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Detecting both patterned and unpatterned minefields from an airborne platform is 

particularly challenging because of low signal contrast, high variability of mine signatures, 

relatively high density of man-made and natural clutter objects, and variability of minefield 

layouts.  This dissertation is an investigation into how shape/spectral similarity of the mine 

signature and the minefield-like spatial distribution can be exploited simultaneously to 

improve the performance for patterned and unpatterned minefield detection in highly 

cluttered environments. The minefield decision is based on the detected targets obtained by 

an anomaly detector, such as the RX algorithm, in the image of a given field segment. 

Spectral, shape or texture features at the target locations are used to model the likelihood of 

the targets being potential mines. The spatial characteristic of the minefield structure is 

captured by the expected distribution of nearest neighbor distances of the detected mine 

locations. The clutter targets in the minefield are assumed to constitute a Poisson point 

process. The overall minefield detection problem is formulated as a Markov marked point 

process (MMPP) that is based on local attributes and relative spatial distribution of the target 

signatures.  Minefield decision is formulated under binary hypothesis testing using 

maximum log-likelihood ratio. A quadratic heuristic search algorithm is developed to 

identify a set of detections that maximizes the minefield log-likelihood ratio.  Furthermore, a 

procedure based on expectation maximization is developed for estimating unknown 

parameters like mine-level probability of detection and mine-to-mine separation. The 



 

minefield detection performance under this MMPP formulation is compared to baseline 

algorithm using simulated data. Results based on thousands of minefield and background 

segments show that the minefield performance based on MMPP formulation is much better 

than the performance of the baseline for both patterned and unpatterned minefields.  An 

analytical solution for a detection problem is also derived. The minefield performance of 

analytical and simulated-based solutions based on the minefield likelihood values for three 

different clutter rates are compared.
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Chapter 1 Introduction 

 

The problem of detecting spatial distribution of similar targets in the presence of 

substantial clutter is considered.  One example is the detection of patterned and unpatterned 

minefields along a specified path using airborne imaging systems. The proliferation of land 

mines worldwide has created an urgent requirement for minefield detection, particularly 

from an airborne platform to maximize standoff distances and search speeds. In the last 

decade, there has been a significant and concerted interest in airborne minefield detection 

and reconnaissance systems in the United States as well as in other countries around the 

world. The main objective of these airborne programs is to reliably locate both patterned and 

unpatterned minefields from a lightweight airborne platform around the clock, and in all 

environmental conditions and different backgrounds [1].   

Mine detection performance has improved these past few years by using high-

resolution sensors and multi-spectral bands from a single-sensor or multiple-sensor platform.  

However, detecting both patterned and unpatterned minefields has remained problematic. 

The problem is particularly challenging because of low signal contrast, high variability of 

mine signatures, the relatively high density of man-made and natural clutter objects, and the 

variability of minefield layouts and patterns. Ware et al. provide a list of challenges inherent 

in the detection of minefields [2].  

A typical minefield detection approach is based on a sequential process employing 

anomaly detection followed by false alarm mitigation and minefield detection. The potential 

targets located by the anomaly detector [3] include mines, in addition to natural and man-
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made objects that stand out from the background. The false alarm mitigation (FM) seeks to 

reduce false alarms by selecting/rejecting targets based on some pre-specified criteria or by 

using elaborate shape and color features [4]. Significant work has been done on anomaly 

detection, feature selection, and FM to improve detections of individual mines [5, 6]. 

However, since target features change with time, vary under different environmental 

conditions, and are affected by background characteristics, the false alarms rate is often high 

with the utilization of FM. Minefield detection statistics are evaluated separately using 

algorithms for either patterned minefield detection [1, 7, 8] or unpatterned minefield 

detection [9] based on detected target locations.  Most of the minefield detection algorithms 

perform well if the false alarm rate is low, such that the number of detected mines is equal to 

or greater than the number of false alarms in the interrogated segment.  However, their 

performance is reduced significantly when the false alarm rate is relatively high. Moreover, 

since the current (typical) approach is based on sequential processing, it is not capable of 

exploiting the interdependencies of mine signatures and the spatial layouts of mines in the 

minefield.   

The proposed research is motivated by some of the previously successful patterned 

minefield detection approaches discussed and by observed patterned and unpatterned 

minefield lay-out structures.  Patterned minefields contain patterns of hand-laid mines, while 

unpatterned mines are often distributed by artillery shells, vehicles, or airplanes.  The 

relative spatial distribution of mines in patterned or unpatterned configurations can be 

predicted or estimated because these minefields are built for mine recovering or 

effectiveness.  On the other hand, the relative spatial distribution of clutter targets often 
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varies from place to place.  Therefore, clutter target and mine spatial distributions are 

expected to be from two distinguishable processes.   

Another interest concerns mine signatures changing with time and different 

environments, but the features of most similar mines are often similar in a local area at a 

particular time and they are often distinguished from clutter target features. A few “reliable” 

features of mine signatures and clutter target features were presented in the past [4]. McFee 

et al. [23] discussed the selection of 15 features out of 26 features for mines extracted from 

each region and a cluster analysis of the feature vectors from mines and background 

materials carried out using a pattern recognition program. These features consist of a 

measure of the area, intensity mean, intensity variance, maximum intensity, minimum 

intensity, perimeter, size, compactness, center of gravity, 0
th

 to 3
rd

 central moments, and a 

height/width ratio.  Analysis of the feature vectors generated by the local region feature 

vector shows mine classes separated from the non-mine classes. These features are worthy 

of further investigation.  

Schumacher and Zhang [27] used discrete wavelet transform (DWT) for feature 

extraction before using four neural networks (NN) for classification. The classification is 

performed separately at all three resolution levels, with the four DWT coefficient sub-

matrices used as inputs into the four separate neural networks at each level.  Each neural 

network is trained separately using the locally-connected network with weight sharing. Four 

voting network systems are used to classify four types of textured images outputted from the 

NN.  The best result was 99.5% correct classification.  Translation invariance can be the 

problem with this method. 
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Ling and Cavalcanti [28] developed a novel and efficient approach for feature 

extraction for pattern classification using neural networks.  The method searches for the 

minimum amount of features necessary for solving a given pattern classification problem, 

which is based on the structure of an adequately trained multilayer perceptrons (MLP) 

neural network.   When the feature vector is highly informative, a feed-forward MLP trained 

by a back-propagation algorithm minimizes the classification error probability that can 

determine the optimal decision hyper-plane for classification. However, such neural network 

based training often suffers from over training and results in a lack of generalization. 

Clark et al. [6] used a supervised-learning scheme with a probabilistic neural 

network classifier, which was trained to classify image regions as belonging to one of two 

classes: “mine” or “background”.  With this approach, the authors use the pre-processing 

algorithm, pixel classification, region formation algorithms, and post processing algorithms; 

this is a common mine detection approach.  The supervised learning scheme does not seem 

to be robust since mine signatures are always changing. This observation has agreed with the 

authors‟ conclusion that size constraints applied to this image produced a degradation in the 

results. 

Breen et al. [29] presented a scalable system capable of examining images and 

accurately classifying the image based on its visual content. The approach uses neural 

networks together with domain-dependant ontologies. The supervised network takes an 

image as input and gives it a classification as output.  The ontology then processes the 

classified output, revealing relationships among objects that can be used to provide semantic 

meaning to the entire image. The training is based on color and shape of each object. This 
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work uses spectral features as well as interrelationships.  Agarwal et al [1] exploited the 

critical criteria of “similar” objects. They employed an unsupervised self-organizing 

algorithm to cluster similar targets based on shape profile. Then they applied the spatial 

constraints between mines to detect patterned minefields.   Their limited results show that 

minefield detection performance improves when target signatures are well defined, the 

number of targets is large in a search area, and targets are laid out in a pattern.  

This research investigates the shape/spectral similarity of mine signatures and the 

minefield-like spatial distribution exploited simultaneously to improve the performance for 

patterned and unpatterned minefield detection. The detection in the segment is formulated as 

a Markov marked point process (MMPP), based on local attributes and relative spatial 

distribution of the target signatures, and the minefield decision is based on the log-likelihood 

ratio test of a binary hypothesis problem. Hough transform is used to speed up the 

processing speed for patterned minefield detection, while the developed quadratic heuristic 

search algorithm is used to identify a set of detections that maximizes the minefield 

likelihood for general minefield detection. Often the parameters in the log likelihood 

function are unknown and must be estimated.  The iterative expectation maximization (EM) 

algorithm is used to estimate these unknown parameters wherever possible. 

The minefield performance of three algorithms based on two thresholding methods 

and high clutter rates is evaluated and compared. These algorithms are the baseline 

algorithm with false alarm mitigation (SPP-FM) where only detection locations are 

accounted for, the marked point process (MPP) algorithm where the detection locations 

included the spectral attribute such as the target size, and the developed algorithm based on 
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MMPP model where both spectral feature and spatial distribution are used simultaneously.  

Also, the minefield performance of the MMPP algorithm with known parameters and the 

MMPP algorithm with the parameter estimation (MMPP-EM) is evaluated and compared.    

Most current patterned minefield detection algorithms do not take advantage of the 

detection of more than one mine row.  In this research, an algorithm to automatically detect 

a number of rows in each segment is developed.  The MMPP algorithm is assessed on 

equally generated minefield segments of 1-row, 2-rows, and 3-rows at two high clutter rates 

of 0.006 and 0.008 clutter target per m
2
.  

Exploiting spatial distribution of unpatterned mines is not trivial.  The spatial 

structures of unpatterned minefields are not often as pronounced as the spatial structures of 

patterned minefields.  In this research, the performance of unpatterned minefields where 

potential mines are assumed to be randomly and regularly distributed, and where clutter 

targets are assumed to be randomly distributed is evaluated.  The results that are obtained at 

the high clutter rate of 0.008 clutter target per m
2 

and the mine density of 0.0024 mine per 

m
2 

for two spatially distributed cases are shown. In both cases, the comparative results 

among the baseline algorithm (SPP-FM), the algorithm based only on target feature (MPP), 

and the algorithm based on both target feature and target spatial distribution (MMPP) are 

provided.   

As the results are based on the simulated data, it is not clear whether the MMPP 

detection algorithm has fully achieved its best performance.   To validate its performance, an 

analytical solution for the minefield detection problem is developed, and its performance is 

compared with the performance of the simulated solution.  The analytical solution for the 
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complete minefield detection problem is intractable due to a large number of detections and 

the variation of the number of detected mines in the minefield process. Therefore, an 

analytical solution for a simplified detection problem is derived, and its minefield 

performance is compared with the minefield performance obtained from the simulation in 

the same MMPP framework for three different clutter rates of 0.01, 0.02, and 0.03.    
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Chapter 2 Literature Review 

The proliferation of landmines worldwide has created an urgent requirement for 

minefield detection, particularly from an airborne platform, to quickly locate the minefields 

at a safe standoff distance. The United States and other countries have initiated airborne 

countermine programs using multi-spectral sensors and advanced minefield detection 

algorithms to improve detection performance, ultimately increasing the speed of advance. 

Previous airborne countermine programs, which were instituted to meet this need, included 

the Remote Minefield Detection System, Coastal Battlefield Reconnaissance and Analysis, 

and Lightweight Airborne Multispectral Minefield Detection. The main objective of these 

airborne programs is to reliably locate minefields from a lightweight airborne platform, 

around the clock, and in all environmental conditions and different backgrounds [1].   

Most minefields can be classified as either patterned, unpatterned, or tactical 

minefields [12]. The patterned minefields are often placed in linear, almost linear, or zigzag 

patterns. These are often arranged according to a predefined doctrine that takes 

consideration of the terrain and strategic requirements. Mines for unpatterned minefields can 

be surface laid or distributed by artillery shells, vehicles, or airplanes in predefined-spatial 

doctrines.  A tactical or nuisance minefield is probably the most difficult to detect since it 

employs very few mines and does not confirm to any pattern of mines or distribution 

characteristics. This effort, however, will not be capable of solving nuisance minefield 

scenarios/problems.   
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A typical minefield detection approach based on sequential processing is shown in 

Figure 2-1. The mine detection module uses the “RX” algorithm originally from the 

Generalized Maximum Likelihood Ratio Test by Reed and Yu [3], and later implemented in 

modified forms by Holmes et al [13] and Agarwal et al [1].  It is primarily a local anomaly 

detector.  The potential targets located by the RX algorithm inevitably consist of natural and 

man-made anomalies that contrast themselves from the background. An intermediate step 

seeks to reduce these false alarms by selecting or rejecting targets based on some pre-

specified criteria, such as the upper and lower limits of the RX values, size of targets, etc. 

Sophisticated false alarm mitigation procedures use more elaborate features to select mine-

like objects or reject non-mine-like objects [4].  

 

 
   

 

Figure 2-1 A flow diagram for a typical sequential minefield detection scheme  

2.1 Mine Detection 

Since a typical platform employs multi-spectral sensors, the “RX” anomaly detector 

seems to be a good algorithm to process the multi-spectral signals and has performed 

reasonably well when the specific characteristic of the search area is not known a priori. 

There are other mine detection approaches that have been used to process airborne data but 

none of them performed better than the RX in all areas.  Liao [14] developed the Estimator 

and Correlator (EC) or Wiener algorithm to detect mines.  His technique is built on the prior 

knowledge of the target signatures.  These signatures are allowed to be distorted by the 

viewing geometry, illumination conditions, environmental factors, and the assumption of 
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known clutter spatial covariance matrix not necessarily white.  Also, he uses a filter bank 

approach to include multiple mine signatures and relies on data fusion to make a final mine 

detection decision. The comparative analysis among these algorithms shows the EC works 

better than the RX for surface mines. On the other hand, the EC performs worse than the RX 

for buried mines since the EC is sensitive to the target signatures and signatures of buried 

mines are not consistent.   

