane itself ─ 

the vertical dashed line corresponding to the fluid depth condition where h1 = 

h2.  Supplemental isopycnals about the pycnocline are shown in green 

providing additional information on the character of the density interface 

during the simulation.  Also shown is the location of the static pycnocline at 

time zero, prior to the initiation of the simulation, as a reference point. The 

non-dimensional time step interval for each figure is equal to 1000.   
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At about TS 18,000, the simulation shows that internal wave has yet to 

encounter the face of the obstacle as the wave itself is still enjoys a relatively 

symmetric profile.  The theoretical turning point plane is on the far right 

margin of the figure.  As was the case with the other simulations conducted 

as part of this research, the leading internal wave is followed by a lesser 

transient wave train.   

 

At about TS 20,000 in the simulation, asymmetry in the pycnocline 

profile is becoming apparent as the internal wave begins to encroach on the 

location of the theoretical turning point plane, suggesting the onset of 

shoaling.  As illustrated in subsequent time steps, the internal wave’s 

symmetry continues to decay as the wave front approaches the turning point 

plane.  The nature of this decay is best characterized by the leading face of 

the wave appearing to level-out (horizontally) through the course of the 

simulation whereas the trailing-end of the wave appears to be rotating 

(vertically) up and forward, gaining elevation.  While this transformation is 

taking place, the collection of lesser waves comprising the transient internal 

wave train are becoming more pronounced to the point that two (2) distinct 

internal waves of elevation can be observed to have formed.  This 

development would correspond to about TS 26,000 in the simulation 

sequence.  These and subsequent elevation-type internal waves appearing in 
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the simulation have been annotated in the exhibits using Arabic numbers – 

1, 2, 3, and so on. 

 

By about TS 29,000, the trough of the leading depression-type internal 

wave has reached the approximate location of the theoretical turning point 

plane.  What is noteworthy about this phase of the simulation is that the 

emerging elevation-type internal waves associated with the dispersive 

internal wave train appear to be growing at the expense of the leading 

internal wave ─ which itself now appears to be decaying.  By about TS 

33,000, the simulation now appears to be dominated by two secondary, 

elevation-type internal waves that are well-formed and whose crests have 

risen above the level of the static density interface.  By TS 35,000, a third 

elevation-type internal wave is apparent in the simulation and is beginning 

to form. 

 

In subsequent time steps, additional secondary elevation-type internal 

waves associated with the disperse wave train continue to form as the wave 

train progresses up the slope of the obstacle, past the theoretical turning 

point plane.  At TS 39,000, a forth elevation-type internal wave begins to take 

form in the simulation; by TS 43,000, this additional internal wave is 

separate and distinct.    Additional secondary elevation-type internal waves 

appear in subsequent time steps ─ a fifth at TS 47,000, a sixth at TS 48,000, 
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a seventh at TS 49,000, an eight at TS 51,000, and so on.  What is also 

apparent in the simulation is that this collection of lesser internal waves (or 

boluses - ?) appears to march-up the face of the slope, as noted by the arrow.  

This aspect of the simulation comports with observations made by Bourgault 

et al. (2006).  For example, between TS 54,000 and TS 59,000, the internal 

wave at the front of the wave train can be observed advancing up-slope. 
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APPENDIX E 

DETAILS OF NUMERICAL SIMULATION INVOLVING A SHORT SLOPE-

TYPE TOPOGRAPHIC OBSTACLE 

The exhibits contained in this appendix depict the details of an 

interaction between a mode-1 depression-type internal wave and an extended 

slope-type obstacle shown earlier in Figure 62. The intent of this particular 

simulation scenario was to replicate the shoaling-breaking progression 

sequence described by Michallet and Ivey (1999). The figures in the 

simulation show the non-dimensional simulation in progress at TS 18,800.  

At this point in the simulation, the internal wave has yet to encounter the 

obstacle, just prior to the onset of the theoretical shoaling-breaking 

progression.  These figures show the normalized velocity vector field (black 

arrows), the streamline contours (dashed lines), and the pycnocline (solid 

blue line).  To provide some context for each figure, inset maps also show the 

position of the internal wave relative to the topographic obstacle. The non-

dimensional time step intervals equal to 200. 
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Prior to TS 19,000, the simulation shows that the advancing internal 

wave has yet to encounter the obstacle as the wave’s profile is relatively 

symmetric.  The velocity vectors show that the flow field is in the clockwise 

direction, consistent with a depression-type internal wave. The theoretical 

turning point plane, defined by the fluid depth condition corresponding to h1 

= h2, is on the far right margin of the figure.  As was the case with the other 

simulations conducted as part of this research, the inset maps show that the 

leading internal wave is followed by a lesser transient internal wave train.   

