
THE CATHOLIC UNIVERSITY OF AMERICA

Wireless Sensor Localization With Distance Measurement Information

A DISSERTATION

Submitted to the Faculty of the

Department of Electrical Engineering and Computer Science

School of Engineering

Of The Catholic University of America

In Partial Fulfillment of the Requirements

For the Degree

Doctor of Philosophy

c©

Copyright

All Rights Reserved

By

Jing Wang

Washington,D.C.

2011

Wireless Sensor Localization With Distance Measurement Information

Jing Wang,Ph.D.

Director: Phillip A. Regalia, Ph.D.

The dissertation would focus on two problems: localization in wireless sensor

network and distance reconstruction. Sensors are often randomly deployed and in

such case, determining each sensor’s position is critical, which explains the recent

attention given to the sensor localization problem. Previous methods of projection

onto convex sets (POCS) overcome the multimodality problem that plagues earlier

least-squares formulations.

Previous efforts in this direction require that the sensor be located in certain

position in the plane. Here we propose a new algorithm which projects onto the

boundary of convex sets, and features a computationally simple update procedure.

The new algorithm has a unique solution no matter where the sensor is located at.

Simulation results will be shown and conclusions would be given.

Sensor localization typically exploits distance measurements to infer sensor po-

sitions with respect to known anchor nodes. Missing or unreliable measurements for

specific nodes can impede such procedures, raising the problem of distance measure-

ment reconstruction using distance information from other nodes. The problem has

traditionally been approached through multidimensional scaling, and more recently

through semidefinite programming and low-rank matrix completion. Here we develop

new iterative reconstruction algorithms which instead exploit inertia of key matrices,

thereby encompassing stronger constraints than rank alone. This serves to overcome

limitations observed in earlier competitive approaches which do not exploit the prob-

lem structure as well. Simulation examples illustrate the performance of the new

algorithms.

This dissertation by Jing Wang fulfills the dissertation requirement for the doctoral
degree in Electrical Engineering approved by Phillip Regalia, Ph.D., as Director, and
by Nader Namazi, Ph.D., Ozlem Kilic, Ph.D. as Readers.

Phillip Regalia, Ph.D., Director

Nader Namazi, Ph.D., Reader

Ozlem Kilic, Ph.D., Reader

ii

Table of Contents

List of Figures iv

List of Abbreviations v

1 Introduction Of Wireless Sensor Networks 1
1.1 Wireless Sensor Networks Application 2
1.2 Wireless Sensor Networks Localization 3

1.2.1 Ranging Technologies . 4
1.2.2 Wireless Sensor Networks Localization Algorithms 5

1.3 Distance Information Reconstruction 7

2 Localization in Wireless Sensor Networks 9
2.1 Overview . 9
2.2 Traditional Algorithm . 10

2.2.1 Centralized Maximum Likelihood Approach 11
2.2.1.1 Acoustic Energy Decay Model of Localization Problem 12
2.2.1.2 Maximum Likelihood Estimation for Localization prob-

lem . 13
2.2.2 Distributed Gradient Search Approach 15

2.2.2.1 Decentralized Incremental Optimization [1] 17
2.3 Localization Via Projection Onto Convex Sets 18

2.3.1 Introduction of Projection Onto Convex Set Method 18
2.3.1.1 Hyperbolic Projection Onto Convex Sets Algorithm . 21

2.4 Other Sensor Network Localization Algorithms 22
2.4.1 Semidefinite Programming (SDP) Approach 23
2.4.2 Multidimensional Scaling (MDS) Algorithms 23

2.5 Summary . 24

3 New Localization Algorithm: Projection Onto the Boundary Sets 25
3.1 Introduction . 25
3.2 Background . 25
3.3 New Algorithm: Projection onto Boundary Sets 26
3.4 Convergence Aspects . 30
3.5 Initialization . 35
3.6 Noisy Measurements . 36
3.7 Concluding Remarks . 37

iii

4 Distance Information Reconstruction For Wireless Sensor Network
Localization 39
4.1 Introduction . 39
4.2 Problem Structure . 41

4.2.1 Multidimensional Scaling . 41
4.2.2 Inertial Constraints . 43
4.2.3 Basic Problem Statement . 45

4.3 Minimality and Uniqueness . 45
4.4 A Toy Problem . 49
4.5 Previous Reconstruction Algorithms 54

4.5.1 Nuclear Norm Minimization 54
4.5.2 SVD Approximation . 57

4.6 New Algorithms . 59
4.6.1 Iterative Inertial Approximation 60
4.6.2 Inertia (2, 0) Reconstruction 61
4.6.3 A Hybrid Algorithm . 63

4.7 Simulations . 64
4.8 Concluding Remarks . 67

5 Conclusions And Perspectives For Future Work 69

A Proof of Lemma 1 in Chapter 3 71

B Notes on choosing the missing element 73

C Multidimensional Scaling 77

D Matlab Code 80
D.1 Projection onto boundary three points test 80
D.2 Projection onto boundary using a random sequencing 83
D.3 Linear algebra method of reconstructing missing distance 87
D.4 Comparation of rank 4 and rank 2 approximations 89

Bibliography 107

iv

List of Figures

1.1 Wireless sensor networks . 5

2.1 Negative log-likelihood Objective function 15
2.2 Convex hull of the anchor nodes. 21
2.3 Sensor lies inside convex hull:unique solution. 22
2.4 Sensor lies outside convex hull:no unique solution. 23

3.1 Anchor nodes indicated by “+”, with true location as “◦”. 27
3.2 Illustrating convergence versus a limit cycle, depending on the initial-

ization. 28
3.3 Convergence for various initial points, using the random projection

schedule. Each converges to the true location. 29
3.4 Illustrating half-planes R+

ij and R−
ij. 30

3.5 Zooming in near the intersection of two circles. 33
3.6 Illustrating displaced intersection of circles ∂Ci and ∂Cj in the presence

of small distance errors δi and δj. 37
3.7 Position estimates using noisy distance measurements. 38
3.8 Illustrating convergence for three-dimensional data. 38

4.1 (a) Non-rigid formation; (b) first-order rigid, but not globally rigid,
formation; (c) first-order rigid configuration having same distances as
(b). 47

4.2 A globally rigid formation having the minimum number of edges. . . 49
4.3 Relative error in distance reconstruction for the different algorithms. . 65
4.4 Connectivity graph for known distances. 67
4.5 Relative reconstruction error for the different algorithms. 68

v

List of Abbreviations

MLE Maximum Likelihood Estimation
SNR Signal Noise Ratio
CRB Cramér-Rao Bound
MDS Multidimensional Scaling
WLS Weighted Least Squares
ML Maximum Likelihood
RSS Received Signal Strength
TOA Time of Arrival
AOA Angle of Arrivel
POCS Projection Onto Convex Set
NLS Non-linear Least Squares
RSSI Received Signal Strength Indicator
EBL Energy Based source Localization
RMSE Root Mean Square Error
SDP Semidefinite Programming

vi

Acknowledgments

I owe my gratitude to all the people who have made this dissertation possible

and because of whom my graduate experience here in Catholic University of America

has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Dr. Phillip Regalia for giving me

an invaluable opportunity to work on challenging and extremely interesting projects

over the past 3 years. He gave me precious opportunities to present and learn things in

conferences. It has been a pleasure to work with and learn from such an extraordinary

individual.

I would also like to thank my professor Dr.Nader Namazi. I have learned a

lot from his class which is full of extraordinary theoretical ideas and computational

expertise which contributed so much for my thesis. Thanks are due to Dr.Phillip

Regalia, Dr.Nader Namazi and Dr.Ozlem Kilic, for agreeing to serve on my thesis

committee and for sparing their invaluable time reviewing the proposal and this thesis.

I owe my deepest thanks to my parents who have always stood by me and given

me all their support. I also want to thank my friend Christopher Stephens and his

family, Tianyue Ma, who have always stood by me during difficult times. I would also

like to acknowledge help and support from some of my classmates and friends: Ai Liu,

Amy Lin, Ali Basiri, Hamid Karimpour, Kennith White, Pedro Gonzales and Roberto

Sliva, Robert Schell. Their help during my life and study here is highly appreciated.

I would also like to thank Dr. Robert Meister, Dr. Mohammad Arozullah and Dr.

vii

Scott Matthews who are so friendly and kind to me.

I would like to acknowledge financial support from the National Science Foun-

dation(NSF).

viii

Chapter 1

Introduction Of Wireless Sensor Networks

In this chapter, we introduce wireless sensor networks and their applications,

which have received considerable attention recently. A general introduction of wireless

sensor networks localization algorithms is also given.

Wireless sensor networks are a new class of distributed systems that are an

integral part of the physical space they inhabit [2]. Sensors detect the world’s physical

nature, such as light intensity, sound, temperature or proximity to objects. Sensor

networks have captured the attention of many researchers. Despite their variety,

all sensor networks have certain fundamental features in common, including limited

computational abilities and two-way radio system.

Sensor networks may be viewed as large collections of nodes. Individually,

each node is autonomous and has short range; collectively, they are cooperative and

effective over a large area. A system composed of many short-range sensors lends

itself to a very different set of applications than one that uses a small number of

powerful, long-range sensors.

1

2

1.1 Wireless Sensor Networks Application

Potential applications for wireless sensor networks are vast; here some example

applications are given.

Military Applications: Wireless sensor networks can be an integral part of military

command, control, communications, computers, intelligence, surveillance, reconnais-

sance and tracking systems. The rapid deployment, self organization and fault toler-

ance characteristics of sensor networks make them a very promising sensing technique

for military. Since sensor networks are based on the dense deployment of disposable

and low cost sensor nodes, destruction of some nodes by hostile actions dose not af-

fect a military operation as much as the destruction of a traditional sensor. Some

of the military applications are monitoring friendly forces, equipment and ammuni-

tion; battlefield surveillance; reconnaissance of opposing forces and terrain; targeting;

battle damage assessment; and nuclear, biological and chemical attack detection and

reconnaissance.

Environmental Applications: Some environmental applications of sensor networks

include tracking the movements of species, i.e., habitat monitoring; monitoring en-

vironmental conditions that affect crops and livestock; irrigation; macroinstruments

for large-scale Earth monitoring and planetary exploration; and chemical/biological

detection.

Commercial Applications: Sensor networks are also applied in many commercial ap-

plications. Some of them are building virtual keyboards; managing inventory control;

3

monitoring product quality; constructing smart office spaces; and environmental con-

trol in office buildings.

1.2 Wireless Sensor Networks Localization

Wireless sensor network location refers to the method of finding the geographic

coordinates of a sensor node in wireless local area network environments [2].

Relative to other types of distributed systems, distributed sensor systems in-

troduce an interesting new twist: they are coupled to the physical world, and their

spatial relationship to other objects in the world is typically an important factor in

the task they perform. The term localization refers to the collection of techniques

and mechanisms that measure these spatial relationships.

When raw sensor data is combined with spatial information, the value of the

data and the capability of the system that collects it increases substantially. For

example. a collection of temperature readings without location information is at best

only useful to compute simple statistics such as the average temperature. At worst.

analysis of the data might yield incorrect conclusions if inaccurate assumptions of the

data might yield incorrect conclusions if inaccurate assumptions are made about the

distribution of physical sampling. By combining the data with location information,

the resulting temperature amp can be analyzed much more effectively.

4

1.2.1 Ranging Technologies

The mechanisms used to measure physical distances are an important factor

when designing a localization system. In this section different types of distance mea-

surement are discussed.

Received Signal Strength. Received Signal Strength is roughly a measure of the

amplitude of a detected radio signal at a receiver. Often, Received Signal Strength

is equivalently reported as measured power, i.e., the squared magnitude of the signal

strength [3]. When the model for path loss is assumed to be a function of distance,

the received signal strength should be generally decrease as a function of distance.

The path loss model is highly dependent on environmental factors: in open space the

model is 1/R2; near the ground, the model is closer to 1/R4.

Time of Arrival. Time of Arrival is the measured time at which a signal first ar-

rives at a receiver. The measured Time of Arrival is the time of transmission plus

a propagation-induced time delay [3]. This time delay, Ti,j, between transmission

at sensor i and reception at sensor j, is equal to the transmitter-receiver separation

distance, di,j, divided by the propagation velocity, vp. This speed for RF is approx-

imately 106 times as fast as the speed of sound; as a rule of thumb, for acoustic

propagation, 1 ms translates to 1 ft(0.3m), while for RF, 1 ns translates to 1 ft.

Angle of Arrival . By providing information about the direction to neighboring sen-

sors rather than the distance to neighboring sensors, Angle of Arrival measurements

provide localization information complementary to the Received Signal Strength and

5

Sensor nodes

Gateway nodes

Figure 1.1: Wireless sensor networks

Time of Arrival measurements.

1.2.2 Wireless Sensor Networks Localization Algorithms

Algorithms of wireless sensor networks localization problems can be divided into

two categories, each will be followed by some examples:

CENTRALIZED ALGORITHMS

Maximum likelihood estimation method is implemented usually when data is

described by a particular statistical model (e.g., Gaussian) [4],[3]. The variance of

these estimators asymptotically approaches the lower bound given by the Cramér-Rao

Bound , as the Signal Noise Ratio goes high.

6

The maximum likelihood objective function must be found when maximum

likelihood estimation method is used. For sensor localization, however, two difficulties

emerge:

• Local maxima: The maximum likelihood objective function usually has multiple

local maxima. Unless the initial value is close to the global maximum, the search

algorithm can be trapped in a suboptimal solution.

• Model dependency: When different ranging techniques or model parameters are

used in the assumed model, the result can not be guaranteed to be accurate.

One way of preventing local maxima is to formulate the localization as a convex

optimization problem [5],[6]. These provide search alternatives of the Projection Onto

Convex Set (POCS) approach. However, the Projection onto Convex Set method

works well only when the sensor is located in certain area (convex hull) of the network,

which will be detailed in chapter 2.

DISTRIBUTED ALGORITHMS

In some applications, no central processor (or none with enough computational

power) is available to handle the calculations. Also in a large network, there will be

a communication bottleneck and high energy drain near the central processor when

all measurement data are forwarded.