A highly sophisticated mine detection technique was introduced recently by Batman 

and Goutsias [5].  They apply an unsupervised iterative scheme for landmine detection in 

heavily cluttered scenes.  The main claims by the authors include the improvement in mine 

detection performance, robustness with respect to clutter heterogeneities, a completely 

unsupervised operation, and computational efficiency.  One drawback of this method 

includes the assumption of a priori knowledge of the mine signatures; however, actual mine 

signatures often vary.  Thus, the method will not always be robust. Additionally, since this 

method relies on hand-picked band parameters and the parameters associate with histogram 

stretching and thresholding to optimize the detection and false alarm performance, the 

method cannot be implemented in real time for the same performance.   

2.2 False Alarm Mitigation 

General anomaly detectors can be tuned to obtain a higher probability of detection, 

but inversely detect a large number of false alarms.  Miao et al. [15] reviewed the literature 

and reported that a number of automatic target detection and recognition schemes had been 

partially successful, but had obtained high false alarm rates. Contributing factors include the 
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diverse sizes and compositions of targets, variation of soil properties with location and 

moisture conditions, non-reliability of the target signature, competing clutter objects having 

similar responses as the actual targets, and partially obscured targets. 

Several existing false alarm mitigation (FM) techniques were built on the prior 

knowledge of mine and clutter target signatures at particular times and environments.  The 

main goal of these techniques is to retain mine signatures while suppressing clutter targets or 

false alarms.  Mine signatures change with times and environments [4, 16].  Figures 2.2-1 

through 2.2-4 show several examples of different mine types, sizes, (LM: large metal mine, 

SM: small metal mine, LP: large plastic mine, and MP: medium plastic mine) and false 

alarms collected during the daytime and nighttime. These signatures are detected by the RX 

detector.  Daytime and nighttime signatures [17] of the same mines are completely different, 

while some clutter target and mine signatures are somewhat similar, thus introducing a 

challenge.   

Hence the ability to decide on the best FM technique for a given set of imaging 

conditions is critical.  Menon et al. [4] developed three different false alarm mitigation 

techniques utilizing different characteristics of mine signatures.  In some instances, mine 

signatures were observed to be circular so the researchers developed a technique to compute 

their circularity, circularity being a measure of the compactness of the signature. In other 

instances, as observed during the daytime, mine signatures are bi-polar (i.e., a bright 

highlight due to reflection from the mine target and a dark shadow due to the sun), so they 

developed reflection symmetry technique based on this phenomenon.  The technique 



12 

 

 

measures the reflection symmetry about the sun angle through the centroid of a target 

signature.   

        LM           SM              LP       MP 
 

Figure 2.2-1 Mine signatures during daytime   

 

Figure 2.2-2 Clutter target signatures during daytime 

 
     LM             SM                   LP        MP 

 

Figure 2.2-3 Mine signatures during nighttime 
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Figure 2.2-4 Clutter target signatures during nighttime 

 

Another technique was developed to compute the gray scale moments that exploit 

the gray-value profile of mine signatures [4].  This technique uses 11-dimensional feature 

vectors in the 4
th

 order of two dimensional gray scale moments for each mine signature.  The 

results based on MWIR indicate that circularity and gray-scale moments reduce false alarms 

by a factor of 6-12 for nighttime large mine signatures, while the reflection symmetry 

reduces a factor of 2-3 for daytime large mine signatures when the detection performance is 

already good.  The results suggest that FM, which utilizes known prior information, does not 

work well consistently. 

2.3 Minefield Detection 

The minefield detection algorithms count the number of detections after the false 

alarm mitigation to determine the presence or absence of a minefield in an interrogation 

area. The sequential minefield approach implies that mines which are missed at any of the 

previous stages cannot contribute to the detection of minefields, while false alarms 

remaining after the false alarm mitigation stage erroneously influence the minefield 

detection statistics.  
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In patterned minefields, mines are large in size but are often buried or occluded, and 

are not necessarily lined up linearly due to the registration error and variability in mine 

placement. There are many patterned minefield configurations; however, linear patterns with 

one or more rows of mines at relatively regular intervals are more common [12]. Many 

different patterned minefield detection technologies have been investigated in the past 20 

years. Lake et al. [18] used Hough transform along with a modified Euclidian algorithm to 

explicitly take advantage of collinearity and equal-spacing of patterned minefields. Walsh 

and Raftery [8] developed a sequential placement model that includes the information of 

distances between sequential mines, the mean distance between rows, and the direction of 

the rows.  They constructed a Bayesian estimation via the Markov chain Monte Carlo 

algorithm to assign posterior probabilities for each point being a mine.  Robins and 

Robinson [19] developed an algorithm for mine detection that can tolerate inaccuracies due 

to mine placement, drift due to soil shifting, and imprecision inherent in the imaging 

technology. However, the algorithm relies on computational geometric and combinatorial 

techniques, and runs in O(n
5/2

) time. Later, Robins et al [20] extended their previous work to 

noisy images to overcome imprecision that might be inherent in the measurement process.  

However, the computational cost of the algorithm was even higher. Baertlein and Liao [7] 

developed wavelet-based higher order neural networks for mine detection.  The performance 

result of the 2
nd

 order High Order Neural Network for straight line minefields is lower than 

the Hough transform but its performance is superior for curved minefields. Bargel et al. [21] 

developed a hierarchical approach based on collection of mine clusters (or patterns) such as 

mines, mine-pairs, mine-groups and mine-formations to detect patterned minefields.    
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In the case of unpatterned minefields, mines are small in size and their signatures are 

often weak. The threshold for unpatterned mine detection is often adjusted low so that these 

mines can be detected by the detection algorithm. At the same time, the signatures of clutter 

objects such as rocks, piles of dirt, shrubs, and small plants can easily slip through the 

detection algorithm to create a large number of false alarms. The high false alarm rate has 

been a challenge in minefield detection.  Earp, Elkins, and Conrath [9] developed an 

unpatterned minefield detection algorithm based on log likelihood assuming Poisson 

distribution for both mines and clutter targets. This algorithm takes the log sum of the 

confidences of all minelike objects to produce a minefield confidence statistic.  Byers and 

Raftery [22] have used K
th

 nearest neighbor distances (NND) of points in the process to 

classify the detection as a cluttered background or otherwise. The observed K
th

 NND was 

modeled as a mixture distribution. This method has been applied to minefield detection and 

to outlining seismic faults with some successes. McFee, Russell, and Ito [23] have 

developed an approach in which at the top level, spatial relationships between “mine-like” 

regions are determined and are used by knowledge-based methods to classify the imaged 

area as being a minefield with a specified likelihood. However, the spatial relationships 

between mines were not employed.  Ware et al. [2] discussed the detection of unpatterned 

minefields. In general, an unpatterned minefield algorithm is designed to look for density of 

points, thus a low number of false alarms are in evidence.  In cases where a general shape of 

the minefield is known, the minefield detection algorithm may use the template matching 

technique.   
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Regalia [24, 25] has recently developed an algorithm based on belief propagation 

(BP) for patterned and unpatterned minefield detection.  The use of a BP algorithm is for 

computational reduction compared to an exhaustive search by virtue of factoring a 

likelihood function into simpler “compatibility” functions, which are supposed to capture 

the local interactions between variables.  His latest work pursues factor graph construction 

in a more robust manner that renders the detection algorithm insensitive to rotation, 

translation or reflection of the field pattern, and likewise insensitive to node reordering. 

Also, his approach allows for variable degree factor graphs through a user-set parameter, 

and incorporates parameter estimation steps to adapt to ground terrain.   Figures 2.3-1 and 

2.3-2 show the detection performance on simulated patterned minefields using BP 

algorithm. Convergence occurred within four and five iterations of the BP algorithm for 

Figures 2.3-1 and 2.3-2, respectively.  Although the results show promise, more work of the 

compatibility functions needs to be conducted.  Also, detection of unpatterned mines should 

be evaluated in future efforts. 
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Figure 2.3-1(Left) ground truth and graph connectivity using d = 4 nearest neighbors; (Right) converged belief 

values, identifying eleven of thirteen mines, with no false positives. Red crosses are mines and green circles 

are clutter targets 

 

 

Figure 2.3-2 (Left) ground truth and graph connectivity using d = 4 nearest neighbors; (Right) converged belief 

values, identifying six of eight mines, with one false positive. Red crosses are mines and green circles are 

clutter targets 
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Chapter 3 Minefield Detection Problem 

The majority of these algorithms implicitly assumes a spatial random layout for 

mines as well as clutter targets not always applicable with unpatterned minefields, which 

often follow some sort of patterns.  Furthermore, most current approaches for both patterned 

and unpatterned minefields follow a sequential detection process wherein target attributes 

are used after target detection followed by the spatial relationship of detected targets to 

classify the interrogated area on whether it is a minefield or a background. The sequential 

process has some limitations: 1) the approach may be based on “hard” clustering (i.e., a 

predetermined threshold is chosen) so mine signatures below the chosen threshold will be 

lost; 2) the predefined mine features may be biased and may not provide a reliable 

representation of the overall characteristics of the signature of the targets; 3) there is no 

natural way to incorporate different spatial distributions of the mine targets in the field.  

Clearly, the current sequential processing scheme has not delivered desired results 

under varying environment conditions that are typical of the airborne minefield detection 

problem. There is a need for a new minefield detection scheme that thoroughly addresses the 

problems in minefield detection that are only partially solved by previous methods.   

The aim of this research will be to advance the state of the art in detection of both 

patterned and unpatterned minefield in highly cluttered environments. The proposed method 

seeks to combine the false alarm (FM) rejection module and the minefield detection module 

of the current architecture by employing Markov Marked Point Process formulation. The 
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approach simultaneously exploits the feature characteristics of the target signature and 

spatial distribution of the targets in the interrogation region. The method is based on the 

premise that most minefields can be characterized by some types of distinctive spatial 

distributions of “similar” looking mine targets. The minefield detection problem is 

formulated as a Markov Marked Point Process (MMPP) [Figure 3-1] where the set of 

possible mine targets is divided into a possibly overlapping mixture of targets. The 

likelihood of the minefield depends simultaneously on feature characteristics of the target 

and their spatial distribution.  

 

 
   

 

Figure 3-1 MMPP minefield detection architecture  

3.1 Mine Detection and Target Selection 
 

The minefield decision is based on the detected targets in the area of segment A. A 

set of selected targets is obtained using an anomaly detector (AD), like the RX algorithm. In 

this development, two types of target selections are considered: Constant False Alarm Rate 

(CFAR) and Constant Target Rate (CTR). In the case of CFAR target selection, the 

threshold for the AD value is selected so that the average number of false alarms in any 

segment is constant. In the case when the anomaly detector does not satisfy the CFAR 

property, or CFAR thresholding using adaptive threshold selection [30] is not reliable, CTR 

thresholding is often used. When discussing CTR, a fixed number of targets (false alarms 

and mines) with the highest anomaly statistics are selected in each segment. For this case, 
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the threshold for the AD value will change from segment to segment. Minefield detection 

algorithms will be developed under both types of selection strategies and their performance 

will be compared.    

3.2 Minefield Detection as Binary Hypothesis 
 

Once a set of targets is selected for a given segment using CFAR or CTR 

thresholding, the minefield decision is based on these detected targets. Let the set of 

detected targets be called an observation X and the number of detections in the segment 

(cardinality of X) be n. The segment is said to be a minefield segment (from a minefield 

process) if the observation X includes mines, and is called a background segment (from a 

background only process) if all the detected targets in the observation X are non-mines or 

clutter targets.  Let  ,i i ix l a be an individual detection. Each detection consists of the geo-

locations and local attribute(s), such as target size or other sets of attributes (e.g., target 

shape, polarity, etc). This detection represents a clutter target in the case of a background 

process, and either a clutter target or a mine in the case of a minefield process. 

The minefield decision problem is to determine whether observation X  belongs to 

the minefield process or the background process. This problem is posed under hypothesis 

testing framework, where 0H  and 1H are the background only and the minefield hypothesis, 

respectively. Observation X with n detected targets under two hypotheses is given by 

Background:  0 : clutter target, 1,2,...,i iH X x x i n     (3.2-1) 

Minefield:      1 : mine or clutter target,  1,2,...,i iH X x x i n      (3.2-2)  
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To simplify the notation, the assignment of the detection as a mine or a false alarm is 

captured by a classification function Z that is defined such that 

 , 1, 2,...,iZ z i n       (3.2-3) 

where          
if the detection  is a mine 1

if the detection  is a clutter target 0i
i

i

x
z

x





  

It is important to note that the classification function Z is not known a priori and 

should be estimated from the data. Without loss of generality, assume that the detections are 

ordered such that the first mn ( mn n ) detections are mines and the remainders are clutter 

targets. With this assumption, Z is defined as  

 
 1,...,  1

, 1, 2,..., ,     
1,...,      0i

m
i

m

i n
Z z i n z

i n n






  

 
 

Under the null hypothesis ( 0H ), Z is a zero vector, while it is a non-zero vector 

under a non-null ( 1H ) hypothesis.  Thus the null and non-null hypotheses in Equations (3.2-

1) and (3.2-2) can be re-written as 

Background: 0 :H Z  0      (3.2-4)    

Minefield:      1 :H Z  0       (3.2-5) 

3.3 Detection Attributes     
 

From the previous section, each detection, ix is identified by its location il and 

mark(s) or attributes ia . For the current development, it is assumed that for any detection, 

mark ia is independent of other detections, and it depends only on the identity of the 
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detection, as a mine ( 1iz  ) or a clutter target ( 0iz  ). Thus, the probability distributions 

for mark
ia in the case of mines and clutter targets can be given by  

    ( 1) mi i ip a z g a       (3.3-1)   

 ( 0) ci i ip a z g a       (3.3-2)   

The distributions  m ig a and  c ig a describe mineness and non-mineness measures of 

the detections based on attributes of the target signature.  They are known either in 

parametric (such as Gaussian with some mean and variance) or some non-parametric forms, 

such as a neural network output, Bayesian network estimate, or kernel density estimation.  