 

Recalling the simulation involving an extended-slope type obstacle 

described earlier in this dissertation (both Section 4.3.1.3 and Appendix D), 

as the internal wave approaches the obstacle, it becomes entrained and 

ultimately appears to slide or wash down the slope (“backwash”).  At about 

TS 19,800 in this simulation, the profile of the pycnocline and the 

arrangement of the streamline contours begin to demonstrate some 

asymmetry in their geometry suggesting the onset of shoaling.  As this 

occurs, the relative size of the velocity vectors is also growing suggesting that 

the speed on the internal wave is increasing.  The increase in wave speed is 

confirmed by a decrease in the spacing of the streamline contours.  As 

illustrated in subsequent time steps, the elevation of the pycnocline continues 

to decay as the wave front approaches the plane of the theoretical turning 

point.  Fluid velocities in the h2 fluid layer continue to increase as the 
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elevation of the pycnocline descends.  This increase can be observed by the 

magnitude (length) of the velocity vectors in this region of the computational 

domain.  At about TS 21,100, the pycnocline has reached its lowest point of 

descent marking the end of the “wash-down” phase of shoaling/breaking.  

Hence, a local “minima.”  It is also worth noting that with the exception of the 

density interface along the pycnocline trough, the velocity vectors have 

diminished in magnitude, suggesting momentary “stagnation” of the system 

and the beginning of a new phase in the wave breaking progression.   

  

From this local “minima,” the trailing end of the internal wave begins 

to advance up-slope and grow as it proceeds.  Through the next several time 

steps in the simulation, a wave-like feature begins to take form.  Ultimately, 

this wave-like form becomes unstable and rolls-over onto itself.  At this point 

in the simulation ─ about TS 21,600, the internal wave appears to break.  

Soon thereafter, at about TS 21,800, a K-H “cat’s eye” -like feature (Figures 

14 and 15) forms revealing a localized area of turbulence.  Also of interest at 

this point in the simulation is a change in the character of the velocity 

vectors.  They have assumed a change in polarity.  They are now flowing in a 

clockwise direction, and are also growing in magnitude as the simulation 

proceeds. It may be concluded that the apparent “stagnation” period 

described above appears to represent the approximate time in the simulation 

at which the velocity vectors reverse their polarity. 
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It is during this phase of the simulation that it can be observed that 

the internal wave is also undergoing an additional transformation as the 

wave front travels up the slope of the obstacle.  There is an increase in the 

magnitude of the velocity vectors which now appear to favor a counter-

clockwise flow orientation that is responsible for essentially “pushing” the 

pycnocline up-slope.  By about TS 23,800, the wave front defined by the 

pycnocline has formed bore or bolus.   

 

For the balance of the simulation, the bore continues to advance up the 

obstacle slope until reaching a maximum point of vertical ascent.  This surge 

phase appears to reach its greatest vertical ascent at about TS 25,000. 
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APPENDIX F 

DETAILS OF REFLECTED INTERNAL WAVE 

The discussions concerning the numerical simulations between ISWs 

and various types of topographic obstacles described in this dissertation have 

focused primarily on how the internal wave behaves as a result of its 

interaction with different types of topographic features.  Although there are 

observable changes in the internal wave’s properties stemming from its 

interaction with a submarine obstacle, the simulations have generally 

demonstrated that the internal wave continues to advance more-or-less 

through the stratified fluid system in spite of the encounter.  Once aspect of 

these interactions though that has not been discussed to any extent in this 

dissertation concerns internal wave reflection.  

  

It is well known that when a wave encounters a non-yielding surface, it 

will reflect or bounce-back in the direction from which it came.  In general, 

the angle at which the wave leaves the reflecting surface is equal to the angle 

at which the wave approaches that surface.  When examining those 

simulations in this dissertation which involved what is essentially a surface 
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normal to the plane of the advancing ISW ─ the shelf-only and single 

rectangular obstacle scenarios ─ it was observed that some portion of the 

advancing wave train was reflected back in the direction of propagation.  The 

numerical simulation involving a single rectangular obstacle provides a good 

example of this phenomenon. 

 

The time series depicted earlier in Figure 67 shows a well developed, 

depression-type ISW of mode-1 approaching a single rectangular obstacle, 

interacting with the obstacle, and then continuing to advance through the 

computational domain for the balance of the simulation.  Closer inspection of 

the time series of exhibits in Figure 67a also shows that some portion of the 

ISW is reflected back in the direction of propagation through the course of the 

simulation.  This reflection can be identified by virtue of the bifurcation of the 

streamline contours. Some of these contours remain along the upwind face of 

the obstacle and can be observed at subsequent time steps migrating or 

reflecting back towards the generation point.  The exhibits in this appendix 

are intended to examine these reflected artifacts of the simulation in a more 

detail. 