Distributed algorithms are developed and employed in many situations. In

[7],[8], each sensor estimates its multihop range to the nearest reference nodes. These

ranges can be estimated via the shortest path between the sensor and reference nodes,

7

i.e., proportional to the number of hops or the sum of measured ranges along the

shortest path. Each node’s coordinates are calculated locally via multilateration,

when the sensor has range estimates to known positions [9]. Some algorithms use an

iterative refinement method. Those algorithms try to find the optimum of a global

cost function like WLS or ML. Each node transmite estimated position to its neighbors

and the neighbors calculate the position again and transmits to their position again

untill convergence is achieved [10].

A new localization method will be discussed in chapter 2.

1.3 Distance Information Reconstruction

Distance is the critical information in wireless sensor network localization. How-

ever, specific distance measurements can be obscured due to various factors, including

bursty interference or transient jamming during distance measurements, or inadver-

tent obstacles impeding communication between select sensor pairs. In such cases,

the various localization methods may have insufficient input data, necessitating esti-

mation of the missing distance measurements from those available.

In situations when the distance measurements are not precise, one possible

method is to find an objective function of a feasible set of consistent distance infor-

mation set. Given the imprecise distances, the goal is to find the set of distances

which minimizes the desired objective functions with respect to the given distances.

Using this method [11], [12] determined the location of sensors by lateration and [13]

8

by min-max optimization. In [14], these imprecise distances can be made more accu-

rate and consistent by exploiting fully the geometric and algebraic relations among

the distances between nodes.

Also, when the distance information is missing there are many algorithm de-

veloped for the reconstruction of the missing or unreliable information. The distance

reconstruction problem has considerable geometric structure [15], [16] and we exam-

ine further in this work the structural features exploited in [16] based on the low-rank

character of a certain matrix constructed from the pairwise distances, which include

the Multidimental scaling (MDS) based approaches described in [17][18][19].

Chapter 2

Localization in Wireless Sensor Networks

2.1 Overview

In this chapter we study localization problems in wireless sensor networks. An

introduction of traditional method would be given, the shortcoming of which made

the development of new algorithms necessary. The next chapter would then mainly

focus on our new localization algorithm and its performance.

The emergence of wireless sensor networks has enabled a large number of novel

applications which benefit many fields, such as environmental and habitat monitoring

and target tracking. In these applications it is necessary to accurately find the position

information of the nodes with respect to a global coordinate system so that the

reported data is geographically meaningful. The term localization refers to the

collection of techniques and mechanisms that measure these spatial relationships [2].

In practice, it is infeasible to use expensive GPS to locate each sensor. Instead, each

node is low cost with limited power and only local communication with neighbors.

Algorithms discussed here will mainly be based on localization using the received

signal strength distance measurement. Received signal strength may be defined as

the voltage measured by a receiver’s received signal strength indicator circuit [3].

9

10

Received signal strength is often equivalently reported as measured power, which is

proportional to the squared magnitude of the signal strength. Wireless sensors com-

municate with neighboring sensors, so the received signal strength can be measured by

each receiver during normal data communication without presenting additional band-

width or energy requirements. Received signal strength measurements are relatively

inexpensive and simple to implement in hardware.

2.2 Traditional Algorithm

The problem of locating an acoustic source in a wireless sensor network has

been addressed in several articles [20], [21], [1], [22] and references therein. The local-

ization problem in this case has been traditionally solved as a non-linear least squares

problem. When the noise is modeled as Gaussian, this is equivalent to maximum

likelihood estimation.

Centralized methods, [22] for instance, formulate a maximum likelihood ap-

proach. This requires that all the data be transmitted to the fusion center for process-

ing. In relatively large scale networks, the massive amount of energy and bandwidth

required make this method impractical. [1],[23] proposed a decentralized implemen-

tation of the incremental gradient method, which aims at solving the problem in a

distributed manner, thereby alleviating the need to submit massive information to

the data center for processing. [24] also proposed an distributed EM algorithm which

requires a sufficient number of communication cycles across the network to implement

11

estimator.

However, traditional gradient search methods suffer from searching the global

solution in a cost function with local optima and saddle points. [25] proposed a

projection onto boundary sets approach that overcome this shortcoming by formu-

lating the problem as a convex feasibility problem instead of traditional nonlinear

least squares. Problems may arise when sensors are not within the convex hull of

the anchor nodes, which will be discussed later in section 2.3. This method also

addresses the localization problem in a distributed manner.

Firstly, however, we review the centralized maximum likelihood approach.

2.2.1 Centralized Maximum Likelihood Approach

Centralized Maximum Likelihood [22] is a source localization approach using

acoustic energy measurements from the individual sensors in the sensor field. Max-

imum Likelihood (ML) estimation is proposed therein to solved this energy based

source location problem. In the previous work of [22], the authors showed that in a

noiseless situation, each energy ratio dictates that the potential target location must

be on a hyper-sphere formed by all energy ratios within the sensor field. With noise

taken into account, the target location is solved as the position that is closest to all

the hyper-spheres formed by all energy ratios in the least square sense. Using this

energy ratio function, the source energy is eliminated, the task of source location

estimation can be simplified by solving a nonlinear least square problem.

12

2.2.1.1 Acoustic Energy Decay Model of Localization Problem

Efficient collaborative signal processing algorithms that consume less energy for

computation and communication are important in wireless distributed sensor network

communication system [21], which is a significant issue in centralized algorithms. [22]

presented a method to estimate the source location based on acoustic energy measured

at individual sensors in the sensor network. An acoustic energy decay model is set

up in the free and homogenous space under the conditions that the acoustic sources

are not far away from the sensors.

Energy-based source localization method is based on the observation that the

received sound level decreases when the distance between the source and the listener

becomes larger. Thus by estimating the received energy level one can estimate the

distance and further estimate the position of each source. There are many factors

that may affect sound propagation, such as wind direction, strength of wind, forest

or other obstructions. To simplify the problem, there are some assumptions when

developing the energy decay model: sound propagates in free air, which is roughly

homogenous, and the target is pre-detected to be in a particular region of a sensor

field, and the source could be treated as a point. Based on such assumption, the

acoustic intensity attenuated at a rate that is inversely proportional to the distance

between source and the receiver [26]. As sound waveforms are additive, the acoustic

wave intensity signature received by each sensor is [22]:

13

ai(n) = si(n) + δi(n) (2.1)

Here consider a sensor network with N sensor nodes, whose positions are de-

noted as ci ∈ IR2, i = 1, . . . , N . Where si(n) = γiΣ
K
k=1

ak(n−tki)
‖ρk(n−tki)−ri‖ , ai(n) is the n-th

acoustic signature sampled on the i-th sensor over a time interval [1/fs] by a matched

filter, fs is the sampling frequency; δi(n) is the zero-mean additive white Gaussian

noise (AWGN) on the n-th time interval, K is the number of targets;

Assuming si(n) and δi(n) are uncorrelated, different target signal readings are

uncorrelated, and E[δi(n)] = 0, we have

E[a2
i (n)] = E[s2

i (n)] + E[δ2
i (n)] (2.2)

Denoting E[a2
i (n)] as yi(t) and E[δ2

i (n)] as εi(t), the energy decay model is:

yi(t) = ys(t) + εi(t) = gi

N∑
j=1

Sj(t)

‖xj(t)− cj‖ + εi(t) (2.3)

Where t = T
2
, 3T

2
, 5T

2
, The background noise εi(t) is independent zero mean AWGN

with variance σ2
n, gi is a scaling factor corresponding to sensor gain of the i-th acoustic

sensor.

2.2.1.2 Maximum Likelihood Estimation for Localization problem

Based on the acoustic energy decay model, the maximum likelihood estima-

tion method may be applied for the energy based source localization problem. For

14

convenience, all parameters refer to the same time window automatically. Define

Z =

[
y1 − µ1

σ1

y2 − µ2

σ2

. . .
yN − µN

σN

]T

(2.4)

Equation 2.3 can be simplified as:

Z = GDS + ξ (2.5)

Where

S =

[
S1 S2 . . . SN

]T

(2.6)

S = diag

[
g1

σ1

g2

σ2

. . .
gN

σN

]
(2.7)

D =




1
d2
11

1
d2
12

. . . 1
d2
1N

1
d2
21

1
d2
22

. . . 1
d2
2N

...
...

. . .
...

1
d2

n1

1
d2

n2
. . . 1

d2
NN




(2.8)

dij the Euclidean distance between the i-th and j-th sensors. Then, ξi = εi−µi

σi
∼

N(0, 1), Zi = yi−µi

σi
∼ N(gi

σi

∑N
j=1

Sj

d2
ij
, 1)

Define

θ =

[
xT

1 xT
2 . . . xT

N S1 S2 . . . SN

]T

(2.9)

The log-likelihood function of equation (2.5) is:

15

l(θ) = −1

2
‖Z−GDS‖2 (2.10)

The maximum likelihood estimate of the parameters θ is the values that minimizes

l(θ), or equivalently, maximizes

L(θ) = ‖Z−GDS‖2 (2.11)

Figure 2.1: Negative log-likelihood Objective function

Figure 2.1 shows the negative log-likelihood function, which has multiple optima.

2.2.2 Distributed Gradient Search Approach

In the Centralized Maximum Likelihood estimation approach, the sensors have

to transmit all of their data to a fusion center for processing. In large networks, the

16

massive amount of energy and bandwidth required make such an approach impracti-

cal.

The driving philosophy behind the distributed approach is to balance estimator

accuracy with the amount of communication required [1]. This is accomplished via in-

network processing of data. An estimate of the source position is circulated through

the network. Each node makes a small adjustment to the estimate based on its local

data, and then passes the modified estimate to its neighbors. Similar to [22], assume

the j-th measurement at sensor i takes the form yij = si + δij, where δij are i.i.d

samples of a white Gaussian noise process, and

si =
A

‖θ − ci‖β
(2.12)

where A is the amplitude (energy) of the signal emitted by the source, and β is related

to the attenuation characteristics of the medium through which the signal is begin

transmitted. The maximum likelihood estimate for the location of a stationary source

is

θ̂ = arg min
θ

1

MN

N∑
i=1

M∑
j=1

(yij − A

‖θ − ci‖β
)2 (2.13)

where N is the number of sensors and M is the number of measurements at each

sensor. Distributed gradient search approaches use a distributed incremental gradient

algorithm to solve this non-linear least squares optimization iteratively.

17

2.2.2.1 Decentralized Incremental Optimization [1]

In this algorithm a parameter estimate is cycled through the network. Each

node makes a small adjustment based on its local data when it receives the current

estimate. Assume the sensors have been numbered i = 1, 2, . . . , N according to their

order in the cycle. On the k-th cycle, sensor i receives an estimate ψ
(k)
i from its

neighbor and computes an update according to

ψ
(k)
i = ψ

(k)
i−1 − α∇fi(ψ

(k)
i−1) (2.14)

in which α > 0 is the step size, ∇fi(ψ
(k)
i−1) denotes the gradient of fi evaluated at

ψ
(k)
i−1, and

fi(ψ) =
M∑

j=1

(yij − A

‖ψ − ci‖β
)2 (2.15)

The algorithm begins with an arbitrary initial condition ψ
(0)
0 = θ̂(0), and after

a complete cycle through the network one can get θ̂(k) = ψ
(k)
N = ψ

(k+1)
1 . The update

is made by optimizing the function fi which depends on local data at sensor i for the

current estimate. The amount of in-network communication required is the number of

cycles consequence. The tradeoff between accuracy and the amount of communication

is quantified and can be controlled through the choice of a step size.

18

2.3 Localization Via Projection Onto Convex Sets

Traditional nonlinear least squares or maximum likelihood methods pose a diffi-

cult global optimization problem. As we can see in Figure 2.1, the objective function

may have multiple local optima and saddle points and hence any local search method

would can be trapped in suboptimal solution. [25] formulated the problem as a

convex feasibility problem and applied the projection onto convex sets method in

a distributed manner. Given the condition that the number of samples increase to

infinity or in the absence of measurement noise, the convex feasibility problem has a

unique solution at the true location when the source is located in certain area in the

network.

2.3.1 Introduction of Projection Onto Convex Set Method

Consider a sensor network with N anchor nodes, whose positions are denoted

as ci ∈ IR2, i = 1, . . . , N . Let x ∈ IR2 be the unknown coordinate of a non-anchor

node, and let di be the measured distance between the node and the i-th anchor node.

We assume exact distance measurements in the initial formulation, and absorb the

influence of noisy distance measurements subsequently.

Following [22],[1], the reading of the source’s signal strength at sensor i is mod-

eled by

yij =
A

‖ψ − ci‖β
+ δij (2.16)

19

Formulated as a nonlinear least squares problem, which is equivalent to maxi-

mum likelihood when the noise is Gaussian process, the parameter estimation is

θ̂NLS = arg min
θ

1

MN

N∑
i=1

M∑
j=1

(yij − A

‖θ − ci‖β
)2 (2.17)

However this objective function has multiple local optima, which the incremen-

tal gradient method may suffer from. As one can see in Figure 2.1, instead of a

nonlinear least squares formulation 2.2.1 An alternative formulation of the problem

is as follows. The function

fi(θ) =
N∑

i=1

(yij − A

‖θ − ci‖β
)2 (2.18)

obtains its minimum on the circle

Ci =
{
θ ∈ IR2 : ‖θ − ci‖ = di

}
(2.19)

where distance di is

di =

[
A

yi

]1/β

(2.20)

Let Di be the ball defined by

Di =
{
θ ∈ IR2 : ‖θ − ci‖ ≤ di

}
(2.21)

the estimation problem is solved by finding a point in the intersection of these balls.

20

θ̂ ∈ D =
N⋂

i=1

Di ∈ IR2 (2.22)

Alternatively, the estimator would be any point that minimizes the sum of distances

to the sets Di, i = 1, 2, . . . , N .

θ̂ = arg min
θ∈IR2

N∑
i=1

‖x−PDi
(x)‖ (2.23)

where for a set S ∈ IR2 and a point x ∈ IR2, PS(x)is the orthogonal projection of x

onto S given by

PS(x) = arg min
y∈IR2

‖x− y‖ (2.24)

using the Euclidean norm ‖ · ‖. The convex hull, denoted by H is defined to be the

smallest convex set containing the anchor nodes:

H =

{
y ∈ IR2 : y =

N∑
i=1

αici, αi ≥ 0,
N∑

i=1

αi = 1

}
(2.25)

Figure 2.2 shows geometrical shape of the convex hull of the anchor nodes.

the convex feasibility problem (2.23) has a unique solution at the true source’s location

only when the true location is inside the convex hull H [25].