3.4 Spatial Distributions 

 

This research is motivated by some of the previously successful patterned minefield 

detection approaches and observed patterned and unpatterned minefield laid-out structures.  

The relative spatial distribution of mines in patterned or unpatterned configurations can be 

predicted or estimated because these minefields are built for mine recovering or 

effectiveness.  On the other hand, the relative spatial distribution of clutter targets often 

varies between locations.  Therefore, clutter and mine spatial distributions are expected to be 

from two distinguishable processes.  Even though there are conditions under which clutter 

targets may follow a distinguishable spatial distribution, for the current discussion it is 

assumed that they are homogeneously Poisson distributed.  The distribution of nearest 

neighbor distances ik for clutter targets denoted as  c if k with the clutter rate c in this case 

is given by [33] 
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 
2

2 c ik
c ci if k k e

   
     (3.4-1) 

Furthermore, in the non-minefield case a clutter target can be identified as a mine. 

Clutter targets that are identified as mines by the minefield detection processes are actually 

false alarms.  In this case, the probability distribution for a random clutter detections 

identified as mines to occur at distance ik is considered and developed.  The probability of 

the clutter targets identified as mines at distance ik  is given by     

   
2

24
1 ,i i

ir i A
A A

k k
f k k

  
 
 
 
 

     (3.4-2) 

 

The distributions of nearest neighbor distances for patterned mines and unpatterned 

mines  m if k will be discussed in the following sections. 

3.4.1 Spatial Distribution of Detections for Patterned Minefields 

The clutter targets detected by the anomaly detection process are assumed to follow a 

spatially identical independent point process with intensity c . To simplify the analysis, 

assume that the patterned minefield contains only one row of mines with M mines in the 

given minefield segment. The mines are located at an approximately regular interval s in the 

row with a probability of mine detection p. The number of detected mines mn is distributed 

binomially, given by 

       ( 1 ) 1
m

m
M nn

mi
m

M
f z n p p

n

 
  
 

            (3.4.1-1) 
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The spatial characteristic of the detected mines in the minefield (particularly 

patterned minefield) can be partially captured using nearest neighbor distances. Let the 

distance for a target ix , at location li, to its nearest detected target of the same type (mine or 

clutter target), be represented as ik . Knowing the location lj for all detections, the nearest 

neighbor distance ( ik ) for a target is defined as 

: ,
min

i j
i j ij i j z z

k l l
 

       (3.4.1-2) 

The mines are placed at an approximately regular distance with small variations due 

to placement, which can be modeled as a Gaussian distribution with zero mean and standard 

deviation of . If the probability of detection for mines in the minefield is given by p, the 

distribution of nearest neighbor distances for mines in patterned minefields denoted as

 m if k  is given based on our development as 

   

2

21 2

1

1
1

2

ils k

l
m i

l

f k P P e 

 

 
 
 


 




     (3.4.1-3) 

where  
2

1P p  is the probability that both mines on either side of the mine ix  are not 

detected,  1 P is the probability that at least one mine is detected, and s is the nominal 

separation between two mines in a row of mines.  

The distributions  c if k  (Equation (3.4-1)),  r if k  (Equation (3.4-2)), and  m if k  

(Equation (3.4.1-3)) for representative values are shown in Figure 3.4.1-1: 
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Figure 3.4.1-1 PDF of nearest neighbor distances for mines, clutter targets, and false alarms 

3.4.2 Spatial Distribution of Detections for Unpatterned Minefields 

The majority of the algorithms implicitly assumes a spatial random layout for mines 

as well as clutter targets.  However, this is not always true. Unpatterned minefields often 

follow some sort of patterned structures and clutter targets are spatially distributed in 

patterns in a few cases.  In this effort, it is assumed that clutter targets are randomly 

distributed while unpatterned mines can be either randomly or regularly distributed.  The 

distribution of nearest neighbor distances of randomly (Poisson) distributed mines is  

 
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2 m ik
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     (3.4.2-1) 
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The distribution of nearest neighbor distances of regularly distributed mines is 

assumed to follow a Gaussian distribution as   

 
/ ]

2
2[ 21

2

m m

m

ik

m if k e
 



 
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 

 
    (3.4.2-2) 

The distributions  c if k  (Equation (3.4-1)),  r if k  (Equation (3.4-2)), and  m if k  

(Equations (3.4.2-1) & (3.4.2-2)) for representative values are shown in Figure 3.4.2-1: 

   

 
Figure 3.4.2-1 PDF of nearest neighbor distances for random & regular mines, clutter targets, and false alarms 
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Chapter 4 Baseline Minefield Detection Methods 

The use of spatial point statistics in minefield detection is motivated by the fact that 

the background clutter or clutter targets can often be thought of as a complete random 

process. Meanwhile, if the mines are present, they will follow different distributions, such as 

a linear distribution for patterned minefields and a regular distribution for unpatterned 

minefields. The observed set of targets can be thought of as a mixture point process.  In the 

case of linear pattern minefields where mines are placed at approximately regular intervals, 

the detection of a mine at a certain location is strongly determined by the locations of other 

mines in a finite neighborhood. On the other hand, mines in unpatterned minefields can be 

randomly distributed; however, these unpatterned mines can be formed in a patterned 

minefield structure such as the “volcano” type [12] where mines are spatially related in two 

confined areas.  Also, when mines are manually positioned, they often tend to be more 

regularly distributed.  The spatial locations among these mines are well related.   

A spatial point process (SPP) is a collection of points where each point represents the 

location of an event in space.  An SPP is fully defined by just the locations of the detected 

targets in the area.  In the case of a simple SPP, there is no way to determine whether the 

detection is a mine or a clutter target, since only detection locations are available. If 

additional measurements, such as target features or marks, are available at each detection 

location, then this information can be used to distinguish between mines and clutter targets. 

For instance, the marks could consist of the features of the detection signature, such as size, 
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texture features, polarity, etc. An SPP with marks associated with each event is called a 

marked spatial point process.   

The spatial point processes used to describe mine and clutter processes are often 

Markov in nature in the sense that the occurrence of detection at a given location is fully 

defined by only the other detections in a local neighborhood. For example, under an 

assumption of complete randomness for the clutter process, the occurrence of a clutter target 

is independent of any other detections in its neighborhood (zero-order Markov). In the case 

of linear pattern minefields where mines are placed at approximately regular intervals, the 

detection of a mine at a certain location is strongly determined by the locations of other 

mines in a finite neighborhood. Incorporating the local spatial interactions in a marked point 

process results in a Markov marked point process. The proposed effort is based on a Markov 

marked spatial point process formulation. The Markov nature of the point process can be 

exploited to solve the minefield detection problem more efficiently. Minefield detection 

under this formulation is discussed in the following subsections.    

The spatial point process (SPP) and the spatial point process with false alarm 

mitigation (SPP-FM) formulations will be discussed in the following sections. Marked point 

process (MPP) and Markov marked point process (MMPP) formulations will be discussed in 

the following chapters.    
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4.1 Spatial Point Process Formulation 
 

A spatial point process (SPP) is a collection of points where each point represents the 

location of an event in space.  An SPP is fully defined by the locations of the detected 

targets in the area. In the spatial point process (SPP) formulation, the targets are selected by 

thresholding after anomaly detection. Detection thresholding methods include constant false 

alarm rate (CFAR) and constant target rate (CTR).  CTR is often easy to apply for minefield 

applications; however, CFAR thresholding is included here for a complete discussion.        

4.1.1 SPP-CFAR Formulation for Unpatterned Minefields  

In the case of unpatterned minefields, both false alarms and mines are assumed to be 

randomly distributed.  With CFAR thresholding, the threshold is selected in such a way that 

the clutter rate is given by c . Let the corresponding probability of the detections at this 

threshold be given by p so that the density of detected mines is given by mp , where m is the 

density of actual mines in the segment.  In the case of the background segment, all the 

detections are clutter targets. The number of detections n (a random variable) in the segment 

A is Poisson-distributed with intensity c . However, in the case of the minefield segment 

where the detections in observation X include both mines and clutter targets, the density of 

detected targets in the segment is given by c mp  . The conditional probabilities of 

observation X under background and unpatterned minefield processes in the SPP 

formulation with the CFAR thresholding depend only upon the number of detections n. 

Formulae of these conditional probabilities can be found in our previous publication [32]. 
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4.1.2 SPP-CFAR Formulation for Patterned Minefields  

In the case of patterned minefields, clutter targets are randomly distributed while 

mines are lined up in a row M.  Since mines in patterned minefield are laid in a row, the first 

step in most algorithms is to find a narrow linear region in the segment with a relatively 

large number of targets. This process improves the processing speed by limiting the search 

area.  The linear density algorithm for patterned minefield detection described by Muise and 

Smith, is similar to the Hough transform, and has been adopted for this implementation [34]. 

The idea is that only the targets in a narrow row (about five meters wide) are used for 

minefield decision.  

The minefield decision is based on the log-likelihood ratio of the conditional 

probabilities of observation X. The conditional probability of observation X under null 

hypothesis for patterned minefield case is 
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However, in the case of the minefield segment (non-null hypothesis) where the 

detections in observation X include both mines formed in pattern and clutter targets formed 

randomly, the conditional probability of observation X is given by 
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where A is the area of the segment. 
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4.1.3 SPP-CTR Formulation 

For CTR thresholding, all segments have the same number of detections; therefore, 

SPP-CTR formulation does not give any useful detection result for unpatterned minefields.  

However, the number of detections in a line for patterned minefields can be used for 

minefield decision. The conditional probability of observation X for patterned minefield 

case can be obtained from our previous publication [10].  

4.1.4 SPP Detection 

Under the SPP formulation, the maximum likelihood estimate (MLE) statistic is 

simply given by the number of detections n for both patterned and unpatterned minefields.  

( ) ,   
SPP

X n n X       (4.1.4-1) 

4.2 Spatial Point Process with False Alarm Mitigation– The Baseline 

Formulation 

 

An SPP is fully defined by the locations of the detected targets in the area.  In the 

case of a simple SPP, there is no way to determine whether the detection is a mine or a 

clutter target, since only detection locations are available. If additional measurements, such 

as target features are available at each detection location, then this information can be used 

to distinguish mines and possible clutter targets. In recent airborne minefield programs, the 

minefield decision is based on the false alarm mitigation (FM) after mine detection 

thresholding of spatial point process or SPP-FM. The minefield performance based on this 

formulation depends fully on the effectiveness of the FM stage.  For the comparison of the 

algorithm performance, SPP-FM is selected as our baseline algorithm.  
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4.2.1 SPP-FM CTR Formulation for Unpatterned Minefields 

As a result of this false alarm reduction step, only a portion of the detections in X is 

selected as mines that will be used for the evaluation of the minefield decision. This selected 

set of targets is called X‟. The corresponding number of actual detections n’ after the false 

alarm reduction is a random variable. Assume the resulting density of false alarms (actual 

clutter targets) is now c c   and the corresponding probability of detection is p p . The 

conditional probabilities of observation X’ according to the binary hypotheses under SPP-

FM still depend upon the number of detections n’ after false alarm mitigation, and are given 

by  
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According to the binary hypotheses under SPP-FM CFAR formulation for 

unpatterned minefields, the conditional probabilities of observation X’ can be derived from 

the formulae obtained from our previous publication [32].   

4.2.2 SPP-FM CTR Formulation for Patterned Minefields 

In the following, the development of conditional probabilities for the case where 

targets are selected by CTR thresholding after anomaly detection is discussed.  Similar 

development will apply for CFAR target selection [10]. For CTR, the anomaly detector 

threshold is chosen so that the total number of selected targets is a fixed number N. Assume 

the probability of mine detection at this threshold to be p so that the number of detected 
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mines mn in the case of a minefield segment is a random variable that is binomial-distributed 

with the probability p, as given in Equation (3.4.1-1). The rest of the mN n  targets will be 

clutter targets.  

In the false alarm (FA) reduction step, only targets with    m i c ig a g a are selected 

for the evaluation of the minefield decision. Let  
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The set of targets after false alarm reduction is called X‟. The corresponding number 

of actual detections n’ after the false alarm reduction is a random variable.  According to the 

null and non-null hypotheses under SPP-FM, the conditional probabilities of observation X’ 

depend only upon the number of detections n’. Formulae of these conditional probabilities 

can be found in our previous publication [10].   

4.2.3 SPP-FM Detection 

Under the spatial point process with CTR thresholding and false alarm mitigation 

(FM), the number of detections n’ remaining after FM is a Poisson random process under 

null hypothesis, and a sum of Poisson and binomial under non-null hypothesis. With little 

effort, the MLE statistic for both CFAR and CTR cases can be obtained as  

( ) ,   
SPP FM

X n n X


        (4.2.3-1) 

where X‟ is a set of detections selected after FM.  
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Chapter 5 Detection Based on Marked Point Process  

With regard to a simple SPP, there is no way to determine whether the detection is a 

mine or a clutter target, since only detection locations are available. Several current 

minefield detection architectures have used different false alarm approaches based on target 

features for false alarm mitigation. These architectures have commonly used the sequential 

approach that was described in the previous chapter; focused on false alarm mitigation after 

detection or SPP-FM.  The developed approach that will be discussed here does not follow 

the traditional sequential approach shown in Figure 2.1-1, but it incorporates the target 

features into the minefield detection process. This process is called a marked spatial point 

process or MPP. It will be shown that minefield performance based on MPP is better than 

minefield performance based on the baseline algorithm (SPP-FM) for unpatterned 

minefields.   The patterned minefield performance based on MPP is not evaluated since a 

reliable detection of minefields without linear pattern is not possible for patterned 

minefields.   