 

The first series of figures in this appendix show how the artifacts of the 

internal wave/obstacle interaction coalesce as a reflected vortex (designated 

as RV in the exhibits), beginning about TS 12,000, and then migrating 
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backwards in subsequent time steps.  By TS 20,500, the reflected vortex 

identified has formed into a well-defined collection of streamlines.  With the 

addition of velocity vectors, the detailed (higher-resolution) series of exhibits 

found later in the appendix reveal that the reflected collection of streamlines 

have a flow pattern orientation opposite to that of the original (incident) 

depression-type internal wave.  See TS 15,000.  The flow pattern for the 

“reflected” ISW velocity vectors is counter-clockwise whereas the velocity 

vector flow pattern for the incident ISW is clockwise.  In a few cases, multiple 

vortices can be observed in the detailed exhibits. See TS 13,500, 16,000 and 

TS 17,000. 
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APPENDIX G 

DETAILS OF NUMERICAL SIMULATION INVOLVING AN ISOLATED 

TRIANGULAR TOPOGRAPHIC OBSTACLE 

The exhibits contained in this appendix depict the details of an 

interaction shown earlier in Figure 73 between a mode-1 depression-type 

internal wave and an isolated triangular obstacle. The non-dimensional 

simulation shown herein is in progress at TS 9900 just prior to the onset of 

the shoaling/breaking progression.  As the intent of this particular simulation 

scenario was to illustrate how the internal wave polarity transformation 

sequence proceeds when the plane of the theoretical turning point is 

encountered, the illustrations capturing this transformation are limited to 

the pycnocline (solid blue line) and the theoretical turning point plane itself ─ 

the vertical dashed line corresponding to the depth condition of h1 = h2. 

Multiple isopycnals about the pycnocline are shown in green providing 

additional information on how the profile of the density interface changes 

during the simulation. Lastly, each detailed figure in the simulation sequence 

(whose non-dimensional time step is equal to 200) includes a smaller inset 
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plot illustrating the location of the overall internal wave in relation to the 

obstacle. 

 

At TS 9900, the simulation shows that internal wave is just beginning 

to encounter the obstacle. Although the wave itself is still enjoys a relatively 

symmetric profile, the outermost streamline contour is just beginning to 

distort in response to the obstacle.  

 

At TS 103,000 in the simulation, asymmetry in the pycnocline profile is 

now becoming apparent as the internal wave begins to encroach on the 

location of the theoretical turning point plane. As noted earlier in this 

dissertation, this change would suggest the onset of shoaling. The streamline 

contours are now clearly refracted in such a ways as to mirror the face of the 

obstacle. As illustrated in subsequent time steps, the internal wave’s 

symmetry continues to decay as the wave front approaches the hypothetical 

turning point plane. By TS 107,000, as a result of wash-down, the pycnocline 

has been driven to its lowest point of entrainment.  

 

It is also worth noting that as the wash-down phase progresses, there 

is a pronounced increase in the magnitude of the flow in the h2 fluid layer, in 

a region between the pycnocline and the downwind face of the obstacle. In a 

manner of speaking, the streamline contours can be observed colliding with 
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the obstacle. This increase in contour density would suggest an increased flux 

in this region of the flow field. This increased flux can be seen in the relative 

magnitude of the velocity vectors within the h2 fluid layer along the face of 

the obstacle.   

 

By about TS 111,000, the shoaling progression has produced a 

breaking internal wave. What had been the trailing leg of the internal wave 

has advanced forward through the course of the simulation and now appears 

to have rolled-over onto what had been the entrained potion of the pycnocline 

(e.g., the wave front at earlier TS 107,000) forming a K-H–like “cats-eye” 

(Figures 14 and 15).  Soon thereafter, by about TS 113,000, the character of 

the velocity field in this area is such that there are now multiple vortices 

along the face of the obstacle. The growth in the size of this turbulent flow 

field appears to be a key factor contributing to the advancement of the 

internal wave over the obstacle. The turbulent flow field appears to elevate 

(lift) the pycnocline up over the obstacle in a manner similar to that water 

advancing over a nappe or a weir. By TS 117,000, a well-defined upwelling 

zone has formed downwind of the theoretical turning point plane. In later 

time steps, this upwelling zone of turbulent flow appears to form a portion of 

the pycnocline into a bulbous-like feature. However, there is no evidence that 

the shoaling progression produces a bore, as had been the case with some of 

the other simulations described in this dissertation. The incident internal 
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wave, although now diminished in amplitude by virtue of its encounter with 

the obstacle (as expressed by the magnitude of the nonlinear [blocking] 

parameter αNL), has been transmitted over the obstacle to a new position 

along its downwind face.   The ISW’s overall position in the computational 

domain during the simulation is illustrated in the inset figure that 

accompanies each exhibit.  

 

Recalling earlier Figure 73, the ISW continues to advance through the 

computational domain. As illustrated in the remaining exhibits, it can be 

observed that the upwelling zone of turbulent flow continues to persist along 

the downwind face of the obstacle. At TS 119,000, a well-developed vortex has 

formed along the downwind face of the obstacle. At TS 121,000, there is the 

suggestion in the simulation that a reflected internal wave has formed. The 

orientation of the velocity vectors indicates a counter-clockwise flow pattern, 

implying the pending formation of an elevation-type internal wave. Exhibits 

corresponding to subsequent time steps ─ TS 125,000, TS 130,000, TS 

135,000, and TS 140,000 ─ reveal that a counter-clockwise flow field 

characteristic of an elevation-type internal wave has developed as a result of 

the earlier collision between the depression-type ISW and the isolated 

triangular obstacle. 
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