Figure 2.3 illustrates that when the source to be located is inside H, intersection

of convex sets Di is a unique point, and thus the convex feasibility problem (2.23) has a

unique solution. However, Figure 2.4 shows that when the source is outside the convex

hull, the intersection of convex sets Di is an area, and thus convex feasibility problem

21

Figure 2.2: Convex hull of the anchor nodes.

(2.23) has no unique solution. A formulation which overcomes this shortcoming is

developed in section r̃efsec:Hpocs

2.3.1.1 Hyperbolic Projection Onto Convex Sets Algorithm

To overcome the shortcoming of [25], the author of [27] proposed a hyperbolic

POCS algorithm, an augmentation to the POCS method which successfully converges

(in the absence of noise) to the correct position estimate for sensors lying outside the

convex hull H. A performance penalty is observed, however, using the hyperbolic

POCS algorithm on sensors inside the convex hull, thus motivating a hybrid algorithm

[27] that aims to leverage the strengths of the hyperbolic algorithm and its circular

predecessor [25]. We illustrate next section how the shortcomings of these earlier

22

Figure 2.3: Sensor lies inside convex hull:unique solution.

algorithms can be overcome by projecting instead onto the boundaries of specific

convex sets.

2.4 Other Sensor Network Localization Algorithms

The POCS algorithm is very effective in overcoming the local convergence prob-

lem when the source is located within the convex hull of the sensor nodes. However,

the POCS algorithm does suffer from poor performance when the source resides out-

side the convex hull. There are many other approach proposed to solved the localiza-

tion problem in wireless sensor networks.

23

Figure 2.4: Sensor lies outside convex hull:no unique solution.

2.4.1 Semidefinite Programming (SDP) Approach

By transforming the source localization problem into a convex optimization

problem using minimax approximation and semidefinite relaxation, one can find the

global minimum of the relaxed problem, with no need to impose coverage conditions

[28]. The major impediment of this approach, however, is the rather high computa-

tional complexity.

2.4.2 Multidimensional Scaling (MDS) Algorithms

Multidimensional scaling (MDS) algorithms formulate sensor localization from

range measurements as a least square problem [29]. In classical MDS, the LS so-

lution is found by an eigenvalue decomposition, which does not suffer from local

24

maxima. To linearize the localization problem, the classical MDS formulation works

with squared distance rather than distance itself, and the end result is very sensi-

tive to range measurement errors [3]. Other MDS-based techniques, not based on

eigenvalue-decompositions, can be made more robust by allowing measurements to

be weighted according to their perceived accuracy [30].

2.5 Summary

As we have reviewed in this chapter, traditional localization methods encounter

the multimodality problem that plagues least-squares formulations. Projections Onto

Convex Sets algorithm formulats the problem as a convex feasibility problem that

overcomes previous shortcomings. However, the solution of Projection Onto Con-

vex Set algorithm might not be unique. This is another impetus to develop a new

approach, based on the projections Onto Boundary Sets. Our new Algorithm is in-

troduced in detail in the next chapter.

Chapter 3

New Localization Algorithm: Projection Onto the Boundary

Sets

3.1 Introduction

Our new algorithm considers localization of nodes in a sensor network using

distance measurements. Previous method of projection onto convex sets overcomes

the multimodality problem that plagues least-squares formulations. Previous efforts

in this direction require either that the sensor be located in the convex hull of the

anchor nodes, or that complicated hyperbolic geometric calculations be employed.

Here we propose a new algorithm which projects onto the boundary of convex sets,

and features a computationally simple update procedure. Both cyclic and random

projection schedules are considered, and initial convergence proofs are offered.

3.2 Background

As introduced in previous chapters, we consider a sensor network with N anchor

nodes, whose positions are denoted as ci ∈ IR2, i = 1, . . . , N . Let x ∈ IR2 be

the unknown coordinate of a non-anchor node, and let di be the measured distance

between the node and the i-th anchor node. We assume exact distance measurements

25

26

in the initial formulation, and absorb the influence of noisy distance measurements

subsequently.

3.3 New Algorithm: Projection onto Boundary Sets

With di denoting the distance between the true location x and the anchor node

ci, the boundary set ∂Ci is given as

∂Ci =
{
y ∈ IR2 : ‖y − ci‖ = di

}
(3.1)

using the Euclidean norm ‖ · ‖. If the true distances di are used, then clearly the

point x lies at the intersection of the sets {∂Ci}:

x ∈
N⋂

i=1

∂Ci (3.2)

Moreover, save for degenerate situations (e.g., anchor nodes all on a line), the

true position is the unique intersecting point of the boundary sets.

Now, the projection of an arbitrary point y ∈ IR2 onto the boundary set ∂Ci,

denoted Pi(y), is readily calculated as

Pi(y) = ci + di
y − ci

‖y − ci‖ (3.3)

and satisfies

Pi(y) = arg min
z∈ ∂Ci

‖y − z‖ . (3.4)

This motivates a cyclic projection algorithm that seeks the intersection of the

boundaries, given as follows:

27

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

+

+ +
c1 c2

c3

x

d1

d2

d3

Figure 3.1: Anchor nodes indicated by “+”, with true location as “◦”.

1. Initialization: x0 is arbitrary.

2. Iterative step: for k = 1, 2, . . . ,

xk = Pk mod N(xk−1) (3.5)

in which k mod N cycles through the set {1, 2, . . . , N}.

Figure 3.1 shows three anchor nodes (indicated as “+”) along with the circles

which collect points ∂Ci at the true distance di; the true location (“◦”) lies at the

intersection ∩i∂Ci. Figure 3.2 shows a typical run, illustrating convergence of the

position estimates to the true location, even though the true location lies outside the

convex hull H, thus overcoming the shortcoming of [25] while remaining computa-

tionally simpler than the hyperbolic variant from [27].

28

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Correct
convergence

Limit cycle

Figure 3.2: Illustrating convergence versus a limit cycle, depending on the initializa-

tion.

An observed weakness of the proposed algorithm, however, is its susceptibility

to limit cycles in some cases. Figure 3.2 likewise illustrates one such case, in which

successive iterates xk become trapped in a triangle. Such limit cycles have been

observed for arbitrary numbers of anchor nodes for specific alignments (such as the

equilateral triangle illustrated here, when using three anchor nodes). A slight repo-

sitioning of the anchor nodes may be observed to break the limit cycle, indicating

that, in a probabilistic sense, the likelihood of encountering one may be small. The

example of figure 3.2, however, indicates that this likelihood remains nonzero.

We have observed in simulations that if we alter the sequence of projection steps,

limit cycles can be broken. This suggests that a more effective way to eliminate such

29

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.3: Convergence for various initial points, using the random projection sched-

ule. Each converges to the true location.

limit cycles is to use a random (rather than cyclic) projection algorithm, summarized

as follows:

• Initialization: x0 is arbitrary, and set j1 = 1.

• Iterations: for k = 1, 2, . . . ,

xk = Pjk
(xk−1) (3.6)

jk+1 = rand
({1, 2, . . . , N}\jk

)
(3.7)

in which rand(·) returns an element chosen at random from its argument list.

Figure 3.3 shows the same situation as figure 3.2, using now a random projection

sequence with many different initializations; each run is observed to convergence to

30

ci

cj

x

y
x

!i

R+

ij

R−

ij

x
∗

i

Figure 3.4: Illustrating half-planes R+
ij and R−

ij.

the true location.

3.4 Convergence Aspects

For coherence we consider first the case of two anchor nodes, and then extend

the results to an arbitrary number of anchor nodes.

Figure 3.4 illustrates that, with two anchor nodes, the intersection ∂Ci ∩ ∂Cj

gives two solutions: the true point x and its “conjugate” x∗ij. The half-plane of points

closer to x than to its conjugate x∗ij is denoted R+
ij, and is bounded by the line passing

through ci and cj.

31

We introduce a discrepancy function

Dij(x̂) =
‖x̂− x‖
‖x̂− x∗ij‖

(3.8)

which is nonnegative and vanishes only at x̂ = x. It is easy to check that Dij(x̂) is

bounded in R+
ij:

Dij(x̂) < 1 ⇔ x̂ ∈ R+
ij

Note that, with only two anchor nodes, the random projection algorithm effectively

reduces to the periodic projection algorithm.

Lemma 3.1 Projections between circles centered at ci and cj preserve half-plane

membership: x̂k ∈ R+
ij if and only if x̂k−1 ∈ R+

ij.

A proof is offered in Appendix A.

Theorem 3.1 Consider the update equations that alternately project onto circles cen-

tered at ci and cj.

1. Given any initialization x̂0 for which Dij(x̂
0) < 1, convergence is monotonic:

Dij(x̂
k) < Dij(x̂

k−1), for all x̂k 6= x̂k−1;

2. The local convergence rate is linear: for Dij(x̂
k−1) sufficiently small,

Dij(x̂
k) = Dij(x̂

k−1) cos θij (3.9)

where θij is the subspace angle between x− ci and x− cj.

32

For the proof, suppose x̂0 is in the same half-plane as x (i.e., x̂0 ∈ R+
ij); by

Lemma 1 all iterates x̂k remain in R+
ij as well. Consider the unit-norm vector

u =
x̂k−1 − cj

‖x̂k−1 − cj‖ , (3.10)

which relates to successive iterates as

x̂k−1 = cj + r u (3.11)

x̂k = cj + dj u (3.12)

with r = ‖x̂k−1−cj‖. The line cj +ρu, parameterized by a nonnegative scalar ρ, then

contains the iterates x̂k−1 and x̂k at ρ = r and ρ = dj, respectively. The inequality

Dij(x̂
k) < Dij(x̂

k−1) will follow upon showing that

dj = arg min
ρ

Dij(cj + ρu). (3.13)

To this end, a straightforward calculation shows that

∂

∂ρ
[Dij(cj + ρu)]2 = (ρ2 − d2

j)
2 〈u,x− x∗〉

‖cj + ρu− x∗‖4
(3.14)

whose sole zero in ρ > 0 lies at ρ = dj. As D(x̂) ≤ 1 in R+
ij, we have in particular

that D(cj + ρu) ≤ 1 for all ρ ≥ 0. Indeed, as the maximum Dij(cj + ρu) = 1 is

attained only at ρ = 0 and in the limit as ρ → ∞, the critical point ρ = dj must be

a minimum.

Interchanging the role of i and j shows that x̂k+1, lying on the circle centered

at ci, fulfills Dij(x̂
k+1) < Dij(x̂

k) as well, to establish the first part of the theorem.

33

θ

x̂
k−1

x̂
k+1

x̂
k x

Figure 3.5: Zooming in near the intersection of two circles.

For the second part, we may zoom in near the intersection x; locally the two

circles may be replaced by their tangent lines, as in figure 3.5. As each projection

gives a displacement normal to a tangent line, we see by inspection that

‖x̂k − x‖ = ‖x̂k−1 − x‖ cos θij. (3.15)

Moreover, points sufficiently close to x are nearly equidistant from x∗ij: ‖x̂k − x∗ij‖ ≈

‖x̂k−1 − x∗ij‖. This approximation becomes increasingly accurate as x is approached,

so that dividing both sides of the equality (3.15) by ‖x̂k − x∗ij‖ gives the second part

of the theorem. ¦

When projecting between more than two circles, the local convergence properties

follow similarly to theorem 1: if the next projection x̂k+1 goes to the circle centered

at c`, then by the same geometric consideration of Figure 3.5 we have

‖x̂k+1 − x‖ = ‖x̂k − x‖ cos θj`. (3.16)

Thus the convergence rate is asymptotically limited by the poorest angular separation

34

maxi,j cos θij of anchor nodes, as seen from the true location.

The “global” convergence (i.e., from points too far from x to allow the circles

to be approximated by tangent lines) is more delicate when using more than two

anchor nodes. One approach to studying convergence is to average, in some sense,

the various pairwise discrepancy functions Dij(x̂). With N anchor nodes, we have

M =
(

N
2

)
= N(N−1)/2 such discrepancy functions, and different average choices

include:

F1(x̂) =
1

M

∑
i,j

Dij(x̂) (arithmetic mean) (3.17)

F2(x̂) =

(∏
i,j

Dij(x̂)

)1/M

(geometric mean) (3.18)

F3(x̂) =
M∑

i,j[1/Dij(x̂)]
(harmonic mean) (3.19)

It is straightforward to check that

F1(x̂) ≥ F2(x̂) ≥ F3(x̂), for all x̂.

Indeed, F1(x̂) ≥ F2(x̂) follows from the arithmetic-mean–geometic-mean inequality,

as does F2(x̂) ≥ F3(x̂) upon observing that

F3(x̂)

F2(x̂)
=

(∏
i,j

‖x̂− x∗ij‖
)1/M

1

M

∑
i,j

‖x̂− x∗ij‖
(3.20)

We have observed in simulations that, when using more than two anchor nodes,

monotonic convergence kicks in once Fi(x̂) < 1, although a proof in the general case

is still lacking.

35

3.5 Initialization

A well-chosen initialization point x̂0 will generally lead to surer convergence to

the correct position estimate. Two cases may be considered:

• Case 1: The true location x lies in the convex hull of the anchor nodes (x ∈ H).

In this case, convergence to the correct position estimate follows by arguments

similar to those of [6].

• Case 2: The true location x lies outside the convex hull of the anchor node

(x 6∈ H).

For case 2, an effective initialization strategy consists in first sorting the available

distance measurements to select the smallest; let this index be denoted n. Then choose

x̂0 in a vicinity of cn. Let i and j be the indices of two of the larger distances, and

project back and forth between circles centered at ci and cj for a few iterations,

and then switch to the random projection strategy of section 3.3. In essence, when

the true location lies outside H, this strategy gives a high probability of the initial

position estimates lying in R+
ij, as desired in view of Theorem 1. The subsequent

switch to the random projection scheme then relies on the local convergence of the

algorithm.

This same initialization strategy also appears effective for case 1, as the true

position x is already in H anyway.

36

3.6 Noisy Measurements

With random noise contaminating the distance measurements {di}, the position

estimates become random variables. Let

di = di + δi (3.21)

in which di is the true distance to the i-th anchor, and δi is the measurement error.