5.1 MPP-CFAR  

 

5.1.1 MPP-CFAR Formulation for Unpatterned Minefields  

In the case of a marked point process with CFAR target selection, the targets are 

obtained using CFAR thresholding after anomaly detection. This case is similar to the SPP 

case in which the clutter rate is c and the density of detected mines is mp . However, unlike 

the SPP case, the detections are identified as mines or clutter targets by the classification 
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function Z.  It is important to note that the classification function Z is not known a priori, 

and should be estimated from the data. Let the total number of detected targets be 

represented by a random variable n and the number of mines be represented by a random 

variable mn .  The conditional probabilities of observation X under the null and non-null 

hypotheses for this case are given by 
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5.1.2 MPP-CFAR Detection for Unpatterned Minefields 

Using Equations (5.1.1-1) and (5.1.1-2), the minefield likelihood ratio in the case of 

the MPP-CFAR can be derived as  
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The corresponding log likelihood ratio from Equation (5.1.2-1) can be written as  
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where mc
id is a distance metric, and is defined as: 

          ln lnmc
m ci i id g a g a      (5.1.2-3) 

For now, assume that the only unknown parameter is the classification function Z. 

Then the maximum log-likelihood statistic can be obtained by maximizing Equation (5.1.2-

2) with respect to Z. That is, 

       lnmax
MPP CFAR MPP CFARZ
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It is noted that there are 2n  different element combinations in Z. An exhaustive 

search over all these combinations is computationally expansive. Fortunately, the search for 

an optimal solution can be linearized in n when the values of mc
id are sorted in descending 

order.  This results in obtaining the number of targets identified as mines ( mn ) in the 

classification function Z .  Thus Equation (5.1.2-4) can be rewritten as  

      lnmax
m

MPP CFAR MPP CFARn
X X Z

 

 
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 

     (5.1.2-5) 

where X and Z are such that all the detections are sorted in descending order of the distance 

metric mcd
i

. Since the targets are sorted in descending order, selecting the number of mines 

mn  automatically implies a classification function Z , which maximizes the log-likelihood 

ratio. The number of mines mn  can be between 0 and n, provided the search for the optimal 

classification function is only linear in n [32].  

5.2 MPP-CTR  

 

5.2.1 MPP-CTR Formulation for Unpatterned Minefields 

In the case of the MPP with CTR target selection, a fixed number of targets N is 

selected for all segments using CTR thresholding after anomaly detection. This is similar to 

the SPP-FM. When the segment contains only background, all detected targets will be 

clutter targets; however, if it is a minefield segment, the probability of a given target being a 

mine must be obtained. Assume the probability of mine detection to be p , so that the density 
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of detected mines is mp , and the average number of mine detections in the segment of area

A  is mp A .  Then the probability of a given target being a mine is given by 

m
mine

p A
p

N


              (5.2.1-1) 

Just like the MPP-CFAR case, the classification function Z is not known a priori and 

should be estimated from the data. The number of mines mn  in the case of a minefield 

segment is a random variable that is binomial-distributed with the probability minep .  

The conditional probabilities of observation X under null and non-null hypotheses in 

this case are given by  
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5.2.2 MPP-CTR Detection for Unpatterned Minefields 

Using Equations (5.2.1-2) and (5.2.1-3), the minefield likelihood ratio in the case of 

MPP-CTR can be easily written as  
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Then the log-likelihood ratio is given by  
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Similar to the case of MPP-CFAR, the MLE statistic maximized with respect to 

number of mines mn  is obtained as  

      lnmax
mMPP CTR MPP CTRn
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where X and Z are such that all the detections are sorted in descending order of the distance 

metric mc
id as defined in Equation (5.1.2-3).  
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Chapter 6 Detection Based on Markov Marked Point Process 

The spatial point processes used to describe mine and clutter processes are often 

Markov in nature based on the occurrence of detection at a given location is fully defined by 

only the other detections in a local neighborhood. For example, under an assumption of 

complete randomness for the clutter process, the occurrence of a clutter target is independent 

of any other detections in its neighborhood (zero-order Markov). In the case of linear pattern 

minefields where mines are placed at approximately regular intervals, the detection of a 

mine at a certain location is strongly determined by the locations of other mines in a finite 

neighborhood. Incorporating the local spatial interactions in a marked point process results 

in a Markov marked point process (MMPP). The proposed effort is based on this Markov 

marked spatial point process formulation. The Markov nature of the point process can be 

exploited to solve the minefield detection problem more efficiently. Minefield detection 

under this formulation is discussed in the following sections.   

6.1 MMPP-CFAR Formulation  

 

6.1.1 MMPP-CFAR Formulation for Unpatterned Minefields 

In the case of a marked point process with CFAR target selection, the targets are 

obtained using CFAR thresholding after anomaly detection. Assume the probability of mine 

detection to be p, so that the density of detected mines is mp , and the average number of 

mine detections in the segment of area A is mp A .  Let the number of mines be represented 

by a random variable mn . The total number of detected targets is represented by a random 
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variable n.  Using the functions and parameters defined in the previous chapters, the 

conditional probabilities of observation X under the null and non-null hypotheses for this 

case are given by 
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6.1.2 MMPP-CFAR Formulation for Patterned Minefields 

In the case of MMPP-CFAR formulation for patterned minefields, the targets are 

selected by CFAR thresholding after anomaly detection.   Let the identity of a detection as a 

mine or non-mine be captured in the classification function Z, where the classification 

function Z is not known a priori and should be estimated from the data. Given the 

classification function Z, it is straight forward to calculate the nearest neighbor distances for 

each of the targets. This nearest neighbor distance can be considered as an independent 

evaluator of the spatial configuration of the detections. Also, the target attribute captures the 

likelihood of the target to be a mine through the mineness measure  m ig a and non-mineness 

measure  c ig a .  

Using the functions and parameters defined in the previous chapters, the conditional 

probability for the null-hypothesis H0 with the nearest neighbor distance term included is 

defined as  
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The corresponding conditional probability of observation X under the non-null 

hypothesis H1 for patterned minefields is defined as  
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6.2 MMPP-CTR Formulation  

 

6.2.1 MMPP-CTR Formulation for Unpatterned Minefields 

In the case of the MMPP with CTR target selection, a fixed number of targets N is 

selected for all segments. Assume the probability of mine detection to be p, so that the 

density of detected mines is mp , and the average number of mine detections in the segment 

of area A is mp A .  Then the probability of a given target being a mine is given by 

m
mine
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      (6.2.1-1) 

Using the functions and parameters defined in the previous chapters, the conditional 

probabilities of observation X for unpatterned minefields are  
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6.2.2 MMPP-CTR Formulation for Patterned Minefields 

In regards to MMPP with CTR target selection, a fixed number of targets N are 

selected for all segments using CTR thresholding after anomaly detection. The number of 

mines mn  in the case of a minefield segment is still a random variable that is binomial-

distributed with the probability of mine detection, .p   Using the functions and parameters 

defined in the previous chapters, the conditional probabilities of observation X under null 

and non-null hypotheses in this case are given by  
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Chapter 7 Comparative Performance for Patterned Minefield 

Detection  
 

7.1 MMPP-CFAR Detection  
 

Starting with Equations (6.1.2-1) and (6.1.2-2), and assuming that the nearest 

neighborhood distances for false alarms are calculated with respect to all detections n, the 

log-likelihood function for patterned minefields can be obtained as  

 
   
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 (7.1-1) 

where  r if k  is given by Equation (3.4-2) and  m if k  is given by Equation (3.4.1-3); other 

functions and parameters can be found in the previous chapters.  For now, assume that the 

only unknown parameter is the classification function Z. Then the maximum log-likelihood 

statistic can be obtained by maximizing Equation (7.1-1) with respect to Z. That is,  

  lnmax
MMPP CFAR MMPP CFARZ

X X Z
 

 
 
 

     (7.1-2) 

Unlike the case of unpatterned minefields for the MPP, there is no algorithm with 

linear complexity to maximize the log-likelihood ratio in Equation (7.1-2) over all possible 

configurations of Z. The reason is that the last term of Equation (7.1-1) depends on the 

identity of all mines, since the nearest neighborhood distance ki is the distance to the other 

detections, which are also called mines. An approximate solution can be obtained by 

selecting pairs of detections as mines, and then adding individual detections to the 
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configuration using a greedy search strategy. The resulting algorithm is at least O(n
2
) in 

computational complexity.  

7.2 MMPP-CTR Detection 

 

The minefield log-likelihood ratio in the case of MMPP-CTR can be easily written as  

     

           
1 1

ln ln ln ln 1

ln ln ln ln
m m

m m

n n

m c m ri i i i
i i

MMPP CTR
m

M
C n p n p

n

a a f k f k

X Z M

g g
 



  
       

  
   
   



   

 

 

 

 (7.2-1) 

where functions and parameters can be found in the previous chapters. 

Similar to the case of MMPP-CFAR, the MLE statistic maximized with respect to Z 

is 

   max ln
MMPP CTR MMPP CTRZ

X X
 

 
 
 


   

(7.2-2) 

7.3 Estimation of Minefield Parameters  
 

 The probability distribution of observation X under the MMPP formulation for 

patterned minefields depends on the clutter rate c , probability of detection for mine p and 

number of mines in a row (M), which in turn depends on the mine separation s , and row 

separation (r) along with the classification function Z. While the clutter rate is known in the 

case of CFAR target selection, it is not a parameter in the case of CTR target selection. 

Thus, the unknown parameters of interest in defining the probability distribution of X are ,p  

,s and r for the patterned minefield. Hence, these parameters need to be estimated.  The 

distance between mines is not known exactly due to mine placement strategies for different 

minefields, drift due to soil shifting, and imprecision inherent in the imaging technology; the 
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probability of mine detection is often not known and the number of rows changes for 

operational effectiveness.       

Thus, MLE solution needs to optimize over the values of ,p ,s and .r   These 

parameters need to be estimated along with the classification function Z for both MMPP-

CFAR and MMPP-CTR. One way to do this is to use the iterative expectation maximization 

(EM) solution [31] in which initial estimates of probability of detection *
,p p  mine 

distance * ,s s  and number of rows *r r are selected. The initial selection of these 

parameters can be based on prior knowledge or nominal values. The MLE solution for 

optimal classification function Z=Z
*
 can be described as 

 * * * *lnargmax , , ,
Z

Z X p p s s r r Z
   
  

   

        (7.3-1) 

Given the solution for Z, the maximum likelihood solution for ,p ,s and r is obtained 

by maximizing the log-likelihood with respect to ,p ,s and r , with fixed Z=Z
*
. The resulting 

estimates of *
,p p  mine distance * ,s s  and number of rows *r r are used to recalculate 

Z
*
.  The two steps are repeated until a convergence is achieved. The resulting solution 

maximizes the log-likelihood ratio with respect to ,p ,s ,r and Z, and the maximum 

likelihood statistic is obtained as 

     , , ,
lnmax , , ,MMPPZ p s r

X X p s r Z        (7.3-2) 

The solutions for the optimal p
* 

and s
* 
for a given Z=Z

*
, for the Markov marked 

point processes applicable to both the CFAR and CTR cases, are obtained in two steps by 

first estimating the optimal mine distance followed by probability of detection. The mine 
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distance is obtained as the wavelength of the first harmonic of the histogram of the mine-to-

mine distances between the mine targets in the classification function Z
*
. The probability of 

detection is calculated as  

ms n
p

L


            (7.3-3) 

where L is the length of the row of mines as seen in the segment.    

For multiple rows of mines, the Hough line detector is used to detect a row with the 

most mines and find a row or multiple rows close to the first row or close to each other that 

are parallel to the best row.  By using the distance between these rows that is roughly known 

or estimated from the data, the detected rows are selected or rejected.   

7.4  Improvement of Computational Speed - Hough Line Detector 
 

Since mines in patterned minefields are laid in a row, the first step in most 

algorithms is to find a narrow linear region in the field segment with a relatively large 

number of targets. The linear density algorithm for patterned minefield detection described 

by Muise and Smith, is similar to the Hough transform, and has been adopted for this 

implementation [34]. The idea is that only the targets in a narrow row (about five meters 

wide) are used for minefield decision. For the SPP, the line detector was applied on all 

targets detected by the anomaly detector; while for the SPP-FM, the line detector was 

applied after anomaly detection and false alarm mitigation. In the case of MMPP, the line 

detector was applied to identify the initial set of mine targets. The main reason to use the 

line detector in the case of SPP or SPP-FM is to establish the minefield detection baseline 
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while the main reason to use the line detector in the case of MMPP is to improve the 

processing speed. Evaluation of the line detector‟s performance with respect to the number 

of mines in a segment, mine Pd, false alarm or clutter density, and deviations from 

collinearity, is beyond the scope of this research. However, for now it suffices to point out 

that the same line detector is used as a pre-process for all detection algorithms.   