The influence of δi is to move the boundary of each circle, so that projections will

land systematically inside (resp., outside) the circle ∂Ci if δi < 0 (resp., δi > 0). For

small displacements, such that circular arcs can be replaced by their tangent lines

at the point of intersection, the actual intersection between circles ∂Ci and ∂Cj is

displaced to the opposite corner of a parallelogram, as depicted in figure 3.6. From

basic trigonometry, the distance ∆ij between the true location and the displaced

intersection is

∆ij =
δ2
i + 2δiδj cos θij + δ2

j

sin θij

(3.22)

involving the subspace angle θij between the anchored displacements (x − ci) and

(x− cj). With N anchor nodes, we have N(N − 1)/2 displaced intersections between

circles, which now function as competing local attractors to the position estimator.

The algorithm will then converge towards a vicinity of these competing attractors,

and then “rattle around” [31], with the worst-case deviation from the true location

given by maxij ∆ij.

Figure 3.7 shows a simulation run in which the distance measurements are con-

37

δi

δj

true

location

displaced

intersection

θij

∆ij

Figure 3.6: Illustrating displaced intersection of circles ∂Ci and ∂Cj in the presence

of small distance errors δi and δj.

taminated with errors, with σ2
i = 0.04. The position estimates are seen to converge

towards the true location, and then “rattle around”. By averaging the position esti-

mates over many such runs, the mean position was observed to be unbiased, with a

variance given by σ2
i .

3.7 Concluding Remarks

The modified projection algorithm proposed here, using projections to the

boundaries of sets, is observed to perform well even when the true position lies outside

the convex hull of the anchor nodes. The algorithm also features a simple update law

and behaves benignly in the presence of measurement errors.

Although we have focused on the two-dimensional case, the algorithm extends

readily to three-dimensional data as well; figure 3.8 gives an example run.

38

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Figure 3.7: Position estimates using noisy distance measurements.

−3
−2

−1
0

1
2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

Figure 3.8: Illustrating convergence for three-dimensional data.

Chapter 4

Distance Information Reconstruction For Wireless Sensor

Network Localization

4.1 Introduction

Most of localization algorithms are based on the critical information–distance

measurements. However, in practice, distance information may not be complete, as

some distance measurements might not be available, others might be contaminated by

noise. In this chapter, we focus on the distance information reconstruction problem.

Specific distance measurements can be obscured due to various factors, including

bursty interference or transient jamming during distance measurements, or inadver-

tent obstacles impeding communication between select sensor pairs. In such cases,

the various localization methods may have insufficient input data, necessitating es-

timation of the missing distance measurements from those available. The distance

reconstruction problem has considerable geometric structure [15], [16] and we exam-

ine further in this work the structural features exploited in [16] based on the low-rank

character of a certain matrix constructed from the pairwise distances.

While convex programming can provide powerful algorithmic solutions to the

low-rank matrix reconstruction problems, existing approaches appear ill suited to in-

39

40

tegrating inertial constraints which underlie Euclidean distance matrices [32], [33],

suggesting that alternative reconstruction algorithms might better capture the prob-

lem structure if the inertial constraints can somehow be absorbed: inertia is more

informative than rank, since rank can be inferred from inertia, but not vice-versa.

The intent of this chapter is to propose such inertial constrained iterative algorithms

for distance matrix reconstruction, and offer some initial performance comparisons

illustrating their interest.

Section 4.2 reviews some basic results of multidimensional scaling, in order to

recall specific results on the inertia of distance matrices that serve as consistency

checks in the iterative algorithms developed in this chapter. The issue of unique re-

construction of missing distances from those remaining is reviewed in Section 4.3, to

ensure meaningful simulation examples are constructed. Further algebraic structure

of the reconstruction problem is developed in Section 4.4, which serves to illustrate

how nonuniqueness can plague solutions that exploit only rank; further inconsis-

tencies of existing algorithms are identified in Section 4.5, thus motivating the new

algorithms proposed in Section 4.6. Simulation examples are included in Section 4.7,

with concluding remarks sythesized in Section 4.8.

41

4.2 Problem Structure

4.2.1 Multidimensional Scaling

We review in this section results from multidimensional scaling relating to con-

sistent distance measurements between sensor nodes.

An N × N symmetric matrix D is a pre-Euclidean distance matrix [32], [33],

[34] if it has zeros on the main diagonal and nonnegative elements elsewhere. If in

addition there exist points x1, . . . , xN in <m such that

Dij = ‖xi − xj‖2 (4.1)

then D becomes a Euclidean distance matrix, and m is the dimension of the space

containing the points x1, . . . , xN .

We will be concerned principally with the case m = 2 here, although most

of the results extend readily to higher m as well, with the important exception of

Theorem 4.1 below.

For the context at hand, consider a network of N sensors randomly distributed

in a plane, with xi ∈ <2 the position of the i-th sensor. The squared distance between

sensor pairs becomes

d 2
ij

∆
= ‖xi − xj‖2 = xT

i xi + xT
j xj − 2xT

i xj . (4.2)

We collect the sensor coordinates into the matrix

X = [x1 x2 · · · xN]T ∈ <N×2. (4.3)

42

The Euclidean distance matrix D ∈ <N×N for these points becomes [35], [17], [16]

D = y 1T + 1yT − 2XXT , (4.4)

in which

yT =
[‖x1‖2 ‖x2‖2 · · · ‖xN‖2

] ∈ <1×N (4.5)

and 1 denotes the N × 1 vector of all ones. This shows that D has rank at most four

[35], [16].1 Note that D is invariant to rotation, translation, and reflection; resolving

these indeterminacies requires that specific nodes have known locations.

Introducing the matrix B ∈ <(N−1)×(N−1) with entries

Bij = d 2
iN + d 2

jN − d 2
ij , 1 ≤ i, j ≤ N−1, (4.6)

one shows [35] that the distances {dij} are compatible with N points in <2 if and

only if B is positive semi-definite, having rank 2. Indeed, in that case, B factors as

B = 2 X̃X̃T , (4.7)

where X̃ ∈ <(N−1)×2 has as its i-th row (xi − xN)T .

A similar factorization is exploited in isomap [36]–[38], using row and column

centering. Specifically, introduce the projection matrix

P = IN − 11T

N
(4.8)

This is a centering matrix, in the sense that if w = Pv, their components relate as

wi = vi − (1/N)
∑

j vj, which is seen to subtract the mean (1/N)
∑

j vj from each

1The formulation of [35] actually considers an augmented version of D, but reaches the same

rank conclusion.

43

component. Since clearly P1 = 0, centering both rows and columns of D yields again

a rank two matrix:

PDP = P
(
y 1T + 1yT − 2XXT

)
P

= −2(PX)(PX)T (4.9)

This has essentially the same structure as (4.6) above: aside from a sign change and

difference in size, the coordinates of (4.9) are oriented around their center of mass,

whereas (4.6) has them “centered” with respect to the final node xN . The form (4.6)

will prove more convenient in subsequent algorithm design in section 4.6.

4.2.2 Inertial Constraints

If v is any vector orthogonal to 1, then vTDv ≤ 0 [32], [33], i.e., a Euclidean

distance matrix is negative semi-definite in the subspace of zero mean vectors. This

basic relation has implications on the inertia of D, which we review here as they play

an important role in later consistency checks.

We recall that the inertia of a symmetric matrix [39], [40] is the couple (ρ+, ρ−)

where ρ+ (resp., ρ−) is the number of positive (resp., negative) eigenvalues of the

matrix; the rank is therefore ρ = ρ+ + ρ−.

Property 4.1 The Euclidean distance matrix D has one eigenvalue positive (ρ+ =

1), with all other nonzero eigenvalues negative.

Thus if D has rank four, its inertia is (1, 3). Geometries giving rank less than

44

four are noted in the remark below.

Proof: Note that D can be written as

D =
[
1 y X

]




1

1

−2 I2




︸ ︷︷ ︸
C




1T

yT

XT




, (4.10)

where C has eigenvalues at +1, −1, −2 and −2, and thus inertia (1, 3). By a simple

extension of Sylvester’s law of inertia [39] (which asserts that inertia is invariant to

a congruence transformation), it follows that D can have at most one eigenvalue

positive: ρ+ ≤ 1. To show indeed ρ+ = 1, it suffices to find a nonzero v ∈ <N for

which vTDv > 0. Choosing v = 1, we have

vTDv =
N∑

i = 1

N∑
j =1

d 2
ij > 0. ¦

Remark: The factor
[
1 y X

]
can drop below rank 4 when yi = ‖xi‖2 is the same

for each index i, placing the sensors in a circle. For this case, the rank of D can be no

larger than 3, having inertia (1, 2). Similarly, the term X drops from rank 2 to rank 1

when all sensors are on a line, giving again D having rank at most 3. For other sensor

geometries, the matrix D will have rank 4 with high probability, giving inertia (1, 3). ¦

45

4.2.3 Basic Problem Statement

Let Ω denote the set of index pairs (i, j) for which dij is known; its complement

Ω thus contains index pairs (i, j) for which dij must be estimated.

Problem 4.1 Given a partial description of the Euclidean distance matrix

D̂ij =





d 2
ij, (i, j) ∈ Ω;

∗, (i, j) ∈ Ω;

(4.11)

with “∗” a missing entry, find the missing entries, i.e., reconstruct D.

A variant on this formulation, in which distance measurements are known with

confidence values, is briefly addressed in Section 4.5.2

4.3 Minimality and Uniqueness

Before developing reconstruction algorithms, we treat the question of the mini-

mal number of distance measurements necessary to reconstruct those remaining, and

whether a unique solution is consistent with the given distance measurements. We

suppose that the available distance measurements are exact in this section.

Given N sensors, we clearly have 2N parameters to specify their locations in the

plane. Their pairwise distances, however, are insensitive to translation (two degrees

of freedom) and rotation (an additional degree of freedom) in the plane, reducing the

number of degrees of freedom to 2N − 3; fewer than 2N − 3 distance measurements

are thus insufficient to reconstruct those remaining.

46

This “minimal” number 2N − 3, however, still proves insufficient, as we review

below. (2N − 2 turns out to be the minimal number, but is sufficient only for specific

sensor geometries.) Necessary and sufficient conditions for uniqueness are developed

in the insightful work of Aspnes et al. [15], whose basic results are briefly reviewed

here, for the purpose of ensuring meaningful simulation scenarios in section 4.7.

Let the nodes {xi}N
i =1 be collected into a vertex set V of a graph, and let the set

of edges E collect the known distance pairs {dij}, with edge lengths commensurate

with these distances, as in Figure 4.1. A graph is first order rigid if the given distances

fix the nodes locally with respect to each other, i.e., there is no local displacement

of the nodes consistent with the given distance values, aside from the trivial inde-

terminacies of translation and rotation of all nodes together. (Rigidity is a common

notion in mechanical and civil engineering: One may think of the edges as steel bars

of prescribed lengths {dij}, whose endpoints are numbered according to the node pair

(i, j) they connect; rigidity means that once the steel bars are connected, the nodes

are “locked” into position by virtue of their geometry). Clearly, if the graph is not

rigid, the remaining distances cannot be uniquely determined.

Numerous means of testing first-order rigidity are available [15]; we content

ourselves here with the rank of a “rigidity matrix” [41], [42]. Specifically, with d 2
ij =

‖xi − xj‖2, all local displacements ∆xi and ∆xj consistent with distance dij must

satisfy

(xi − xj)
T (∆xi −∆xj) = 0 (4.12)

47

1

2

3

4

d12

d23

d34

d14

1

2

3

4

d12

d23

d34

d14

d24

12

3

4

d12

d23

d34
d14

d24

(a) (b) (c)

Figure 4.1: (a) Non-rigid formation; (b) first-order rigid, but not globally rigid, for-

mation; (c) first-order rigid configuration having same distances as (b).

This gives as many equations for the local displacements {∆xi} as there are edges in

the graph; these may be collected into the linear matrix equation

F




∆x1

...

∆xN




, = 0 (4.13)

exposing a rigidity matrix F of dimensions M × 2N , where M is the number of edges

in the graph. Note that F has a right nullspace of dimension at least 3, since any

displacement in the plane (two degrees of freedom) or rotation (an additional degree of

freedom) will not affect the inter-node distances. If all solutions for the displacements

{∆xi} are confined to this three-dimensional subspace, the graph is first-order rigid.

This is equivalent [41], [42] to the rigidity matrix F having rank 2N − 3.

Figure 4.1(a) shows a configuration which is not rigid, since the nodes of the

rhombus can move continuously with respect to each other while maintaining the

48

same distances. Either configuration of figure 4.1(b) or (c), however, is first-order

rigid. The figure also illustrates, though, that nonuniqueness can still result, since d13

admits two solutions consistent with the remaining distances for this example [15].

The stronger notion of global rigidity implies that there is a unique configuration

consistent with the given distances, modulo the indeterminacies of translation, rota-

tion and reflection, and is characterized (in <2) in [43]. To this end, we recall that a

graph is redundantly rigid if, upon removing an arbitrary edge, it remains first-order

rigid. We recall also that a graph is k-connected if, upon removing any set of fewer

than k edges, the resulting pruned graph remains connected. We then have:

Theorem 4.1 ([43]). A graph in <2 with N ≥ 4 vertices is globally rigid if and only

if it is redundantly rigid and 3-connected.

Remark: Due to the redundant rigidity constraint, necessarily 2N − 2 distance mea-

surements (or more) must be available: Fewer than this would imply that, upon

removing one edge, fewer than 2N − 3 distance measurements would remain, which

is less than the number of degrees of freedom in the problem. ¦

The examples in sections 4.4, 4.5 and 4.7 will appeal to this result to ensure

that the distance reconstruction problem admits a unique solution; a specific example

satisfying theorem 4.1 is the 7-node “camembert” configuration of Figure 4.2. We

should note, finally, that uniqueness in low-rank matrix completion has also been

addressed by Candès and co-workers [44], [45] who show that, with high probability, a

unique solution to the low-rank matrix completion problem exists provided we collect

49

d12

1

2

3

4

5

6

7 d23

d16

d67

d57

d45 d34

d47

d56

d17

d27

d37

Figure 4.2: A globally rigid formation having the minimum number of edges.

O(Npoly(log N)) known entries, assuming the singular vectors of the matrix satisfy

specific incoherence properties. The precise coefficients in the number of needed

entries is not directly revealed, however, which reflects perhaps the generality of the

result, as opposed to the more precise graph-theoretic characterization of theorem 4.1,

which is clearly more pertinent to the structured problem at hand.

4.4 A Toy Problem

We first an explicit solution to a “toy” low-rank matrix completion problem.

Although this approach has some utility when a “small” number of distance mea-

surements are absent, it serves here to establish that the (1, 3)-inertia property is

necessary, but not sufficient, for a set of squared distances to be consistent. It will

likewise illustrate in Section 4.5.1 how nuclear norm minimization [44], [45], [46] may

fail.

50

Suppose for sensor i there is some j for which dij is unknown or unreliable, but

that both sensors i and j can identify three other sensors, with indices l1, l2, and l3,

having reliable distance measurements between themselves and with i and j. Without

loss of generality, we suppose the indices are numbered as l1 = 1, l2 = 2, l3 = 3, i = 4

and j = 5. The 5× 5 principal submatrix of D then appears as

D5 =




0 d 2
12 d 2

13 d 2
14 d 2

15

d 2
21 0 d 2

23 d 2
24 d 2

25

d 2
31 d 2

32 0 d 2
34 d 2

35

d 2
41 d 2

42 d 2
43 0 γ

d 2
51 d 2

52 d 2
53 γ 0




(4.14)

where γ denotes the uncertain entry. Since this configuration is globally rigid,

the unknown γ is uniquely determined.

One approach is to seek γ such that D5 is singular, so that its rank cannot

exceed four. To facilitate the description to follow, we partition D5 as:

D5 =




D3 a b

aT 0 γ

bT γ 0




(4.15)

with D3 ∈ <3×3 and a,b ∈ <3×1. The following lemma proves useful to the main

result of this section in Theorem 4.2 below:

Lemma 4.1 Assume the known distance entries of D5 are consistent and that D3

51

is invertible (i.e., sensor locations 1, 2, and 3 are distinct2). Then

aTD−1
3 a > 0 and bTD−1

3 b > 0.

Proof: Consider

D4 =



D3 a

aT 0


 (4.16)

and introduce the indefinite quadratic form

f(v) =

[
vT 1

]
D4



v

1


 (4.17)

where v ∈ <3×1 is a free vector. A critical point v∗ of this functional gives a saddle

point, obtained where

∂f(v)

∂v

∣∣∣∣
v=v∗

= 0, (4.18)

yielding v∗ = −D−1
3 a and f(v∗) = −aTD−1

3 a. The equations at a critical point

combine to give 

D3 a

aT 0




︸ ︷︷ ︸
D4



v∗

1


 =




0

−aTD−1
3 a


 (4.19)

or

aTD−1
3 a =

−1

(D−1
4)44

(4.20)

involving the lower right entry of the inverse D−1
4 . It suffices to show that this entry

is negative. We appeal to the determinant inverse formula:

(D−1
4)ij =

(−1)i+j detDij
4

detD4

(4.21)

2Observe that detD3 = 2 d 2
12 d 2

13 d 2
23, which is nonzero for distinct locations.

52

in which Dij
4 is the cofactor which results by deleting row i and column j. A direct

calculation shows that

detD44
4 = detD3 = 2 d 2

12 d 2
13 d 2

23 > 0, (4.22)

whereas detD4 < 0 since this determinant is the product of one positive and three

negative eigenvalues, according to Property 4.1. This confirms aTD−1
3 a > 0. Per-

muting a with b shows that bTD−1
3 b > 0 as well. ¦

Theorem 4.2 With the same assumptions as Lemma 1:

1. The unknown entry is one of two solutions:

γ = aTD−1
3 (b± τ a), (4.23)

with τ =
√

(bTD−1
3 b)

/
(aTD−1

3 a).

2. Both solutions give γ > 0 and result in D5 having inertia (1, 3).

Remark: As only one choice for γ can be correct, this shows that the inertia-(1, 3)

property (in collaboration with zero diagonal entries and positive off-diagonal terms),

while necessary, is not sufficient for a pre-Euclidean distance matrix to be compatible

with distance measurements in a plane.

Proof: As D3 is invertible, we may exploit the block LDU factorization

D5 =




I3

[
aT

bT

]
D−1

3 I2






D3

D5\D3






I3 D−1

3 [a b]

I2


 (4.24)

53

which exposes the Schur complement [39], [40], [47] with respect to D3:

D5\D3 =




0 γ

γ 0


−



aT

bT


D−1

3

[
a b

]

=



−aTD−1

3 a γ − aTD−1
3 b

γ − bTD−1
3 a −bTD−1

3 b


 (4.25)

As D3 has full rank, D5 is singular if and only if its Schur complement D5\D3 is.

The determinant detD5\D3 gives a quadratic function in γ, whose roots yield part 1

of the theorem statement.

For the second part, we recall that Sylvester’s law of inertia [39] asserts that a

matrix congruence transformation preserves inertia. Thus the inertia of D5 is that of

D3 plus that of its Schur complement D5\D3. As the inertia of D3 is (1, 2), it suffices

to show that the Schur complement D5\D3 is negative definite for all γ between the

critical values isolated in part 1, since it will then have a sole negative eigenvalue

when γ reaches either critical value.

To this end, the characteristic polynomial p(λ) = det(λI2 −D5\D3) becomes

p(λ) = λ2 + (α + β) λ + αβ − (ζ − γ)2 (4.26)

with α = aTD−1
3 a, β = bTD−1

3 b and ζ = aTD−1
3 b. We observe that both α and β

are positive from Lemma 4.1, and that the final coefficient αβ − (ζ − γ)2 is concave

in γ. This final coefficient (as a function of γ) must thus be positive between its zero

crossings that give the critical values of part 1. This shows that p(λ) is a Hurwitz

polynomial for values of γ between its critical values, and hence its roots lie in the

54

left-half plane. This confirms that D5\D3 is negative definite for all γ between the

critical values, to complete the proof. ¦

To identify which γ from the two choices is correct, we construct B having

entries [cf. (4.6)]

Bij = d 2
i5 + d 2

j5 − d 2
ij, 1 ≤ i, j ≤ 4, (4.27)

using d 2
45 = d 2

54 = γ. The correct γ of the two choices is identified by B being positive

semidefinite of rank 2. When k pairs of distance measurements are absent, the basic

procedure can be applied k times to subsets of 5 sensors.

4.5 Previous Reconstruction Algorithms

We review some existing reconstruction algorithms here, namely nuclear norm

minimization [44], [45], [46] and a truncated singular value decomposition approach

[16]. Either method may display specific shortcomings, which will motivate the novel

algorithms of section 4.6.

4.5.1 Nuclear Norm Minimization

We recall that the nuclear norm ‖ · ‖∗ of any matrix is the sum of its singular

values:

‖D‖∗ =
∑

k

σk (4.28)

This norm has particular significance as the convex hull of the rank function of a ma-

trix, when restricted to matrices having induced operator norm (i.e., largest singular

55

value) bounded by one [46]. One may thus approach the minimum rank problem

D̂ = arg min
E∈<N×N

rank(E) subject to Eij = d 2
ij for all (i, j) ∈ Ω

through its relaxation

D̂ = arg min
E∈<N×N

‖E‖∗ subject to Eij = d 2
ij for all (i, j) ∈ Ω,

as this reduces to minimizing a convex function ‖E‖∗ over a convex set.

As Theorem 4.2 shows, a minimum rank solution need not be unique, which is

further illustrated in the following example:

Example 1. Consider five sensors located at

X =




xT
1

xT
2

xT
3

xT
4

xT
5




=




1.17 −1.50

−0.90 0.50

0.30 −0.80

2.00 0

0 1.20




As in Theorem 4.1, let d45 = d54 be the uncertain entry in D5, with the other entries

known. The minimum rank problem admits two solutions according to Theorem 4.1,

at

γ = 5.44, γ = 12.108

with the correct solution at d 2
45 = 5.44. The nuclear norm ‖D5‖∗ (as a function of γ)

is minimized at γ = 5.44, yielding the correct solution in this case.

56

If instead we consider

X =




xT
1

xT
2

xT
3

xT
4

xT
5




=




−0.15 1.50

−1.15 −0.32

0 0.15

0.40 −1.30

−0.60 0.60




then the two solutions for γ become

γ = 0.3852, γ = 4.61

with the latter being the correct d 2
45. The nuclear norm ‖D5‖∗ is now minimized at

γ = 0.3852 which indeed gives a minimum rank solution, but the incorrect distance

reconstruction.

Finally, by considering

X =




xT
1

xT
2

xT
3

xT
4

xT
5




=




1.00 −0.50

−0.50 0.30

−0.25 0.55

−1.50 2.50

0.62 0




the minimum rank solutions become

γ = 3.8735, γ = 10.744

whereas the nuclear norm is minimized at γ ≈ 1.7287, which matches nether minimum

57

rank solution. This illustrates how the nuclear norm may not capture the correct

solution, even when a well-defined solution exists. ¦

4.5.2 SVD Approximation

The general setting of [16] assumes that we can assess a probability pij in mea-

suring the distance between sensors i and j. Thus we may construct an incomplete

distance matrix with

D̂ij =





d 2
ij, with probability pij;

∗ with probability 1− pij;

(4.29)

in which ∗ denotes an unknown value.

A “best guess” estimate of the true matrix of squared distances is then taken

as [16]

Eij =





d 2
ij − γij(1− pij)

pij

if (i, j) ∈ Ω;

γij if (i, j) ∈ Ω.

(4.30)

Here the value γij is introduced to represent the unknown distance measurement

between node i and j. This “guess” can be arbitrary, such as 0, but a good choice

does make the reconstruction more accurate. A singular value decomposition is then

used to construct the best rank-4 approximant to E (with this approximant denoted

S4 in [16]), by retaining the first four principal components. It is proved [16] that this

procedure provides an unbiased estimate of the true D, and that the distance to the

true D is bounded. To illustrate a shortcoming of this approach, consider a network

58

of seven sensors with locations at

X =




xT
1

xT
2

xT
3

xT
4

xT
5

xT
6

xT
7




=




0.093479 1.933876

−0.211001 1.078930

0.588168 −0.349577

0.049666 1.104135

0.277079 1.008712

−0.648985 −0.902661

−0.385248 0.488242




.

The true matrix of squared distances becomes3

D =




0.000 0.824 5.459 0.690 0.890 8.597 2.319

0.824 0.000 2.679 0.069 0.243 4.119 0.379

5.459 2.679 0.000 2.403 1.942 1.836 1.649

0.690 0.069 2.403 0.000 0.061 4.515 0.568

0.890 0.243 1.942 0.061 0.000 4.511 0.710

8.597 4.119 1.836 4.515 4.511 0.000 2.004

2.319 0.379 1.649 0.568 0.710 2.004 0.000




We remove the distance measurements between sensor pairs 1 and 2 (unknown d12 =

d21), 3 and 4 (unknown d34 = d43) and 2 and 5 (unknown d25 = d52).

Using first the method of Drineas et al. [16] using γij = 0 for the removed

entries and pij = 1 for the known entries (which accurately reflects the set-up here),

3The displayed version has been rounded to three positions past the decimal point to fit the

column width; the actual computations used the full precision representation of D.

59

the optimal rank-four approximation to E from (4.30) becomes




0.227 −0.094 5.586 0.714 0.671 8.624 1.844

−0.094 −0.131 2.581 0.049 0.159 4.075 0.835

5.586 2.581 0.061 0.006 1.850 1.845 1.435

0.714 0.049 0.006 0.015 0.007 4.509 0.588

0.671 0.159 1.850 0.007 0.275 4.517 0.917

8.624 4.075 1.845 4.509 4.517 0.001 1.967

1.844 0.835 1.435 0.588 0.917 1.967 0.822




The eigenvalues of this matrix are λ = 15.0027, 1.5111, −3.4670 and −11.7765, giving

an inertia of (2, 2). By Property 1, this is inconsistent with the matrix of squared

distances for any sensor network. Although inspection shows that the diagonal entries

are nonzero, this is easily corrected; more critical is that the value reconstructed for

d 2
12 (or d 2

21) is negative, which is fundamentally inconsistent.

4.6 New Algorithms

We construct new iterative reconstruction algorithms, beginning in section 4.6.1

by appealing to the inertia-(1, 3) property of D, followed in section 4.6.2 by appealing

to the inertia-(2, 0) of B, and finally a hybrid of the two in section 4.6.3. Simulation

results then compare their performance to reconstruction based on nuclear norm

minimization.

60

4.6.1 Iterative Inertial Approximation

The optimal rank four approximant from above need not retain the (1, 3) inertia,

indicating a fundamental inconsistency via Property 1.

We can thus consider an “inertial” rank-4 approximant, obtained by keeping

the most positive and three most negative eigenpairs from the eigendecomposition.

That is, given any estimate D̂ of the matrix of squared distances, compute its eigen-

decomposition as

D̂ = VΛVT , (4.31)

with Λ a diagonal matrix containing the eigenvalues and V the corresponding eigen-

vectors. An inertial-(1, 3) approximant is naturally obtained as

E = λ+v+vT
+ + λ1−v1−vT

1− + λ2−v2−vT
2− + λ3−v3−vT

3− (4.32)

in which λ+ is the most positive eigenvalue, and λ1−, λ2− and λ3− are the three most

negative eigenvalues, each paired with its corresponding eigenvector. Optionally, one

may replace λ+ with |λ1−+λ2−+λ3−| to ensure preservation of the zero trace property

in addition to inertia.

By setting D̂0 as the matrix containing the measured or known squared dis-

tances, and replacing unknown or unreliable entries by γij (= 0 in the simplest case),

an iterative refinement runs as follows:

For k = 0, 1, 2, . . . :

1. Let E(k) be the inertial-(1, 3) approximant to D̂(k);

61

2. Update

D̂
(k+1)
ij =





D̂
(0)
ij if (i, j) ∈ Ω;

E
(k)
ij if (i, j) ∈ Ω.

(4.33)

If instead the elements of D̂(0) are known with confidence values 0 ≤ pij ≤ 1, then

step 2 can be replaced with.

2) Update

D̂
(k+1)
ij = pijD̂

(0)
ij + (1− pij)E

(k)
ij (4.34)

.

The previous case is obtained with pij = 1 for (i, j) ∈ Ω and pij = 0 for (i, j) ∈ Ω.