7.5 Simulation Procedure 

 

In this effort, the performance comparison of the minefield detection algorithms for 

both CFAR and CTR types of thresholding is accomplished using simulated data. The data 

is simulated as expected after the corresponding thresholding of the anomaly detector 

statistics. The dimensions for a segment (an interrogation area) are selected as per a three-

step by seven-swath collection in a step-staring mode. A few thousand minefield and 

background segments with appropriate numbers of mines and false alarms are generated 

based on the binomial and Poisson distributions for both minefield and background 

segments, respectively.  

For each detected target after thresholding, a set of feature attributes is assigned. In 

general, multiple attributes of the target signatures are calculated. However, to keep the 

analysis simple, only one attribute, the target size, is used. It is noted that the identity or the 

number of attributes used is not important; however, the metric of “mineness” and “non-

mineness,” defined based on these attributes, is important. For the current simulations, 

assume that the target size is distributed normally with mean and standard deviation of m
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and m for mine targets, and c and c for clutter targets, respectively, so that the “mineness” 

and “non-mineness” measures for any detection with target size ia  are  

     
2

221
2

m mia

m i
m

g a e
 



 
        (7.5-1) 
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                (7.5-2) 

A Gaussian distribution for illustration is assumed below; however, these equations 

are equally applicable to either parametric or non-parametric distributions for the 

“mineness” and “non-mineness” measures of the target signatures.  

 

 

Figure 7.5-1 Example of relative distributions of mine and clutter sizes  
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To simulate patterned minefield and background segments, two sets of parameters, 

summarized in Table 7.5-1, have been used. The dimensions of each simulated segment are 

70 m x 140 m. Dataset 1 represents a case with a moderate clutter rate of 0.004. The 

separation between mine size and clutter target size in this case is one standard deviation (10 

pixels). Dataset 2 represents a case with a higher clutter rate of 0.008. The separation 

between mine and clutter target sizes is one and a half standard deviations (15 pixels). 

Table 7.5-1 Two sets of parameters used to simulate patterned minefields and backgrounds  

Parameters Values Comments 

Dataset 1 Dataset 2 

Area (A)
 

9800 9800 m
2
  (swath=70*depth=140) 

Clutter Rate ( c ) 0.004 0.008 #clutter target per m
2
  

Mine PD ( p )* 0.6 0.6 also estimated 

CTR (N) 40 79 #target per segment  

No of Mines per 

Segment 

varies varies # mines are always less than 

#clutter targets 

No of Clutter  Target 

per Segment 

39.2 78.4 # clutter targets  

Mine Size Mean ( m ) 120 125 pixels 

Mine Size Std ( m ) 10 10 pixels 

Clutter Size Mean ( c ) 110 110 pixels 

Clutter Size Std ( c ) 10 10 pixels 

Mine Distance, s 5  5  m; also estimated 

Mine Location Std 0.25 0.25 m 

 

* p is the probability of mine detection.  For p=0.6, an airborne system can only detect an 

average of 60% of mines presented in the minefield segments.    

7.6 Results and Discussions of Single-Line Minefield Segments 

 

Figure 7.6-1 illustrates the patterned minefield detection concept between the 

baseline algorithm (SPP-FM) and the developed algorithm based on MMPP model, while 

Figure 7.6-2 illustrates a few examples of detection performance results of MMPP on 
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background and minefield segments based on the parameter values shown in Table 7.5-1.  

Figures 7.6-3 and 7.6-4 show the comparative performance results among SPP-FM, MMPP, 

and MMPP-EM (where parameters are estimated from the data).   

In Figure 7.6-1, the left top figure shows a segment with the number of detections 

where mines are on along the „red‟ line and the remainders are clutter targets. The baseline 

(SPP-FM) algorithm accounts for all of the detections after false alarm mitigation that form 

a straight line.  In this example, there are three such lines. SPP-FM will call these lines as 

the three rows of mines.  The result is not correct since only one row is actually a mine row.  

On the other hand, the right top figure shows the minefield decision is not only based on the 

straight line as the baseline, but also on the features of the detected targets (features are 

shown in different shapes and colors; in this example, mine-like features are shown by 

yellow triangles while clutter features have different shapes and colors). The detection result 

shows only one mine row. The concept is also illustrated on the real image segment that is 

shown at the bottom of Figure 7.6-1. In this bottom figure, the yellow circles are the 

detections generated by the mine detection algorithm such as the „RX‟ detector.  The results 

indicate that the SPP-FM calls three rows in the image segment to be patterned minefields 

while the MMPP calls only one patterned minefield.  The MMPP rejects the other two rows 

because the spatial distance among the detection is not correct or the probability of detection 

is not high enough. 
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Figure 7.6-1 Illustration of patterned minefield detection concept between the baseline and the developed 

algorithms  

Figure 7.6-2 shows four examples of simulated background and minefield segments 

for the case of CFAR thresholding for Datasets 1 and 2.  The clutter target locations are 

identified by the green circles, while the mine truth locations are identified by a red „x‟ for 

convenience. The MMPP with EM algorithm was used for detection on these segments.  

There are two false alarms identified by red diamonds on the background segments and 
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100% mine detection identified by red diamonds with the red crosses on the minefield 

segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6-2 Detection performance based on MMPP with EM algorithm, results for background (left) and 

minefield (right) segments, (top) low clutter rate (0.004), (bottom) high clutter rate (0.008)  

  
Figures 7.6-3 and 7.6-4 show patterned minefield performance results for two 

different clutter rates and two different thresholding methods based on 5000 segments which 

are equivalent to 49 km
2
 (please see Table 7.5-1for other parameters). The performance in 

blue was generated by MMPP, assuming that both Mine PD and Mine Distance were 

known.   The performance in green was generated by MMPP-EM in which both Mine PD 
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and Mine Distance were estimated by the EM algorithm.  These performance results are 

extremely close; thus, MMPP with EM can be used in general situations.  The performance 

in red was the baseline SPP after false alarm mitigation (FM). Its performance is the lowest. 

A significant improvement in minefield detection performance for the same level of 

minefield-level false alarm rate (Minefield FAR) is illustrated using the MMPP formulation, 

as compared to the baseline false alarm mitigation approach (SPP-FM).    

Figures 7.6-3 and 7.6-4 display the patterned minefield performance results for 

single- row minefield segments based on the clutter rate (MineFar) of 0.004 and one 

standard deviation    of target size separation between mine and clutter target. Figure 7.6-

3 shows the result based on CFAR thresholding, while Figure 7.6-4 shows the result based 

on CTR thresholding.  

Figures 7.6-5 and 7.6-6 reveal the patterned minefield performance results based on 

the clutter rate (MineFar) of 0.008 and 1.5 of target size separation between mine and 

clutter target. Figure 7.6-5 shows the result based on CFAR thresholding, while Figure 7.6-6 

illustrates the result based on CTR thresholding. 
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Figure 7.6-3 Patterned minefield performance for clutter rate of 0.004 and target size separation of one 

standard deviation using CFAR thresholding  

 
 

Figure 7.6-4 Patterned minefield performance for clutter rate of 0.004 and target size separation of one 

standard deviation using CTR thresholding  
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Figure 7.6-5 Patterned minefield performance for clutter rate of 0.008 and target size separation of one and a 

half standard deviation using CFAR thresholding 

 

Figure 7.6-6 Patterned minefield performance for clutter rate of 0.008 and target size separation of one and a 

half standard deviation using CTR thresholding  
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Comparing the minefield performance results between the two datasets, the two most 

important parameter differences between them are the mean target size ( m ) and the clutter 

rate. The clutter rate in Dataset 2 increases two-fold. This results in reducing the minefield 

performance for Dataset 2 as compared to Dataset 1. However, the separation between the 

mean target sizes of mines and clutter targets in Dataset 2 is one and a half more than the 

separation in the case of Dataset 1, which results in better minefield detection performance 

for Dataset 2. Thus, a slightly larger separation between mine sizes and clutter target sizes is 

sufficiently overcome by the negative influence of a higher clutter rate in Dataset 2. Also, 

these figures show that the minefield performance results using CTR and CFAR 

thresholding methods are similar.   

7.7 Results and Discussions of Single and Multiple Lines Minefield 

Segments  

In this exercise, target spatial distributions for patterned minefields containing one, 

two, and three mine rows are explored. An algorithm for the automatic detection of a 

number of rows of mines is developed and demonstrated.  The minefield performance of 

single, double, triple mine rows, and automatic mine row detection at different mine false 

alarm rates is also evaluated.  To simulate patterned minefield and background segments, a 

set of parameters is employed as summarized in Table 7.7.1.  The dimensions of each 

simulated segment are 70 m x 140 m. The separation between mine and clutter target sizes is 

one standard deviation (10 pixels). Different clutter rates are used. 
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Table 7.7-1 Parameters used to simulate patterned & unpatterned minefields and backgrounds  

 Parameters  

Values Comments 

Area (A)
 

9800 m
2
  (swath=70*depth=140) 

Clutter Rate ( c ) 0.006, 0.008 #clutter target per m
2
  

Mine PD ( p ) 0.6 also estimated 

CTR (N) 59, 79 #targets per segment  

No. of Mines per 

Segment 

Varies  #mines are always less than #clutter 

targets 

Mine Size Mean (
m ) 120 pixels 

Mine Size Std ( m ) 10 pixels 

Clutter Size Mean ( c ) 110 pixels 

Clutter Size Std ( c ) 10 pixels 

Mine Distance, s 5 m; also estimated (patterned only) 

Mine Location Std 0.25 m (patterned only) 

Mine Row Separation 15 m; also estimated (patterned only) 

Mine Density 0.004 #mines per m
2
 (unpatterned only) 

 

Figures (7.7-1) through (7.7-6) show excellent mine and minefield performance 

results of 1-row, 2-rows, and 3-rows segments using the MMPP with automatic mine row 

detection algorithm.  The results were based on a high clutter rate of 0.008 or the constant 

target rate (CTR) of 79 (except Figure 7.7-5 where the clutter rate of 0.006 was used) and 

the mean difference between mine size and clutter target size is one standard deviation.  In 

Figures (7.7-1) through (7.7-4), green circles represent clutter targets that went through the 

mine detection algorithm, green circles with red crosses are mine ground truths, and red 

diamonds are detections detected by the MMPP algorithm.  These figures show emplaced 

mines are missing in many places in their rows, which are based on the assumption that only 

60% of mines on an average are detected.  Figure (7.7-1) displays one row minefield 

segment in which 9 out 10 mines were detected with only one false alarm and one missed 
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detection by the MMPP algorithm, while Figure (7.7-2) shows 100% mine detection with no 

false alarm.  Figure (7.7-3) shows the performance result of a two-row minefield segment 

with 100% mine detection with two false alarms, while Figure (7.7-4) shows the 

performance result of a three-row minefield segment with 86% mine detection with one 

false alarm.  Figures (7.7-5) and (7.7-6) illustrate the excellent minefield performance results 

of 1, 2, 3, and all-row minefield segments based on the clutter rates of 0.006 and 0.008, 

respectively. The definitions of the 1, 2, 3, and all-row minefield segments will be 

explained.  

Using the clutter rates of 0.006 and 0.008 and mine Pd of only 60% to generate these 

minefield and background segments (assuming only one standard deviation separation 

between mines and clutter targets), excellent performance results were obtained for both 

mines and minefields, which show the robustness of the developed algorithm based on 

MMPP in the highly cluttered environment.     
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Figure 7.7-1 MMPP detects a single mine-row segment with 90% mine detection with one false alarm  

 

Figure 7.7-2 MMPP detects a single mine-row segment with 100% mine detection with no false alarm  
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Figure 7.7-3 MMPP detects a double mine-rows segment with 100% mine detection with two false alarms  

 

Figure 7.7-4 MMPP algorithm automatically detects a triple mine-rows segment with 86% mine detection with 

one false alarm  
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Figures 7.7-5 and 7.7-6 show the patterned minefield performance of 1-row, 2-rows, 

3-rows, and all-rows minefield detection algorithms using both target attributes and target 

spatial distribution (i.e., MMPP) based on the clutter rates of 0.006 and 0.008, respectively.  

Each of these results was generated using 6000 minefield and background segments, and 

CTR thresholding was selected. The results are based on the assumptions that the number of 

one, two, and three mine rows was generated equally for the minefield segments, and the 

number of detected mines was many times less than the number of clutter targets.  As 

examples, based on the clutter rate of 0.006, there are 9 mines but 50 clutter targets for a 

single row patterned minefield segment, 18 mines but 41 clutter targets for a 2-rows 

patterned minefield segment, and 27 mines but 32 clutter targets for a 3-rows patterned 

minefield segment.  It is defined that the 1-row algorithm detects one row of mines 

regardless of the number of rows formed from the minefield segments. The definitions of 2 

and 3-rows algorithms are as similar as the definition of the 1-row algorithm.  However, the 

all-rows algorithm automatically detects the number of rows presented in the minefield 

segments.  In Figures 7.7-5 and 7.7-6, the results show that the all-rows minefield detection 

algorithm works well at a low minefield-level false alarm rate of 0.1 minefield per km
2
 or 1 

false minefield per 10 km
2
 at the minefield detection probabilities of 70% for the clutter rate 

of 0.008 and 82% for the clutter rate of 0.006.  It is evident that the developed minefield 

detection algorithm for the MMPP model and the developed automatic mine-row detection 

algorithm work well under cluttered environments. These algorithms should be used for 

patterned minefield detection. Comparative minefield performance among other minefield 

processes for single row minefield segments can be found in our previous publication [10].  
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Figure 7.7-5 Minefield performance of MMPP on different mine rows using the clutter rate of 0.006 

        
 

Figure 7.7-6 Minefield performance of MMPP on different mine rows using the clutter rate of 0.008 
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The following figures (7.7-7 through 7.7-14) were obtained from a video in which 

detection results of each segment were saved and used for illustration. Each figure consists 

of the detection results of the baseline algorithm (SPP-FM) and the developed algorithm 

based on Markov Marked Point Process (MMPP) framework using the parameters estimated 

from Estimation and Maximization algorithm (EM).  Each figure shows the mine detection 

performance as well as the minefield decision based on the likelihood values of these 

algorithms on each minefield or background segment.  These performance results were 

based on the high clutter rate of 0.008 and the tight tolerance of one standard deviation 

between mine and clutter sizes used as their spectral feature.  It is noted that the current 

patterned minefield algorithm makes its decision based on the most mines on a row 

regardless of how many rows of mines formed the minefield segment. In this development, 

the likelihood value of the baseline algorithm (SPP-FM) has accounted for all the detected 

mines whether mines are formed in one or many rows. This strategy is used to ensure a fair 

performance comparison when the MMPP-EM is developed to automatically detect the 

number of rows and its likelihood value has accounted for all mines in all detected rows.          