4.6.2 Inertia (2, 0) Reconstruction

A reconstruction exploiting the inertia-(2, 0) character of B from (4.6) may aso

be developed, as we pursue here. Suppose the position N is fully connected, i.e., we

have diN for all i < N . By partitioning the distance matrix as

DN =



DN−1 d

dT 0


 (4.35)

with dT = [d 2
1N , . . . , d 2

N−1,N], the matrix B from (4.6) becomes

B = d1T + 1dT −DN−1, (4.36)

where 1 now denotes the vector of ones of dimension N−1. This matrix has inertia

(2, 0) if and only if DN is a Euclidean distance matrix of dimension 2. This suggests

62

the following iterative algorithm:

For k = 0, 1, 2, . . . ,

1. Set

B̂(k+1) = d1T + 1dT − D̂
(k)
N−1 (4.37)

2. Calculate the optimal inertia-(2, 0) approximant

C(k+1) = λ1v1v
T
1 + λ2 v2 vT

2 (4.38)

where λ1 and λ2 are the two most positive eigenvalues of B̂(k+1), with

v1 and v2 the corresponding eigenvectors.

3. Update

[D̂
(k+1)
N−1]ij =





D̂
(0)
ij if (i, j) ∈ Ω;

[d1T + 1dT −C(k+1)]ij if (i, j) ∈ Ω.

(4.39)

As before, if instead the elements of D̂(0) are known with confidence values

pij, step 3 can be replaced with

3) Update

[D̂
(k+1)
N−1]ij = pij [D̂(0)]ij + (1− pij) [d1T + 1dT −C(k+1)]ij (4.40)

.

Note that the entries d 2
iN are never altered, which impedes application of this algo-

rithm if no node proves fully connected. One workaround is to permute the indices

63

of the nodes at each iteration, in such a way that all unknown entries of DN are ul-

timately updated. An alternate approach is to combine both inertial approximation

algorithms into a hybrid, as developed next.

4.6.3 A Hybrid Algorithm

The inertia-(2,0) algorithm assumes that at least one sensor is fully connected

(indexed as N by permuting indices, if necessary), whereas the the inertia-(1-3) al-

gorithm need not appeal to such an assumption. We may thus consider a hybrid

algorithm that alternately projects between the two approaches, as follows:

For k = 0, 1, 2, . . . ,

1. (Inertia-(1, 3) projection)

D+
ij =





D̂
(0)
ij , if (i, j) ∈ Ω;

E
(k)
ij , if (i, j) ∈ Ω.

(4.41)

with E(k) the inertia-(1, 3) approximant to D(k).

2. (Inertia-(2, 0) projection) Partition

D+ =




D
(k)
N−1 d(k+1)

(d(k+1))T 0


 (4.42)

and set

B̂(k) = d(k+1)1T + 1(d(k+1))T −D
(k)
N−1 (4.43)

64

Let

C(k+1) = λ1v1v
T
1 + λ2 v2 vT

2 (4.44)

be its inertia-(2, 0) approximant.

3. Update

[D̂
(k+1)
N−1]ij =





D̂
(0)
ij if (i, j) ∈ Ω;

[d(k+1)1T + 1(d(k+1))T −C(k+1)]ij if (i, j) ∈ Ω.

(4.45)

and

D̂
(k+1)
N =




D̂
(k+1)
N−1 d(k+1)

(d(k+1))T 0


 (4.46)

4.7 Simulations

As a first example, we consider the sensor locations from (??), while removing

the distance measurements between sensor pairs 1 and 2 (unknown d12 = d21), 3 and

4 (unknown d34 = d43) and 2 and 5 (unknown d25 = d52). The unknown values are

initialized to zeros in D̂(0), and figure 4.3 shows the relative error

Relative error =

(∑
i,j

(d 2
ij − d̂ 2

ij)

)/ ∑
i,j

d 2
ij (4.47)

versus the iteration number, for the new algorithms of section 4.6. For comparison,

the result using a nuclear norm minimization approach adapted via a subgradient

is also plotted. The subgradient requires singular vectors to be calculated at each

iteration (e.g., [44], [46]), presenting thus a similar computational complexity to the

65

0 100 200 300 400
1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

Iteration

R
e
la

ti
v
e
 E

rr
o
r

Inertia-(1,3)

Inertia-(2,0)Hybrid

Nuclear Norm subgradient

Figure 4.3: Relative error in distance reconstruction for the different algorithms.

algorithms of section 4.6. Although the subgradient algorithm reduces the relative

error to comfortably below 1%, it does not offer the same accuracy as the inertia-

based algorithms. For this case, the nuclear norm of the reconstructed distance matrix

found by the subgradient algorithm is a mere 0.02% greater than the true solution, and

further improvements would require searching a subgradient of minimum norm (e.g.,

[46], [48, §6.3.1]). The alternative algorithm from [49] for nuclear norm minimization

did not converge to a useful solution for this example, nor did the SVD approximation

approach of [16] (cf. § 4.5.2).

66

For a second example the sensor locations are

X =




−0.5958 −0.5018

−1.5225 −0.1566

0.3804 −1.2899

−2.5625 0.0863

0.5802 −0.7190

−0.3462 1.5656

0.9611 0.6097




with the known distances indicated in the connectivity graph of figure 4.4. For this

example, the graph is globally rigid (ensuring a unique distance matrix completion),

and the number of known entries is at the minimum 2N − 2 (= 12 here), with node

7 fully connected, as with the “camembert” configuration of figure 4.2.

The unknown distances are again initialized to zeros in D̂(0), with the relative

error in the distance matrix reconstruction for the different algorithms plotted in

figure 4.5. The inertia-(2,0) and the hybrid algorithm both succeed for this exam-

ple. The inertia-(1,3) algorithm has converged to the wrong matrix, although the

converged solution is still a pre-Euclidean distance matrix (i.e., a symmetric matrix

with zero diagonal and nonnegative elements off the diagonal) of inertia (1, 3). This

reflects how the inertia constraint need not ensure that the reconstructed matrix is

a Euclidean distance matrix, akin to the examples in section 4.4. The nuclear norm

subgradient algorithm also fails for this example, since it has converged to a distance

67

!! !"#$!" !%#$!% !&#$ & &#$ %
!%#$

!%

!&#$

&

&#$

%

%#$

"

%

"

!

'

$

(

)

Figure 4.4: Connectivity graph for known distances.

matrix estimate having lower nuclear norm than the true distance matrix, illustrating

again how the true distance matrix need not lie at the minimum of the nuclear norm

criterion, similar to the examples of section 4.5.1.

4.8 Concluding Remarks

The Euclidean distance matrix reconstruction problem may be cast as a low-

rank matrix completion problem, for which considerable algorithmic development as

been devoted in recent years [33], [16], [44], [49], [46], [45], [34], . The novelty of the

proposed algorithms is the use of inertia, which is more informative than rank: rank

is implied from inertia, but not vice-versa. Conversely, inertial constraints do not ap-

pear to lend themselves as readily to convex relaxation, and as such the convergence

68

0 100 200 300 400 500
1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

Iteration

R
e
la

ti
v
e
 e

rr
o
r

Inertia-(2,0)

Hybrid

Inertia-(1,3)

Nuclear norm subgradient

Figure 4.5: Relative reconstruction error for the different algorithms.

properties of the proposed algorithms remain more difficult to establish analytically,

despite the favorable behavior observed in examples where convex relaxation methods

happen to fall short of expectations. The update procedures of the proposed algo-

rithms, however, display some structural affinities with the subgradient adaptation

algorithm, suggesting that some convergence characteristics may yet carry over, as

we hope to report in the near future.

Although we have focused on sensor locations in a plane, extensions to three-

dimensional space are straightforward: the inertia-(1, 3) and inertia-(2, 0) constraints

are replaced by inertia-(1, 4) and inertia-(3, 0), respectively. The three-dimensional

counterpart to Theorem 4.1, however, is presently unresolved.

Chapter 5

Conclusions And Perspectives For Future Work

Our contributions are that first we developed a wireless sensor network localiza-

tion algorithm using projections onto the boundary of convex sets. The new method

avoids the multimodality problem that plagues least-squares formulations as it has

a unique solution. This new method also features a computationally simple update

procedure.

Secondly, we provided in this dissertation new algorithms that aim at recon-

structing the missing distance measurement information, the information which most

localization algorithms are based on. We gave some results on the question of what is

the minimum numbers of distance measurements necessary to reconstruct the remain-

ing and if the solution is unique. We found an important feature of the squared dis-

tance matrix-inertia, which is more informative than its rank. We developed inertia-

(1,3) and inertia-(2,0) approximation reconstruction algorithm. A hybrid algorithm

is also given, which applies these two alternatively and converges much faster.

As our research goes on, we met some problems that remain unresolved and will

be included in our future work.

We have considered convergence aspect of the two anchor nodes case in the

Chapter 3. However, for an arbitrary number of anchor nodes case, we only got

69

70

some preliminary simulation results. Our goal is to achieve convergence under cer-

tain specific situation. One of the possible way to consider this might be find one

“global discrepancy function” that converge well in a certain area, or find a particular

configuration of the anchor nodes that give one of the “discrepancy function” good

conditions to converge.

Another problem in our new projection onto boundary set localization algorithm

appears with noisy measurements. One issue is what will the variance of the location

estimation after final convergence. Although we can get an answer from numerical

simulation, an analytic result is still not available. We will have to further study the

mechanism of the boundary projection to determine the variance.

In distance information reconstruction, there remain two problems unresolved.

First, the convergence aspect of the Iterative Inertial Approximation. We have not

proved yet the convergence aspect of this algorithm. This question are expected to

be resolved in the future.

In our distance reconstruction algorithms, noisy distance measurements have

not been taken fully into consideration. How sensitive our algorithms are to the noise

will be included in our future study too.

Appendix A

Proof of Lemma 1 in Chapter 3

To verify Lemma 1, consider the line `ij passing through anchor nodes ci and

cj, parametrized by a scalar α:

`ij =
{
y : y = ci + α (cj − ci) for some α

}
. (A.1)

The closest point to x on this line, denoted yx, is obtained from the optimization

problem

yx = arg min
y∈ `ij

‖x− y‖2

= ci +
(ci − cj) (ci − cj)

T

‖ci − cj‖2
(x− ci) (A.2)

The difference x− yx gives a line segment normal to `ij (cf. Fig. 3.4):

x− yx =

(
I− (ci − cj) (ci − cj)

T

‖ci − cj‖2

)

︸ ︷︷ ︸
∆
= Pij

(x− ci) (A.3)

Now let z be any other point in the plane. It will lie on the same side of `ij as

x (i.e., z ∈ R+
ij) iff the subspace angle φ between the vectors z− yx and x− yx is less

than 90 degrees (or π/2 radians). From the subspace angle formula

cos φ =
(z− yx)

T (x− yx)

‖z− yx‖ ‖x− yx‖ (A.4)

71

clearly |φ| < π/2 if and only if (z−yx)
T (x−yx) > 0. By a straightforward calculation,

(z− yx)
T (x− yx)

=

(
z− ci − (ci − cj) (ci − cj)

T

‖ci − cj‖2
(x− ci)

)T

Pij (x− ci)

= (z− ci)
T Pij (x− ci) (A.5)

This final form is thus positive if and only if z ∈ R+
ij.

We now observe that Pij (ci − cj) = 0 and therefore

Pij (x− ci) = Pij (x− ci) + Pij (ci − cj)︸ ︷︷ ︸
0

= Pij (x− cj) (A.6)

Similarly, (z− ci)
TPij = (z− cj)

TPij. As such, from the update formula

x̂k − cj = dj
xk−1 − cj

‖xk−1 − cj‖ (A.7)

we have

(x̂k − cj)
T Pij (x− cj)

=
dj

‖x̂k−1 − cj‖ (x̂k−1 − cj)
T Pij (x− cj)

=
dj

‖x̂k−1 − cj‖ (x̂k−1 − ci)
T Pij (x− ci) (A.8)

As the factor dj/‖x̂k−1 − cj‖ is positive, this shows that x̂k−1 and x̂k lie in the same

half-plane with respect to `ij. ¦

72

Appendix B

Notes on choosing the missing element

Consider a 5× 5 matrix of squared distances

D5 =




0 d 2
12 d 2

13 d 2
14 d 2

15

d 2
21 0 d 2

23 d 2
24 d 2

25

d 2
31 d 2

32 0 d 2
34 d 2

35

d 2
41 d 2

42 d 2
43 0 ?

d 2
51 d 2

52 d 2
53 ? 0




(B.1)

in which ? denotes a missing entry that must be filled in, while maintaining rank four.

This requires choosing ? such that D5 is singular, meaning we can find some vector

[
z
1

]
which fulfills

D5



z

1


 = 0. (B.2)

To facilitate the description to follow, we begin by partitioning D5 as:

D5 =




0 d 2
12 d 2

13 d 2
14 d 2

15

d 2
21 0 d 2

23 d 2
24 d 2

25

d 2
31 d 2

32 0 d 2
34 d 2

35

d 2
41 d 2

42 d 2
43 0 ?

d 2
51 d 2

52 d 2
53 ? 0




=




D3 a b

aT 0 ?

bT ? 0




(B.3)

73

with D3 ∈ <3×3 and a,b ∈ <3×1.

A means of deducing the element ? may be summarized as follows:

1. Choose

ξ =




x

0

1




with x ∈ <3×1

such that

[
D3 a b

]




x

0

1




= 0 ⇔ x = −D−1
3 b.

2. Choose a nonzero y ∈ <4×1 such that

[
D3 a b

]


y

1


 = b (B.4)

This implies that y is orthogonal to the column space of
[

D3

aT

]
, so that we may

take for y the following form:

y =


I4 −



D3

aT




(
D2

3 + aaT
)−1

[
D3 a

]





a

0


 (B.5)

3. We now have

[
D3 a b

]







x

0

1




+ α



y

0







= b (B.6)

74

for any α, giving a one-parameter description of all vectors orthogonal to the

first three rows of D5. To have such a vector orthogonal to the fourth row as

well, we should have

[
aT 0 ?

]







x

0

1




+ α



y

0







= 0 (B.7)

By partitioning

y =



y1

y2


 , with y1 ∈ <3×1,

this simplifies to

? = −aT
(
x + αy1

)
, (B.8)

which gives ? in terms of α.

4. To achieve orthogonality with the fifth row of D5, we must have

[
bT ? 0

]







x

0

1




+ α



y

0







= 0 (B.9)

or

bT (x + αy1) + αy2? = 0 (B.10)

giving a second equation connecting α and ?:

? = −bT (x + αy1)

αy2

(B.11)

75

5. By equating (B.8) and (B.11), we have

aT
(
x + αy1

)
=

bT (x + αy1)

αy2

(B.12)

which allows us to obtain α as a root of the second-order polynomial

(aTy1 y2)α
2 + (aTx y2 − bTy1)α− bTx = 0. (B.13)

One of these roots gives ? via either (B.8) or (B.11).

76

Appendix C

Multidimensional Scaling

Multidimensional Scaling (or MDS) is a set of mathematical techniques that

enable a researcher to uncover the ”hidden structure” of data [50]. More reference

include [19],[17],[18]can be find as good text for researchers. The first procedure for

MDS is based on the theorem by Young and Householder (1938),which gives a method

for constructing the configuration given (Euclidean) distances among the points.

[35] have given the necessary and sufficient conditions for a set of numbers to be

the mutual distances of a set of real points in Euclidian space, and matrices are found

whose ranks determine the dimension of the smallest Euclidean space containing such

points. Their theorems involve two basic matrices, Bi and F.

Let i, j and k be alternate subscripts for n points (i, j, k = 1, 2, . . . , n) and dij,

dik, and djk be the distances between the points, then Bi is an (n − 1) × (n − 1)

symmetric matrix with elements

bjk =
1

2
(d2

ij + d2
ik − d2

jk) (C.1)

The element bjk may be considered to be the scalar product of vectors form

point i to points j and k. This follows directly from the cosine law. That is, given

the three points i, j and k,

77

d2
jk = d2

ij + d2
ik − 2dijdik cos θjik (C.2)

which rearranged becomes

dijdik cos θjik =
1

2
(d2

ij + d2
ik − d2

jk) (C.3)

From Equations C.1and C.3, it is seen that bik = dijdik cos θjik, the scalar

product of vectors point i to points j and k. Matrix Bi is thus a matrix of scalar

products of vectors with origin at point i. There are, n possible Bi matrices, since i

may assume any value from 1 to n.

Matrix F is an (n + 1) × (n + 1) symmetric matrix of squares of inter-point

distances bordered by a row and column of ones as follows:

F =




0 d2
12 . . . d2

1k . . . d2
1n 1

d2
21 0 . . . d2

2k . . . d2
2n 1

...
...

...
...

d2
i1 d2

i2 . . . d2
ik . . . d2

in 1

...
...

...
...

d2
n1 d2

n2 . . . d2
nk . . . 0 1

1 1 . . . 1 . . . 1 0




(C.4)

Young and Householder have shown that:

1. If any matrix Bi is positive semidefinite, the distances may be considered to be

78

the distances between points lying in a real Euclidean space.

2. The rank of any positive semidefinite matrix Bi is equal to the dimensionality

of the set of points.

3. The rank of matrix F is two greater than the dimensionality of the set of points.

4. Any positive semidefinite matrix Bi may be factored to obtain a matrix Ai such

that

Bi = AiA
′
i (C.5)

If the rank of Bi is r, where r ≤ (n−1), then matrix Ai is an (n−1)×r matrix

of projections of points on r orthogonal axes with origin at the i-th point of the

r-dimensional, real Euclidean space.

79

Appendix D

Matlab Code

D.1 Projection onto boundary three points test

K=1;

dither = rand * 2 * pi / K;

% Check iterations to see if distance from three points can cause

% a fourth to converge.

% three points (anchors)

x1=[-1;-0.866];

x2=[1;-0.866];

x3=[0;0.866];

% choose random "true" point

%

%y1 = randn(2,1);

%

% plot them

%

figure(1)

80

plot(x1(1), x1(2), ’g+’);

axis([-5 5 -5 5])

axis(’square’);

hold on;

plot(x2(1), x2(2), ’g+’);

plot(x3(1), x3(2), ’g+’);

%

% get true distances

%

%d4 = norm(x4 - y1);

%

% plot circles

%

y1=[0.8898;-2.6217];

plot(y1(1), y1(2), ’r+’);

d1 = norm(x1 - y1);

d2 = norm(x2 - y1);

d3 = norm(x3 - y1);

tt = [0:0.01:2]*pi;

plot(x1(1) + d1 * cos(tt), x1(2) + d1 * sin(tt), ’-.’);

plot(x2(1) + d2 * cos(tt), x2(2) + d2 * sin(tt), ’-.’);

81

plot(x3(1) + d3 * cos(tt), x3(2) + d3 * sin(tt), ’-.’);

%

% Choose random starting point

%

for jj=1:K

z1 = [x1(1) + d1 * cos(dither + 2*jj*pi/K); x1(2) + d1 * sin(dither

+ 2*jj*pi/K)]

plot(z1(1),z1(2),’b*’);

%

% and iterate:

% for ii=1:20

[u,t] = loc2(d1,x1(1),x1(2),z1(1),z1(2));

tr2(z1(1),u,z1(2),t);

z1(1) = u;

z1(2) = t;

[u,t] = loc2(d2,x2(1),x2(2),z1(1),z1(2));

tr2(z1(1),u,z1(2),t);

z1(1) = u;

z1(2) = t;

[u,t] = loc2(d3,x3(1),x3(2),z1(1),z1(2));

tr2(z1(1),u,z1(2),t);

82

z1(1) = u;

z1(2) = t;

end

end

hold off;

function tr2(x1,x2,y1,y2)

plot([x1 x2],[y1 y2],’-k’);

D.2 Projection onto boundary using a random sequencing

% updating operations rather than a cyclic one, to break limit

cycles.

K=40;

dither = rand * 2 * pi / K;

% Check iterations to see if distance from three points can cause

% a fourth to converge.

% three points (anchors)

x1=[-1;-0.866];

x2=[1;-0.866];

x3=[0;0.866];

% choose random "true" point

83

% plot them

figure(1)

plot(x1(1), x1(2),’g+’);

axis([-5 5 -5 5])

axis(’square’);

hold on;

plot(x2(1), x2(2),’g+’);

plot(x3(1), x3(2),’g+’);

%

% get true distances

%

% plot circles

%

y1=[0.8898;-2.6217];

plot(y1(1), y1(2),’r+’);

d1 = norm(x1 - y1);

d2 = norm(x2 - y1);

d3 = norm(x3 - y1);

tt = [0:0.01:2]*pi;

plot(x1(1) + d1 * cos(tt), x1(2) + d1 * sin(tt),’-.’);

plot(x2(1) + d2 * cos(tt), x2(2) + d2 * sin(tt),’-.’);

84

plot(x3(1) + d3 * cos(tt), x3(2) + d3 * sin(tt),’-.’);

tr(x1(1),x2(1),x1(2),x2(2));

tr(x1(1),x3(1),x1(2),x3(2));

tr(x2(1),x3(1),x2(2),x3(2));

%

% Choose random starting point

%

FinalPoint = zeros(K,2);

for jj=1:K

z1 = [x1(1) + d1 * cos(dither + 2*jj*pi/K); x1(2) + d1 * sin(dither

+ 2*jj*pi/K)];

plot(z1(1),z1(2),’b*’);

%

% and iterate:

%

current state = 1;

tworeg = [1 3];

for ii=1:60

switch current state

case 1

[u,t] = loc2(d1,x1(1),x1(2),z1(1),z1(2));

85

tr2(z1(1),u,z1(2),t);

z1(1) = u;

z1(2) = t;

current state = round(2.0 + rand);

case 2

[u,t] = loc2(d2,x2(1),x2(2),z1(1),z1(2));

tr2(z1(1),u,z1(2),t);

z1(1) = u;

z1(2) = t;

current state = tworeg(round(1.0 + rand));

case 3

[u,t] = loc2(d3,x3(1),x3(2),z1(1),z1(2));

tr2(z1(1),u,z1(2),t);

z1(1) = u;

z1(2) = t;

current state = round(1.0 + rand);

end

end

FinalPoint(jj,:) = [u t];

end

hold off;

86

figure(2);

plot(x1(1) + d1 * cos(tt), x1(2) + d1 * sin(tt),’-.’);

axis([-5 5 -5 5])

axis(’square’);

hold on;

plot(x2(1) + d2 * cos(tt), x2(2) + d2 * sin(tt),’-.’);

plot(x3(1) + d3 * cos(tt), x3(2) + d3 * sin(tt),’-.’);

plot(FinalPoint(:,1),FinalPoint(:,2),’ro’);

hold off;

D.3 Linear algebra method of reconstructing missing distance

% Test linear algebra method of reconstructing missing distance

%

% Choose five points randomly

%

Xmat = randn(5,2);

%

% Build matrix of squared distances

%

yvec = sum((Xmat’).2̂);

ovec = ones(size(yvec));

87

Dmat = ovec’ * yvec + yvec’ * ovec - 2 * Xmat * Xmat’;

%

% remove (4,5) and (5,4) elements

%

Dnew = Dmat;

Dnew(4,5) = 0.0;

Dnew(5,4) = 0.0;

%

% partition elements of matrix

%

D3 = Dmat(1:3,1:3);

avec = Dmat(1:3,4);

bvec = Dmat(1:3,5);

%

% get x

%

xx = -D3\bvec;

%

% get y

%

Auxmat = [D3; avec’];

88

[Q,R] = qr(Auxmat);

y1 = Q(1:3,4);

y2 = Q(4,4);

%

% get coefficients of polynomial

%

coefs = [y2 * (avec’ * y1), (y2 * avec’ * xx - bvec’ * y1), -bvec’

* xx];

alpha = roots(coefs);

%

% get solutions

%

sol1 = - avec’ * (xx + alpha(1) * y1)

sol2 = - avec’ * (xx + alpha(2) * y1)

%

% Compare with true value

%

fprintf(’Dmat(4,5) =

D.4 Comparation of rank 4 and rank 2 approximations

% This compares rank 4 and rank 2 approximations,

89

% using randomly plotted data.

%

% Number of nodes

%

nnodes = 7;

%

% true node locations

%

xn = randn(nnodes,1) + i * randn(nnodes,1);

%

% example from ICASSP paper

%

% low res version:

xn = [0.09; -0.21; 0.59; 0.05; 0.28; -0.65; -0.39] + i * ...

[1.93; 1.08; -0.35; 1.10; 1.00; -0.90; 0.50];

% higer res version:

xn = [0.093479; -0.211001; 0.588168; 0.049666; 0.277079; -0.648985;

-0.385248]

+ i * ...

[1.933876; 1.078930; -0.349577; 1.104135; 1.008712; -0.902661;

0.488242];

90

%

% Make 7th node the centroid of a circle

%

%

% Matrix containing squares of distances

%

ovec = ones(size(xn));

DMat = real((abs(xn * ovec’ - ovec * conj(xn’))).2̂);

%

% Check rank

%

rd = rank(DMat)

%

% Operation mode:

% 0 = zero out randomly selected positions

% 1 = add gaussian noise

% 2 = 7-node minimal config.

%

mode = 0;

%

% zero out specific measurements

91

%

Diter = DMat;

if (mode==1)

Diter = Diter + 0.1 * randn(size(Diter));

pr = 0.95;

qr = 1 - pr;

Diter = 0.5 * (Diter + Diter’);

for jj=1:nnodes

Diter(jj,jj) = 0.0;

end

elseif ((mode==2) && (nnodes==7))

dmas = zeros(7,7);

for jj=1:5

dmas(jj,jj+1) = 1;

end

dmas(1,6) = 1;

dmas(1:6,7) = ones(6,1);

dmas = dmas + dmas’;

Diter = DMat .* dmas;

else

%

92

maxzeros = 4;

already = zeros(2,maxzeros);

count = 0;

while (already(1,maxzeros)==0)

flag = 0;

ipair = round((nnodes-1) * rand(2,1) + 1);

if (ipair(1) = ipair(2))

ipair = sort(ipair);

if (count>0)

for jj=1:count

if (sum(ipair - already(:,jj))==0)

flag = 1;

end

end

end

if (flag == 0)

count = count+1;

already(:,count) = ipair;

Diter(ipair(1),ipair(2)) = 0.0;

Diter(ipair(2),ipair(1)) = 0.0;

end

93

end

end

end

bindec = NucNormOpt(DMat,Diter)

%

% ICASSP example

%

Diter = DMat;

Diter(1,2) = 0.0;

Diter(2,1) = 0.0;

Diter(3,4) = 0.0;

Diter(4,3) = 0.0;

Diter(2,5) = 0.0;

Diter(5,2) = 0.0;

D0 = Diter;

%

% Plot positions and branches indicating known distances

%

figure(1);

plot(real(xn),imag(xn),’x’);

hold on;

94

for jj=1:nnodes-1

for kk=jj+1:nnodes

if (D0(jj,kk))

plot([real(xn(jj)) real(xn(kk))],[imag(xn(jj)) imag(xn(kk))])

end

end

end

hold off;

%

% make mask

%

mmask = double(Diter == 0.0);

for jj=1:nnodes

mmask(jj,jj) = 0.0;

end

%

% Iterative loop

%

iter = 600;

crit = zeros(1,iter+1);

crit(1) = sum(sum(abs(DMat - Diter)));

95

crit2 = crit;

crit3 = crit;

crit4 = crit;

nunorm = zeros(1,iter);

convmeas = zeros(1,iter);

den = sum(sum(abs(DMat)));

smallsvs = zeros(nnodes-4,iter);

%

% vectors/matrices for rank-2 approach

%

vvec = DMat(1:nnodes-1,nnodes);

oovec = ones(nnodes-1,1);

fmat = oovec * vvec’ + vvec * oovec’;

D2 = D0;

D3 = D0;

D4 = D0;

mmask2 = mmask(1:nnodes-1,1:nnodes-1);

%

% Iterative loop

%

freeze1 = 0;

96

freeze3 = 0;

oftcount = 0;

countaber = zeros(5,1);

stepsize = 0.1;

for jj=1:iter

Dold = Diter;

%

% SVD approximation

%

% [U,S,V] = svd(Diter);

% Diter = D0 + mmask .* (U(:,1:4) * S(1:4,1:4) * (V(:,1:4))’);

%

% (1,3)-inertial approximation

%

if (freeze1==0)

[V,Lambda] = eig(Diter);

[ss,pm] = sort(diag(Lambda));

count = 0;

for mm=1:3

if (ss(mm) < 0)

count = count+1;