The number on top of each figure indicates the sequential number of a complete run, 

which consists of a few thousand segments.  Only some samples are shown here for 

illustration purposes.  Each figure shows the mine and minefield performance results of both 

algorithms. The detection of a mine (a magenta diamond and a red cross) or a false alarm (a 

magenta diamond) shows on each segment. The minefield decision result is based on the 

maximum likelihood value performed by each algorithm. Each sub-figure changes the color 

according to the ground truth.  If the algorithm recognizes the segment as a minefield 
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segment and its ground truth is the background segment, then the sub-figure will be shown 

as “False MF Detection” in magenta. When the result of a minefield is confirmed by the 

ground truth of an actual minefield segment, the “Minefield” appears as blue in the segment. 

Also, when the result of a background segment is confirmed by the ground truth of an actual 

background segment, there is no change in color.  On the other hand, there are cases of 

missing minefield detection due to the lack of mine detection.  This “Miss Detection” 

displays as red in the segment.    

Figure 7.7-7 shows mine and minefield detection performance of the baseline 

algorithm (SPP-FM) and the MMPP-EM algorithm on the same background segment.  The 

baseline algorithm (top) calls the background segment as the minefield segment since its 

likelihood value is higher than the threshold value. This is an incorrect result; therefore, 

“False MF Detection” appears as magenta in the top sub-figure.    On the other hand, the 

MMPP-EM algorithm has detected five detections which are actually the false alarms. 

Unlike the baseline algorithm, the MMPP-EM algorithm has identified these detections with 

the minefield likelihood value of -1, a small number.  The low minefield likelihood value 

indicates the segment as a non-minefield, which is a correct call.  
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Figure 7.7-7 SPP-FM and MMPP-EM algorithms perform on the background segment. SPP-FM makes an 

incorrect call because it detects many additional false alarms   

In Figure 7.7-8, the baseline algorithm (top) makes a correct call since its minefield 

likelihood value is slightly higher than the threshold value.  This likelihood value is 

computed based on the number of detections, which consists of two true detections and five 

false alarms.  In this case, the number of false detection has assisted the minefield algorithm 

making the correct call; unfortunately, when the algorithm performs on a thousand 

segments, the incorrect call often hurts the minefield performance.  The MMPP-EM 
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(bottom) detects three true detection and four false alarms and does not call the minefield 

because the estimated mine PD is small, which is based on three true detections. This results 

in a “Miss MF Detection”, which is not correct.   

 
Figure 7.7-8 SPP-FM and MMPP-EM algorithms perform on the minefield segment.  Both algorithms missed 

many of true detection; however, the baseline makes a correct call because of additional detected false alarms  
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In Figure 7.7-9, both algorithms make a correct call for two completely different 

reasons.  The baseline algorithm does not detect any true detection.  Instead, it detects 7 

false alarms that bring up the minefield likelihood value high enough to make a correct call.  

Conversely, the MMPP-EM algorithm makes the correct call based on six true mine 

detections with no false alarm.          

 
Figure 7.7-9 SPP-FM and MMPP-EM algorithms perform on the minefield segment.   SPP-FM makes a 

correct minefield call due to the false alarms while MMPP-EM makes a correct minefield call due to the true 

detection  
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In Figure 7.7-10, both algorithms make a correct call based on true detection. The 

MMPP-EM algorithm detects 100% mines with no false alarm while the SPP-FM misses 

four mines but detects three additional false alarms on a single row minefield segment.           

 

 
Figure 7.7-10 SPP-FM and MMPP-EM algorithms make the correct minefield call based on true detection  
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In Figure 7.7-11, both algorithms make a correct call based on true detections with 

good minefield likelihood values. The MMPP-EM algorithm misses two mines with one 

false alarm while the SPP-FM misses two mines with no false alarm on a double row 

minefield segment.           

 

 
Figure 7.7-11 SPP-FM and MMPP-EM algorithms make the correct minefield call based on true detection on a 

double row minefield segment   
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Figure 7.7-12 SPP-FM and MMPP-EM algorithms make the correct minefield call 

based on true detection on a double row minefield segment, although SPP-FM misses one 

row of mines completely.  

 

Figure 7.7-12 SPP-FM and MMPP-EM algorithms make the correct minefield call based on true detection on a 

double row minefield segment although SPP-FM misses one row of mines completely   

 

In Figure 7.7-13, both algorithms make the correct minefield call based on true 
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noted that the SPP-FM is designed to detect only one row with the most mines. However, in 

all exercises for patterned minefield detection, all of the mine rows are accounted for in the 

case of SPP-FM so that a fair comparison between the baseline and the developed 

algorithms can be made.     

 

Figure 7.7-13 SPP-FM and MMPP-EM algorithms make the correct minefield call based on true detection on a 

triple row minefield segment  
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In Figure 7.7-14, both algorithms make the correct minefield call based on true 

detection on a triple row minefield segment. Although SPP-FM misses two rows of mines 

completely, the minefield likelihood value is high enough for the algorithm to make the 

correct call.  The minefield likelihood value in the case of MMPP-EM is high since the 

majority of mines in the segment are detected.   

 
Figure 7.7-14 SPP-FM and MMPP-EM algorithms make the correct minefield call based on true detection on a 

triple row minefield segment although SPP-FM misses completely two rows of mines   
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Chapter 8 MMPP for Unpatterned Minefield Detection 

8.1 MMPP-CFAR Detection 

 

Using Equations (6.1.2-1) and (6.1.2-2), the minefield likelihood ratio in the case of 

the MMPP-CFAR can be derived as  

         
1 1

ln ln ln

ln ln ln ln
m mn

i

m
m m

c

n

m c m ri i i i
i

MMPP CFAR m

n p
C n p

n

g a g a f k f k

X Z A




 

   
       

     

      
      
     





  

 





  (8.1-1) 

where p is the probability of mine detection,
 mf is obtained by either Equation (3.4.2-1) for 

random distribution or Equation (3.4.2-2) for regular distribution, cf is obtained from 

Equation (3.4-1), and rf is obtained from Equation (3.4-2). 

8.2 MMPP-CTR Detection 

 

Starting with Equations (6.2.1-2) and (6.2.1-3), and assuming that the nearest 

neighborhood distances for clutter targets are calculated with respect to all detections n, the 

log-likelihood function for unpatterned minefields under MMPP can be obtained as  
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where minep is obtained from Equation (6.2.1-1), mf is obtained by either Equation (3.4.2-1) 

for random distribution or Equation (3.4.2-2) for regular distribution, cf is obtained from 

Equation (3.4-1), and rf is obtained from Equation (3.4-2). 

8.3 Maximum Likelihood Estimate Statistic 

 

The maximum likelihood estimate statistic for the above thresholding cases is  

 

     
,

lnmax ,
Z p

X X p Z         (8.3-1) 

8.4 Results and Discussions of Unpatterned Minefield Performance 

 

Exploiting spatial distribution of unpatterned mines is not trivial.  The spatial 

structures of unpatterned minefields are not often as pronounced as the spatial structures of 

patterned minefields.  In this effort, the performance of minefields was evaluated, where 

potential mines were assumed to be randomly and regularly distributed and the clutter 

targets were assumed to be randomly distributed.  The minefield performance results were 

obtained at a high clutter rate of 0.008 clutter target per m
2
 and a low mine density of 0.0024 

mine per m
2
 for the baseline algorithm (SPP-FM), the algorithm based only on target feature 

(MPP), and the algorithm based on both target feature and target distribution (MMPP).  The 

results show that the developed minefield detection algorithm based on the MMPP model 

performs the best when unpatterned mines follow the spatial minefield structure.  In 

contrast, when unpatterned mines do not follow any spatial minefield structure, the 

performance of the MMPP algorithm is less pronounced.  Its performance is similar to the 

MPP algorithm, but it is still better than the baseline algorithm.  
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Figures (8.4-1) and (8.4-2) show the minefield detection performance results 

obtained at the high clutter  rate of 0.008 and the mine density of 0.0024 for the two spatially 

distributed cases based on 1500 minefield and 3000 background segments. In both cases, the 

comparative results among the baseline algorithm (SPP-FM), the algorithm based only on 

target feature (MPP), and the algorithm based on both target feature and target distribution 

(MMPP) are provided.  Although the performance results for the CFAR thresholding case 

are only shown, it would be expected that the performance results for the CTR thresholding 

will be similar.  In Figure (8.4-1), when mines are assumed to be regularly distributed, the 

developed MMPP algorithm performs better than the MPP algorithm, and it performs much 

better than the baseline algorithm.  On the contrary, when mines are assumed to be random 

distributed as shown in Figure (8.4-2), the minefield performance of both MMPP and MPP 

algorithms are similar; however, their performance is better than the baseline algorithm.  
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Figure 8.4-1 Unpatterned minefield performance of three algorithms based on the clutter rate of 0.008, mines 

distributed regularly while clutter targets are distributed randomly  

 

Figure 8.4-2 Unpatterned minefield performance of three algorithms based on the clutter rate of 0.008, mines 

and clutter targets are distributed randomly    
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8.4.1 Unpatterned Minefield Performance – Regularly Distributed Mines While 

Randomly Distributed Clutter Targets 

   

The following figures (8.4.1-1through 8.4.1-5) came from a detection video for 

unpatterned minefields.  These figures show mine and minefield detection performance of 

the baseline algorithm (SPP-FM) and the MMPP algorithm on the same unpatterned 

minefield segment.  Unless noted, parameters used to generate the following results include 

the clutter rate value of 0.008, MineDensity value of 0.004, MinePD value of 0.6, and target 

size separation between mine size and clutter size as one standard deviation.  Also, it is 

assumed that unpatterned mines follow regular distribution while clutter targets follow 

random distribution.   Figure 8.4.1-1 shows an example of the correct detection result when 

both the baseline algorithm (top) and the MMPP algorithm (bottom) make a correct call of 

the minefield segment.  Both minefield likelihood values are high, but part of the high 

values can be due to the contribution of additional false positives or false alarms.  

Comparing with the patterned minefield performance results, there are more undetected 

mines and more false alarms generated by both algorithms for unpatterned minefield 

detection.  It is noted that the number on top of each figure indicates the sequential number 

of a complete run which consists of thousand segments.  Only a few samples are shown here 

for illustration purposes.      
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Figure 8.4.1-1 SPP-FM and MMPP algorithms make the correct minefield call with the assumption that mines 

are distributed regularly while clutter targets are distributed randomly, and the clutter rate is 0.008   

 

The following figures show the mine and minefield performance results of the 

baseline and the MMPP algorithms. All the parameters used here are exactly the same as the 

above parameters except that the clutter rate is reduced from 0.008 to 0.006.    Figure 8.4.1-2 

illustrates that both algorithms make the correct minefield call.  Also, the number of missed 
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detection and false alarms appears to improve when the clutter rate to generate these 

segments has been lowered. 

Figure 8.4.1-2 SPP-FM and MMPP algorithms make the correct minefield call with the assumption that mines 

are distributed regularly while clutter targets are distributed randomly with the clutter rate at 0.006   
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Figure 8.4.1-3 shows the baseline algorithm making an incorrect call due to the 

detection of many false positives, while the MMPP algorithm makes a correct call.   

Figure 8.4.1-3 Baseline algorithm makes an incorrect call while MMPP algorithm makes the correct call on the 

background segment       

The following figures show the mine and minefield performance results of the 

baseline and the MMPP algorithms. Only one parameter differs between the following and 

previous examples; the target size standard deviation increases from one to one and a half.  
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Figure 8.4.1-4 shows an example of the detection result when both the baseline algorithm 

(top) and the MMPP algorithm (bottom) make the correct minefield call. Many more mines 

and fewer false alarms are detected by the algorithms.     

Figure 8.4.1-4  Both algorithms make the correct minefield call.  Many mines are detected by both algorithms  
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Figure 8.4.1-5 shows the performance of the algorithms on a background segment.  

Many false alarms are detected by both algorithms.  Based on a slightly high minefield 

likelihood value of 10, the baseline algorithm (top) calls the background segment a 

minefield, which is not correct.  On the other hand, the MMPP algorithm with its minefield 

likelihood value of only one makes a correct background call.  

Figure 8.4.1-5  Baseline algorithm (top) makes the incorrect call while MMPP algorithm makes the correct call 
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8.4.2 Unpatterned Minefield Performance – Randomly Distributed Mines and 

Clutter Targets 

 

 It is assumed that both unpatterned mines and clutter targets follow random 

distribution. The following figures (8.4.2-1 through 8.4.2-3) show mine and minefield 

detection performance of the baseline algorithm (SPP-FM) and the MMPP algorithm on the 

same unpatterned minefield segments.  Unless noted, parameters used to generate the 

following results include a clutter rate of 0.008 or 0.006, MineDensity of 0.004 and MinePD 

of 0.6, and target size separation between mine size and clutter size is one and a half 

standard deviation.    
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Figure 8.4.2-1 shows an example of the detection result when both the baseline 

algorithm (top) and the MMPP algorithm (bottom) make a correct minefield call.  Missed 

detection and false alarms are observed in the results.  