97

end

end

if (count < 3)

oftcount = oftcount+1;

countaber(oftcount) = jj;

end

recon = V(:,pm(1:count)) * Lambda(pm(1:count),pm(1:count))

* (V(:,pm(1:count)))’;

lval = abs(sum(diag(Lambda(pm(1:3),pm(1:3)))));

recon = recon + V(:,pm(nnodes)) * lval * (V(:,pm(nnodes)))’;

if (mode==1)

Diter = pr * Diter + qr * recon;

else

Diter = D0 + mmask .* recon;

end

end

crit(jj+1) = sum(sum(abs(DMat - Diter)));

if ((crit(jj+1)/den)<1e-15)

freeze1 = 1;

end

%

98

% Rank-2 B approx

%

Bmat = fmat - D2(1:nnodes-1,1:nnodes-1);

[U,Mu] = eig(Bmat);

[tt,pp] = sort(diag(Mu));

ivec = pp(nnodes-2:nnodes-1);

recon2 = U(:,ivec) * Mu(ivec,ivec) * (U(:,ivec))’;

Bmat = fmat - recon2;

if (mode==1)

D2(1:nnodes-1,1:nnodes-1) = pr * D2(1:nnodes-1,1:nnodes-1)

+ qr * Bmat;

else

D2(1:nnodes-1,1:nnodes-1) = D0(1:nnodes-1,1:nnodes-1)

+ mmask2 .* Bmat;

end

crit2(jj+1) = sum(sum(abs(DMat - D2)));

%

% Composite algorithm

%

if (freeze3==0)

[V,Lambda] = eig(D3);

99

[ss,pm] = sort(diag(Lambda));

recon = V(:,pm(1:3)) * Lambda(pm(1:3),pm(1:3))

* (V(:,pm(1:3)))’;

lval = abs(sum(diag(Lambda(pm(1:3),pm(1:3)))));

recon = recon + V(:,pm(nnodes)) * lval * (V(:,pm(nnodes)))’;

if (mode==1)

D3 = pr * D3 + qr * recon;

else

D3 = D0 + mmask .* recon;

end

%

vvec = D3(1:nnodes-1,nnodes);

% vvec = recon(1:nnodes-1,nnodes);

gmat = oovec * vvec’ + vvec * oovec’;

Bmat = gmat - D3(1:nnodes-1,1:nnodes-1);

% Bmat = gmat - recon(1:nnodes-1,1:nnodes-1);

[U,Mu] = eig(Bmat);

[tt,pp] = sort(diag(Mu));

ivec = pp(nnodes-2:nnodes-1);

recon2 = U(:,ivec) * Mu(ivec,ivec) * (U(:,ivec))’;

Bmat = gmat - recon2;

100

if (mode==1)

D3(1:nnodes-1,1:nnodes-1) =

pr * D3(1:nnodes-1,1:nnodes-1) + qr * Bmat;

else

D3(1:nnodes-1,1:nnodes-1) =

D0(1:nnodes-1,1:nnodes-1) + mmask2 .* Bmat;

end

end

crit3(jj+1) = sum(sum(abs(DMat - D3)));

if ((crit3(jj+1)/den)<1e-15)

freeze3=1;

end

%

% Nuclear norm minimization

%

[U,S,V] = svd(D4);

% nunorm(jj) = sum(svd(D4));

nunorm(jj) = sum(diag(S));

% Sclip = double(S > threshold);

% subgrad = U * Sclip * V’;

subgrad = U * V’;

101

% [bindec,subgrad] = NucNormOpt(D4,D0,’quiet’);

D4 = D0 + mmask .* (D4 - stepsize * subgrad);

D4 = 0.5 * (D4 + D4’);

crit4(jj+1) = sum(sum(abs(DMat - D4)));

end

if (oftcount)

fprintf(’The inertia-(1,3) algo failed to find 3

negative eigenvalues

for jj=1:oftcount

fprintf(’at iteration

end

end

figure(2);

semilogy([0:iter],crit/den,[0:iter],crit2/den, [0:iter],

crit3/den,[0:iter],crit4/den);

xlabel(’Iteration number’);

ylabel(’Relative error in reconstructed distances’);

legend(’Inertia (1,3) Approximation’,’Rank 2 Approximation’,

’Composite’,’Nuclear Norm Minimization’,’location’,’southwest’);

figure(3);

plot(nunorm);

102

truenucnorm = sum(svd(DMat));

hold on;

plot([1 iter],[truenucnorm truenucnorm],’r.-’)

xlabel(’Iteration number’);

ylabel(’Nuclear norm’);

hold off;

%

% compare with true nuclear norm

%

%fprintf(’True nuclear norm =

function [bindec,subgrad] = NucNormOpt(DMat,Dswiss,quiet)

%

% bindec = NucNormOpt(DMat,Dswiss)

%

% returns a binary decision whether the first argument DMat is

% the minimum nuclear norm completion of the punctured matrix

% given as the secont argument, in which zeros identify the

positions

% to be filled in.

103

%

% check if we want quiet behavior

%

doprint = 1;

if (nargin == 3)

if (quiet == ’quiet’)

doprint = 0;

end

end

%

%

% get dimension

%

[mm,nn] = size(DMat);

vv = [1:mm*nn]’;

IndMat = reshape(vv,mm,nn);

unvecs = [1; 0];

count = 0;

for jj=1:mm

for kk=1:nn

if (jj = kk)

104

if (Dswiss(jj,kk) == 0.0)

count = count+1;

unvecs(count) = IndMat(jj,kk);

end

end

end

end

%

% vec the equation

% assuming DMat is a rank four Euclidean distance matrix

%

[U,S,V] = svd(DMat);

if (doprint)

ss = svd(Dswiss);

fprintf(’Nuclear norm before zeroing:

end

Tmat = U(:,1:4) * (V(:,1:4))’;

rhsvec = Tmat(:);

lhsmat = kron(V(:,5:mm),U(:,5:nn));

lilrhs = rhsvec(unvecs);

105

lillhsmat = lhsmat(unvecs,:);

%

% Use QR decomposition to get minimum norm solution

%

[Qfac,Rtri] = qr(lillhsmat’,0);

sol1 = (Rtri’)\lilrhs;

Wvec = Qfac * sol1;

Wmat = reshape(Wvec,mm-4,nn-4);

ss=svd(Wmat);

if (ss(1) <= 1.0)

bindec = 1;

subgrad = U(:,1:4) * (V(:,1:4))’ -

U(:,5:mm) * Wmat * (V(:,5:nn))’;

else

bindec = 0;

subgrad = U(:,1:4) * (V(:,1:4))’ -

U(:,5:mm) * Wmat * (V(:,5:nn))’/ss(1);

end

% test zeros

%

%zmat = U(:,1:4) * (V(:,1:4))’ - U(:,5:mm) * Wmat * (V(:,5:nn))’;

106

Bibliography

[1] M.G. Rabbat and R.D. Nowak. Decentralized source localization and tracking. In
Proc. Int. Conf. Acoustics Speech, Signal Processing, volume III, pages 921–924,
Montreal, Canada, May 2004.

[2] Krishna M. Sivalingam C.S.Raghavendra and Taieb Znati. Wireless Sensor Net-
works. Kluwer Academic Publishers, Norwell, MA, 2004.

[3] N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero, R.L. Moses, and N.S. Correal.
Locating the nodes: cooperative localization in wireless sensor networks. IEEE
Signal Processing Magazine, pages 54–69, July 2005.

[4] R.L. Moses, D.Krishnamurthy, and R.Patterson. A self-localization method
for wireless sensor networks. In EURASIP J.Applied Sig.Proc., pages 348–358,
March 2003.

[5] L.Doherty, K.S.J Pister, and L.E. Ghaoui. Convex position estimation in wireless
sensor networks. In IEEE InfoCom, pages 1655–1663, 2001.

[6] D. Blatt and A. O. Hero. Energy-based sensor network source localization via
projection onto convex sets. IEEE Signal Processing Magazine, 54(9):3614–3619,
2006.

[7] D.Niculescu and B.Nath. Ad hoc positioning system. In Proc.IEEE Globecom
2001, pages 2926–2931, April 2001.

[8] R.Nagpal, H.Shrobe, and J.Bachrach. Organizing a global coordinate system
from local information on an ad hoc sensor network. In Proc.2nd Int.Workshop
Inform.Proc.in Sensor Networks, pages 333–348, April 2003.

[9] D.J.Torrieri. Statistical theory of passive location systems. IEEE
Trans.Aerosp.Electron.Syst.,, AES-20(2):183–198, 1984.

[10] J.Albowicz, A.Chen, and L.Zhang. Recursive position estimation in sensor net-
works. In Proc.IEEE Int.Conf.on Network Protocals, pages 35–41, November
2001.

[11] D.Niculescu and B.Nath. Localized positioning in ad hoc networks. Elsevier’s
Journal of Ad Hoc Networks, Special Issue on Sensor Network Protocals and
Applicaitons, 1:247–259, 2003.

[12] C.Savarese, J.Rabay, and K.Langendoen. positioning algorithms for distributed
ad-hoc wireless sensor network. In USENIX Technical Annual Conference, 2002.

107

[13] A.Savvides, H.Park, and M.Srivastava. The n-hop multilateration primitive for
node localization problems. ACM Mibile networks and applications, 8:443–451,
2003.

[14] M. Cao, B. D. O. Anderson, and A. S. Morse. Localization with imprecise
distance information in sensor networks. In Conf. Decision and Control, pages
1829–1834, December 2005.

[15] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang,
B. D. O. Anderson, and P. N. Belhumeur. A theory of network localization.
IEEE Trans. Mobile Computing, 5(12):1663–1678, December 2006.

[16] P. Drineas, A. Javed, M. Magdon-Ismail, G. Pandurangan, R. Virrankoski, and
A. Savvides. Distance matrix reconstruction from incomplete distance informa-
tion for sensor network localization. In Sensor and Ad Hoc Communications and
Networks, volume 2, pages 536–544, September 2006.

[17] W. S. Torgerson. Multidimensional scaling: I. Theory and method. Psychome-
trika, 17(4):401–419, 1952.

[18] W. S. Torgerson. Multidimensional scaling of similarity. Psychometrika,
30(4):379–393, 1965.

[19] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29(1):1–27, 1964.

[20] D. Blatt and A. O. Hero. A convergent incremental gradient method with con-
stant step size. In SIAM J.Optim, 2004.

[21] D.Li, K.D.Wong, Y.H.Hu, and A.M.Sayeed. Detection classification and tracking
of targets. IEEE Signal Processing Magazine, 19(2):17–29, March 2002.

[22] X.Sheng and Y.H.Hu. Energy based acoustic localization. In Information Pro-
cessing in Sensor Networks, Sencond International Workshop, California, April
2003.

[23] M.G. Rabbat and R.D. Nowak. Distributed optimization in sensor networks. In
Proceedings of the Tird International Symposium on Information Processing in
Sensor Networks, Berkeley, California, April 2004.

[24] R.D.Nowak. Distributed EM algorithms for density estimation and clustering in
sensor networks. IEEE Trans. Signal Processing, 51(8):2245–2253, August 2003.

[25] A. O. Hero and D. Blatt. Sensor network source localization via projection onto
convex sets (POCS). In Proc. Int. Conf. Acoustics Speech, Signal Processing,
volume III, pages 689–692, Philadelphia, March 2005.

108

[26] L.E. Kinsler. Fundamentals of Acoustics. John Wiley and Sons, Inc., NY, NY,
1982.

[27] M. Rydstrom, E. G. Strom, and A. Svensson. Robust sensor network positioning
based on projection onto circular and hyperbolic convex sets (POCS). In Proc.
SPAWC, Cannes, France, July 2006.

[28] Chen Meng, Zhi Ding, and Soura Dasgupta. A semidefinite programming ap-
proach to source localization in wireless sensor networks. IEEE Signal Processing
Letters, 15:253–256, 2008.

[29] Y. Shang and W. Ruml. Improved MDS-based localization. In IEEE InfoCom,
pages 2640–2651, Hong Kong, March 2004.

[30] AO Hero III JA Costa, N Patwari. Distributed multidimensional scaling with
adaptive weighting for node localization in sensor networks. ACM Trans. on
Sensor Networks, 2(1):39–64, 2006.

[31] W. A. Sethares and C. R. Johnson, Jr. A comparison of two quantized state adap-
tive algorithms. IEEE Trans. Acoustics, Speech and Signal Processing, 37(1):138–
143, January 1989.

[32] J. Gower. Properties of Euclidean and non-Euclidean distance matrices. Linear
Algebra and its Applications, 67:81–97, 1985.

[33] A. Y. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance
matrix completion problems via semidefinite programing. Computational Opti-
mization and Applications, 12:13–30, 1999.

[34] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz. Sensor network localization,
Euclidean distance matrix completions, and graph realization. (u?), 2010.

[35] G. Young and A. S. Householder. Discussion of a set of points in terms of their
mutual distances. Psychometrika, 3(1):19–22, 1938.

[36] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

[37] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality
reduction of manifolds. Technical report, Max Planck Institute for Biological
Cybernetics, Tübingen, Germany, July 2003.

[38] H. Choi and S. Choi. Kernel isomap. Electronics Letters, 40(25):1612–1613,
December 2004.

[39] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univ.
Press, Baltimore, MD, 2nd edition, 1989.

109

[40] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ. Press, Cam-
bridge, UK, 1985.

[41] B. Roth. Rigid and flexible frameworks. American Math. Monthly, 88:6–21, 1981.

[42] W. Whiteley. Rigidity and scene analysis. In J. Goodmand and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 1327–1354.
CRC Press, 2004.

[43] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations
of graphs. J. Combinatorial Theory B, 94:1–29, 2005.

[44] E. J. Candès and B. Recht. Exact low-rank matrix completion via convex op-
timization. In Allerton Conf. Communication, Control and Computing, pages
806–812, Urbana-Champagne, IL, September 2008.

[45] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Trans. Information Theory, x(y):1, 2010.

[46] B. Recht, M. Fazel, and P. A. Parillo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Review, 52, 2010.

[47] M. Neumann. On the Schur complement and the LU-factorization of a matrix.
Linear and Multilinear Algebra, 9:241–254, 1981.

[48] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd
edition, 1999.

[49] S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods
for matrix rank minimization. Technical report, Department of IEOR, Columbia
University, 2008.

[50] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage, Beverly Hills, CA,
1978.

110