   

 
Figure 8.4.2-1 Both algorithms make the correct call in the case of both mines and clutter targets are randomly 

distributed and the clutter rate is 0.008  
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Figure 8.4.2-2 shows an example of the detection results when both the baseline 

algorithm (top) and the MMPP algorithm (bottom) make an incorrect call of a background 

segment.  Both algorithms have slightly high minefield likelihood values. 

 

 
Figure 8.4.2-2 Baseline (top) and MMPP algorithms make an incorrect minefield call 
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Figure 8.4.2-3 shows an example of the detection result when the baseline algorithm 

(top) makes an incorrect call due to false positives, while the MMPP algorithm (bottom) 

makes a correct call of a background segment.  The baseline algorithm has a slightly high 

minefield likelihood value of 8, while the MMPP algorithm has a negative minefield 

likelihood value of 10. 

 Figure 8.4.2-3 Baseline algorithm (top) makes the incorrect call while MMPP algorithm makes the correct call 

based on the clutter rate of 0.006  
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8.4.3 Unpatterned Minefield Performance – Randomly Distributed Mines and 

Clutter Targets. Comparative Detection Performance between Baseline (SPP-FM) and 

Marked Point Process (MPP) Algorithms     

 

In this section, the benefit of Marked Point Process (MPP) model employing only 

target feature is discussed. Moreover, the developed linear search approach [11] which 

searches for targets to maximize the minefield likelihood value contributes to the 

improvement of the MPP minefield detection performance.  Based on CFAR thresholding 

using one standard deviation of target size separation and the clutter rates of 0.006 and 

0.008, the results show that mine-level detection performance of both SPP-FM and MPP is 

similar since both algorithms use only the target size as the discriminator.  On the other 

hand, the minefield-level detection performance for MPP is significantly better than SPP-

FM.  MPP is better because the MPP formulation assigns a weight to the detections based on 

the size of the targets resulting in a better test statistic.  

The SPP-FM and MPP minefield decision processes are briefly discussed.   The 

baseline (SPP-FM) algorithm makes the minefield decision sequentially, applying the false 

alarm mitigator based on the target size after mine detection, then making the minefield 

decision based on the number of detections. On the other hand, MPP algorithm incorporates 

the target size in the model, which eliminates the false alarm stage and then counts only the 

detections that maximize the minefield likelihood.  This processing approach eliminates 

many minefield false positives. The results indicate that the minefield detection based on 

MPP formulation and the developed linear search approach to maximize the minefield 

likelihood performs better than the baseline approach.  A few examples are illustrated here.   
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Figure 8.4.3-1 shows the detection results of the baseline SPP-FM and the MPP 

algorithms on the background segment.  Although both algorithms produce a similar number 

of detection, the baseline (top) makes an incorrect minefield call while MPP (bottom) makes 

a correct minefield call. The use of the developed search algorithm that maximizes the 

minefield likelihood for the MPP contributes to the minefield performance‟s improvement. 

 

Figure 8.4.3-1SPP-FM (top) makes an incorrect call while MPP (bottom) makes a correct call. Mine detection 

performance of both is similar, but minefield decision separates from a correct to an incorrect minefield call  
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Figure 8.4.3-2 shows mine and minefield detection results of the baseline SPP-FM 

and the MPP algorithms on the minefield segment.  Both algorithms make the correct 

minefield call. 

 

 
Figure 8.4.3-2 SPP-FM (top) and MPP (bottom) make a correct minefield call  
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In summary, exploiting spatial distribution of unpatterned mines is not trivial.  The 

spatial structures of unpatterned minefields are not often as pronounced as the spatial 

structures of patterned minefields.  In this effort, the performance of minefields was 

evaluated, where potential mines were assumed to be randomly and regularly distributed and 

the clutter targets were assumed to be randomly distributed.  The minefield performance 

results were obtained at a high clutter rate of 0.008 clutter target per m
2
 and a low mine 

density of 0.0024 mine per m
2
 among the baseline algorithm (SPP-FM), the algorithm based 

only on target feature (MPP), and the algorithm based on both target feature and target 

distribution (MMPP).  The results show that the developed minefield detection algorithm 

based on the MMPP model performs the best when unpatterned mines follow the spatial 

minefield structure.  However, when unpatterned mines do not follow any spatial minefield 

structure, the performance of the MMPP algorithm is less pronounced.  Its performance is 

similar to the MPP algorithm, but its performance is still better than the baseline algorithm.  

The results can be found in Figures 8.4-1 and 8.4-2. 
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Chapter 9 Analytical Versus Simulation-Based Solutions for 

Detection Problem Based on MMPP Formulation 
 

An analytical solution for the complete minefield detection problem is intractable 

due to a large number of detections and the variation of the number of detected mines in the 

minefield process.  When the number of mines increases, the probability distribution of the 

spatial distances for mines in the minefield to calculate log likelihood ratio quickly becomes 

too complex to solve analytically.  Therefore, an analytical solution for a simplified 

detection problem is developed. Subsequently, the analytical performance and simulation-

based performance for the same MMPP framework are compared.  

9.1 Simplified Detection Problem 

 

The detection problem is simplified so that a tractable analytical solution for the 

MMPP framework can be obtained.  If mines are present in the interrogated area A, then 

there are assumed to be exactly two mines that have size  ia and the distance between these 

mines is  k .  The size of the mines is distributed Gaussian with mean a and standard 

deviation a .  The distance between these mines is Gaussian distributed with mean k and 

standard deviation k .  There are other targets such as clutter targets in the same area.  The 

size of the clutter targets is Gaussian distributed with mean c and standard deviation c

where c a  . These clutter targets have spectral characteristics that are slightly different 

from those of the mines.  Also, these clutter targets are spatially and randomly distributed.  
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Target solution based on constant target rate (CTR) is used so that the total number of 

detections (mines plus clutter targets) is a fixed number N.   

The minefield decision is to determine whether observation X  belongs to the 

minefield process (when two mines are identified) or the background process if no mine is 

identified. This decision is posed under hypothesis testing framework, where 0H  is the 

background hypothesis in which two mines are not found and 1H is the minefield hypothesis 

in which two mines are found.  

Let the assignment of the detection as a mine or a clutter be captured by a 

classification function Z that is defined such that 

 ,, 1, 2,...,iZ z i N 
 
     (9.1-1) 

where         
if the detection  is a mine 1

if the detection  is a clutter target 0i
i

i

x
z

x






   

  

Observation X with N detected targets under two hypotheses is given by 

   
0

1 ,

0

0

:

: 2

H Z

H Z Z



 

Background:

Minefield:         
(9.1-2)

 

9.2 Detection Attributes 

 

For the current development, it is assumed that for any detection, mark ia  is 

independent of other detections and depends only on the identity of the detection as a mine   

( 1iz  ) or a clutter target ( 0iz  ). Thus, the probability distributions for mark ia in the case 

of mines and clutter targets can be given by 

     
 

 

( 1)

( 0)

mi i i

ci i i

p a z g a

p a z g a

 

 
     (9.2-1) 
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The distributions  m ig a and  c ig a describe mineness and non-mineness measures of 

the detections based on attributes of the target signature.  It is assumed that these measures 

follow Gaussian distributions:  

   

   

2
2

2
2

2

2

2

2

1

1

m mi

c ci

a

m i
m

a

c i
c

g a e

g a e

 

 









 

 





    (9.2-2)  

 

Figure 9.2-1 Relative Gaussian distributions of mine and clutter sizes, target size separation of one standard 

deviation   
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9.3 Spatial Distribution 

 

To simplify the analysis, the distribution of spatial distances between two mines

 ijmf k  is assumed to be Gaussian and given by  

 
2

22

2

1 ij

ij

k k
k

m

k

f k e
 



 
  
 

 
    (9.3-1) 

The distribution of nearest neighbor distances ik  between randomly distributed 

clutter targets denoted as  c if k with the clutter rate c is given by  

 
2

2 c ik
c ci if k k e

   
     (9.3-2) 

The probability of clutter targets identified as mines at a distance ik  is given by 

   
2

24
1 ,i i

ir i A
A A

k k
f k k

  
 
 
 
 

      (9.3-3) 

9.4 MMPP-CTR Formulation 

 

The conditional probabilities of observation X according to the null and non-null 

hypotheses under Markov Marked Point Process (MMPP) where both the target feature and 

the spatial distance are integrated into the model are given by    

     *
1 1 1

0
,( | )

i j i
N N N z z z

c r ci ij i
i i j

j i

MMPP
Z g a f k f kp X H

  


   
   
    

     (9.4-1) 

       
1 1 1

1 *
,( | )

i j
ii i

z zN N Nz z

m c mi i ij
i i j

j i

z

cMMPP i
Z g a g a f kp X H f k

  


 
 

 
    

      (9.4-2) 
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where 
*i

k  is the nearest neighbor distance from 
thi target.  

In this formulation, the conditional probability will include all targets that have their 

characteristics of either mines or clutter targets based on target sizes and the spatial distance 

between two targets.   

9.5 MMPP-CTR Decision 

 

Starting with Equations (9.4-1) and (9.4-2), it is noted that there are only two mines 

among all N targets in the minefield segments.  For simplification without loss of generality, 

assume that the two targets are identified as target  1x and target  2x , the log-likelihood 

function for minefields under MMPP-CTR can be obtained as  

       
     

           

   
 
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1 2 12

1 2 12

2
2

1212
1 2 2

1 2 1 2 12 12

4 1
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22
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m c m c
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m m c c m r
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g a g a f k

g a g a f k
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a a
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g a g a g a g a f k f k

L X Z

 
   

 

   
  

    

   
                   


         

    

  

    (9.5-1) 

where 2

12k A     

 Test
maxln

MMPPZ
X Z  

 
 

        (9.5-2) 

Since two targets are selected as mines, there are only
 1

2

N N 
total possibilities of 

valid configurations of Z.  Therefore, an exhaustive search for the optimal solution can be 

used. The minefield performance Receiver Operating Characteristic (ROC) curves are drawn 
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based on a large number of simulations for both minefield and non-minefield cases, and 

evaluating the test statistic   using an exhaustive search.       

9.6 Analytical Solution 

 

In order to compute an analytical solution for the minefield performance, the 

following two probability density functions for the test statistic are computed: 

   
0Test 0| Hp H p       (9.6-1)   

    
1Test 1| Hp H p       (9.6-2)   

Note that the value of the test statistic depends on the values of three independent 

variables 1 2 12, , and a a k for the minefield case.  The variables 1 2and a a are normally 

distributed corresponding to  m ig a in Equation (9.2-2), while 12k follows the distribution 

described in Equation (9.3-1).  
1Hp  is numerically calculated based on the function 

shown in Equation (9.5-1).   

In the non-minefield case, the variables 1 2 12, , and a a k are not independent because the 

best pair of clutter targets that maximizes the test statistic must be found among 

 1

2

N N
M


 combinations of pairs of clutter targets.   

0Hp  is the probability density 

function of the maximum statistic out of these “M”  pairs.  The variables 1 2and a a in this 

case follow normal distribution corresponding to  c ig a in Equation (9.2-2), while 12k follows 

the distribution described in Equation (9.3-3).   
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An approximation for  
0Hp  can be obtained numerically if 1 2 12, , and a a k are 

assumed to be independently selected, and the test statistic is governed by the best statistic 

out of “M” randomly selected statistic. Let  
0LP  be the cumulative distribution of the 

likelihood function for two randomly selected targets that is computed from Equation (9.5-1) 

for the null hypothesis, the cumulative distribution of the null hypothesis  
0HP  and its 

probability density function  
0Hp  , which are given by  

             
00

1 1
M

LHP P        (9.6-3)   

   
0 0

H H

d

d
Pp 


     (9.6-4)  

For this simplified problem, the probability density function for the test statistic 

under null and non-null hypotheses can be analytically calculated.  Under the null 

hypothesis, the test statistic is maximized by two random clutter targets out of N detected 

clutter targets.  For a non-null hypothesis, it is assumed that the test statistic is maximized 

only for the “correct‟ detection.  

9.7  Results and Discussions 

 

9.7.1 Results Based On Simulation  

To simulate minefield and background segments, a set of parameters is used and 

summarized in Table 9.7.1-1.  The dimensions of each simulated segment are 25 m x 25 m. 

The difference between mine and clutter target sizes is one standard deviation (10 pixels). 

Different clutter rates are used.  
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Table 9.7.1-1 Parameters used to simulate minefields and backgrounds  

Parameters  

Values Comments 

Area (A)
 

625 m
2
  (swath=25*depth=25) 

Clutter Rate ( c ) 0.01, 0.02, 0.03 #clutter targets per m
2
  

Mine PD ( p ) 0.6  

CTR (N) 7, 13,19 #targets per segment  

No. of Mines per Segment 2  #mines are always less than #clutter targets 

Mine Size Mean ( m ) 120 pixels 

Mine Size Std ( m ) 10 pixels 

Clutter Size Mean ( c ) 110 pixels 

Clutter Size Std ( c ) 10 pixels 

Mine Distance, s 5 m 

Mine Location Std 0.25 m 

 

With the assumption that a minefield segment contains only two mines and that the 

remainders are clutter targets, the results below are the mine and minefield detection 

performance based on clutter rates of 0.01, 0.02, and 0.03.  Figure 9.7.1-1 shows two 

examples of minefield segments with ground truth showing two mines (red crosses in green 

circles) and clutter targets (green circles).   

The following results were based on the clutter rate of 0.01.  Based on the 

simulation, the MMPP algorithm detects 100% with no false alarm on four different 

minefield segments shown in Figure 9.7.1-2, while there is no false alarm on two 

background segments shown in Figure 9.7.1-3. Figure 9.7.1-4 illustrates the results in which 

the MMPP algorithm make incorrect calls.     
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Figure 9.7.1-1 Examples of minefield segments with ground truth showing two mines (red crosses with green 

circles) and false alarms (green circles)   

   

  

 

Figure 9.7.1-2 MMPP detected all mines with no false alarm  
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Figure 9.7.1-3 No false alarm detected on these background segments  

  

Figure 9.7.1-4 MMPP detected two clutter targets (i.e., false alarms) on the background segments  

 The following results were based on the clutter rate of 0.03.  Figure 9.7.1-5 shows 

the MMPP algorithm detects 100% with no false alarm.  

Unlike the previous results obtained at the clutter rate of 0.01, more incorrect calls 

and missed detection are observed at a higher clutter rate of 0.03.  Different result cases are 

shown in Figures 9.7.1-6 through 9.7.1-8.      
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Figure 9.7.1-5 MMPP detected all mines with no false alarm  

  
Figure 9.7.1-6 MMPP detected one mine, missed one mine, created one false alarm  
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Figure 9.7.1-7 MMPP missed two mines but detected two clutter targets (i.e., false alarms)  

 

Figure 9.7.1-8 MMPP detected two clutter targets on the background segments  
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conditional probabilities for both analytical solutions and the simulation-based solutions for 

three different clutter rates of 0.01, 0.02, and 0.03 are shown in Figures 9.7.2-1,  9.7.2-3,  

9.7.2-5, respectively.  Minefield performance ROC curves based on minefield likelihood 

values for the three clutter rates of 0.01, 0.02, and 0.03 are shown in Figures 9.7.2-2, 9.7.2-4, 

9.7.2-6, respectively.   

 The minefield performance results show that the minefield performance based on 

simulation is slightly better than the minefield performance based on analytical-based 

solutions in all cases.  Part of the reason for the discrepancy is the assumption of 

independence of random variables for analytical solutions for a non-minefield case as 

discussed in section 9.6.  Another reason for the difference is that for a minefield case, it is 

assumed that the test statistic is maximized only when the “true” mines are called out as 

mines. However, Figures 9.7.1-7 and 9.7.1-8 show that the test statistic can also be 

maximized by false alarms.  These detection conditions (when two randomly selected false 

alarms or one mine and another false alarm result in higher test statistic values) tend to bias 

the test statistic of the minefield case, which results in simulation-based minefield 

performance looking slightly better than the performance obtained from the analytical-based 

solution.  

The minefield performance is based on the conditional probabilities of the 

hypotheses of analytical and simulation-based solutions are shown in Figures 9.7.2-1, 9.7.2-

3, 9.7.2-5, while the minefield performance curves based on the minefield likelihood values 

are shown in Figures 9.7.2-2, 9.7.2-4, 9.7.2-6.  These results are based on the clutter rates of 

0.01, 0.02, and 0.03, respectively.
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Figure 9.7.2-1 Conditional probability density functions of ML values under H0 and H1 for analytical and 

simulation solutions based on the clutter rate of 0.01 

 
 

Figure 9.7.2-2 Minefield performance ROC curves of analytical and simulation solutions for the clutter rate of 
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Figure 9.7.2-3 Conditional probability density functions of ML values under H0 and H1 for analytical and 

simulation solutions based on the clutter rate of 0.02 

 

Figure 9.7.2-4 Minefield performance ROC curves of analytical and simulation solutions for the clutter rate of 
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Figure 9.7.2-5 Conditional probability density functions of ML values under H0 and H1 for analytical and 

simulation solutions based on the clutter rate of 0.03 

 

 
Figure 9.7.2-6 Minefield performance ROC curves of analytical and simulation solutions for the clutter rate of 

0.03  
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Chapter 10 Summary and Conclusions 

This research investigated the shape/spectral similarity of mine signatures and the 

minefield-like spatial distribution exploited simultaneously to improve the performance for 

patterned and unpatterned minefield detection. The detection in the segment was formulated 

as a Markov marked point process (MMPP), based on local attributes and relative spatial 

distribution of the target signatures, and the minefield decision was based on the log-

likelihood ratio test of a binary hypothesis problem. Hough transform was used to speed up 

the processing speed for patterned minefield detection, while the developed quadratic 

heuristic search algorithm was used to identify a set of detections that maximizes the 

minefield likelihood for general minefield detection. Often the parameters in the log 

likelihood function are unknown and must be estimated.  The iterative expectation 

maximization (EM) algorithm was used to estimate these unknown parameters wherever 

possible. 

Minefield code was developed to generate four to five thousand background and 

patterned/ unpatterned minefield segments, in which the number of mines was many times 

less than the number of clutter targets.  For example, at the clutter rate of 0.006, there are 9 

mines but 50 clutter targets for single row patterned minefield segments (the clutter rate of 

0.008 was also used).   With thousands of minefield and background segments at high clutter 

rates, the robustness of the developed minefield detection algorithm based on the MMPP 

model was validated. 
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The minefield performance of three algorithms was evaluated and compared. These 

algorithms are the baseline algorithm with false alarm mitigation (SPP-FM) where only 

detection locations are accounted for, the marked point process (MPP) algorithm where the 

detection locations included the spectral attribute such as the target size, and the developed 

algorithm based on MMPP model where both spectral feature and spatial distribution are 

used simultaneously.  The assumption arises that the MMPP algorithm uses known 

parameters in the model.  It is convenient to assume that the parameters used in the 

likelihood functions are known.  In general, these parameters are not known and they must 

be estimated from the data. Therefore, an iterative estimation and maximization (EM) 

algorithm was used to estimate these parameters. Subsequently, the minefield performance 

of the MMPP algorithm with known parameters and the MMPP algorithm with the 

parameter estimation (MMPP-EM) was compared.   

In the minefield detection programs, it is convenient to use the detection thresholding 

based on Constant Target Rate or CTR where a number of targets with the highest „property‟ 

value such as the „RX‟ value are selected after the anomaly or mine detection in the hope of 

obtaining more mines but less false alarms.  CTR thresholding is not always the optimal 

choice since mine signatures may or may not have better contrast or value than clutter 

signatures.  Therefore, in addition to evaluating the minefield performance based on CTR 

thresholding, the minefield performance based on Constant False Alarm Rate (CFAR) 

thresholding was evaluated.        
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Results based on two different datasets, representing two different clutter rates of 

0.004 and 0.008, show that the minefield performance results with the developed MMPP 

and MMPP-EM formulations are much better than those with the baseline SPP-FM 

formulation for single-row patterned minefields.  Both MMPP and MMPP-EM performance 

results are extremely close; therefore, it follows that MMPP with EM can be used in general 

situations.  Also, the results show that the minefield detection performance results based on 

CFAR and CTR thresholding methods are about the same; hence, either detection 

thresholding method can be used.  Finally, the results demonstrate that minefield detection 

performance can be improved significantly through a relatively modest increase in the 

separation between mine and clutter target features, even at a higher clutter rate. The results 

indicate the need to identify and use the feature attributes that effectively separate mines and 

clutter targets.   

Most current patterned minefield detection algorithms do not take advantage of the 

detection of more than one mine row.  In this research, an algorithm to automatically detect 

a number of rows in each segment was developed.  The MMPP algorithm was assessed on 

equally generated minefield segments of 1-row, 2-rows, and 3-rows at two high clutter rates 

of 0.006 and 0.008. In comparing the 1-row, 2-rows, 3-rows, and all-rows detection 

algorithms, the results show that the automatic all-rows detection algorithm performs best, 

even at a low minefield-level false alarm rate of 1 false minefield per 10 km
2
 with the 

minefield detection probability of 82%.  It is evident that the developed minefield detection 

algorithm based on the MMPP model and the developed automatic all-rows detection 
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algorithm work well under highly cluttered environments.  These algorithms should be 

implemented for patterned minefield detection.  

Conversely, exploiting spatial distribution of unpatterned mines is not trivial.  The 

spatial structures of unpatterned minefields are not often as pronounced as the spatial 

structures of patterned minefields.  In this research, the performance of unpatterned 

minefields where potential mines were assumed to be randomly and regularly distributed, 

and where clutter targets were assumed to be randomly distributed was evaluated.  The 

results that were obtained at the high clutter rate of 0.008 and the mine density of 0.0024 for 

two spatially distributed cases were shown. In both cases, the comparative results among the 

baseline algorithm (SPP-FM), the algorithm based only on target feature (MPP), and the 

algorithm based on both target feature and target spatial distribution (MMPP) were 

provided.  The results suggest that the developed minefield detection algorithm based on the 

MMPP model performs the best when unpatterned mines follow the spatial minefield 

structure.  However, when unpatterned mines do not follow any spatial minefield structure, 

the minefield performance of the MMPP algorithm is less pronounced.  Its performance is as 

similar as the performance of the MPP algorithm, but its performance is still better than the 

baseline algorithm.  

The minefield detection performance based on MMPP or MMPP-EM (using 

parameter estimation) is significantly better than the performance of the baseline with false 

alarm mitigation (SPP-FM) for both patterned and unpatterned minefields.  The results 

indicate that proper exploitation of spectral/shape features and spatial distributions can 

indeed contribute to improving the performance of patterned and unpatterned minefield 
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detection.  Also, the ability of the algorithm to detect the minefields in highly cluttered 

environments shows the robustness of the developed minefield detection algorithm based on 

MMPP formulation.   

As the results were based on the simulated data, it is not clear whether the MMPP 

detection algorithm has fully achieved its best performance.   To validate its performance, an 

analytical solution for the minefield detection problem was developed, and its performance 

was compared with the performance of the simulated solution.  The analytical solution for 

the complete minefield detection problem is intractable due to a large number of detections 

and the variation of the number of detected mines in the minefield process. Therefore, an 

analytical solution for a simplified detection problem was derived, and its minefield 

performance was compared with the minefield performance obtained from the simulation in 

the same MMPP framework for three different clutter rates of 0.01, 0.02, and 0.03.   The 

results show that minefield performance based on simulation is slightly better than minefield 

performance obtained from the analytical-based solutions in all cases.  Part of the reason for 

the discrepancy is the assumption of independence of random variables for analytical 

solutions for a non-minefield case.  Another reason for the difference is that, for a minefield 

case, it is assumed that the test statistic is maximized only when the “true” mines are called 

out as mines. However, the results show that the test statistic can also be maximized by false 

alarms.  This detection situation tends to bias the test statistic of the minefield case, which 

results in simulation-based minefield performance ROC curves looking slightly better than 

the performance obtained from the analytical-based solution.          
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Chapter 11 Contributions 

 

1. Developed a new approach to airborne detection of patterned and un-patterned 

minefields - Unlike current approaches that rely on either similarity-based clustering 

techniques or on the spatial distribution of mine-like targets obtained in a strictly 

sequential processing, the developed algorithm simultaneously exploits the 

spectral/shape characteristics of mine signatures and their relative spatial distribution 

to identify individual mines and hence the minefield. 

2. Demonstrated viability of MMPP minefield detection for patterned and unpatterned 

minefields under highly cluttered environments where there are many more clutter 

targets than mines.  

3. Developed a quadratic heuristic search algorithm to identify a set of detections that 

maximizes the minefield likelihood for unpatterned minefields (Section 5.1.2) and  a 

general minefield under MMPP framework (Section 7.1) 

4. Developed an algorithm for automatic detection of a number of rows of mines.  The 

Hough line detector will detect a row with the most mines and find a row or multiple 

rows close to the first row or close to each other.  By using the distance between 

these rows that is roughly known or estimated from the data, the detected rows are 

selected or rejected.  

5. Developed the probability distribution function for nearest neighbor distances 

between mines in linearly patterned minefields (Equation (3.4.1-3)) based on 

experimental data. 
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6. Developed the probability distribution function for random clutter detections 

identified as mines (i.e., false alarms) at distance ik (Equation (3.4-2)). 

7. Developed code to generate unpatterned and patterned minefields for testing the 

algorithms.        

8. Publications for this research effort:   

 A. Trang, S. Agarwal, T. Broach, and T. Smith, “Exploiting spatial distributions 

for minefield detection in cluttered environment”, SPIE Conference on Detection 

Technologies for Mines and Minelike Targets, Vol. 7664 (2010) 

 A. Trang, S. Agarwal, T. Broach, and T. Smith, “Simultaneously exploiting 

spectral similarity and spatial distribution for patterned minefield detection”,  

SPIE Conference on Detection Technologies for Mines and Minelike Targets, 

Vol. 7303 (2009) 

 A. Trang, S. Agarwal, T. Broach, and T. Smith, “Exploiting mineness for 

scatterable minefield detection”, SPIE Conference on Detection Technologies for 

Mines and Minelike Targets, Vol. 6953 (2008) 

 A. Trang, S. Agarwal, P. Regalia, T. Broach, and T. Smith, “A patterned and un-

patterned minefield detection in cluttered environments using Markov marked 

point process”, SPIE Conference on Detection Technologies for Mines and 

Minelike Targets, Vol. 6553 (2007) 

 

9. Recognition: 

This research effort was recognized by the PM Countermine and Explosive 

Ordnance Disposal (PM-CM&EOD) and its contractor, Northrop and Grumman 

Corporation. 
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